Startseite Fused filament fabricated PEEK based polymer composites for orthopaedic implants: a review
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fused filament fabricated PEEK based polymer composites for orthopaedic implants: a review

  • Sathishkumar Sankar ORCID logo EMAIL logo , Jawahar Paulraj ORCID logo und Prasun Chakraborti ORCID logo
Veröffentlicht/Copyright: 23. Oktober 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Additive manufacturing has become a cutting-edge technique to produce biomaterials for various clinical applications. Recent investigations have shown their significance and highlighted their future requirements. Many additive manufacturing technologies are mostly related to manufacturing polyether ether ketone (PEEK) based implants. Among them, fused filament fabrication (FFF) or fused deposition modelling (FDM) is the preferred method. Specifically, FFF builds complex scaffolds for tissue engineering and customized implants, which are not achievable with traditional fabrication methods. PEEK is a rigid, tissue-compatible, lightweight polymer with good wear characteristics and a long implant life. In general, PEEK has many valuable properties and the potential to solve many medical problems, especially orthopaedic implantation. This paper provides a brief study that gives an overview of PEEK-based biomaterials for FFF-based orthopaedic procedures, materials evolution, recent advancements, and the current research progress is also addressed systematically.


Corresponding author: Sathishkumar Sankar, Department of Mechanical Engineering, National Institute of Technology, Agartala, India, E-mail:

Acknowledgements

The authors would like to send their gratitude to National Institute of Technology, Agartala (MHRD – Govt of India) for given constant support to prepare this detailed manuscript.

  1. Research ethics: Not applicable.

  2. Author contributions: Sathishkumar Sankar: Conceptualization, Methodology, Validation, Formal analysis, Resources, Investigation, Data curation, Writing–original draft, Visualization. Jawahar Paulraj: Supervision, Writing – review & editing, Resources. Prasun Chakraborti: Validation, Project administration.

  3. Competing interests: The authors declare that they have no known competing for financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Park, J., Lakes, R. S. Biomaterials an Introduction, 3rd ed.; Springer: New York, NY, 2000.Suche in Google Scholar

2. Qadir, M., Li, Y., Munir, K., Wen, C. Crit. Rev. Solid State Mater. Sci., 2017, 43, 392–416. https://doi.org/10.1080/10408436.2017.1358148.Suche in Google Scholar

3. Ma, H., Suonan, A., Zhou, J., Yuan, Q., Liu, L., Zhao, X., Lou, X., Yang, C., Li, D., Zhang, Y. Arab. J. Chem. 2021, 14, 102977. https://doi.org/10.1016/j.arabjc.2020.102977.Suche in Google Scholar

4. Kurtz, S. M. An Overview of PEEK Biomaterials, PEEK Biomaterials Handbook, 2nd ed.; Kurtz, S. M., Ed. William Andrew Publishing: Pennsylvania, United States, 2019; pp. 1–7.10.1016/B978-1-4377-4463-7.10001-6Suche in Google Scholar

5. Green, S. Compounds and Composite Materials. PEEK Biomaterials Handbook, 2nd ed.; Kurtz, S. M., Ed. William Andrew Publishing: Pennsylvania, United States, 2019; pp. 23–48.10.1016/B978-1-4377-4463-7.10003-XSuche in Google Scholar

6. Penumakala, P., Santo, J., Thomas, A. Composites, Part B 2020, 201, 108336. https://doi.org/10.1016/j.compositesb.2020.108336.Suche in Google Scholar

7. Sathishkumar, S., Jawahar, P., Chakraborti, P. Polym.-Plast. Technol. Mater. 2022, 61, 1367–1384. https://doi.org/10.1080/25740881.2022.2061995.Suche in Google Scholar

8. Oladapo, B. I., Adeoye, A. O. M., Ismail, M. Composites, Part B 2018, 150, 248–254. https://doi.org/10.1016/j.compositesb.2018.05.041.Suche in Google Scholar

9. Li, L., Qin, S., Peng, J., Chen, A., Nie, Y., Liu, T., Song, K. Int. J. Biol. Macromol. 2020, 145, 262–271. https://doi.org/10.1016/j.ijbiomac.2019.12.174.Suche in Google Scholar PubMed

10. Toth, J. M. Biocompatibility of PEEK polymers. In PEEK Biomaterials Handbook, 2nd ed.; William Andrew Publishing: Pennsylvania, United States, 2019; pp. 107–119.10.1016/B978-0-12-812524-3.00008-9Suche in Google Scholar

11. Navarro, M., Michiardi, A., Castano, O., Planell, J. A. J. R. Soc., Interface 2008, 5, 1137–1158. https://doi.org/10.1098/rsif.2008.0151.Suche in Google Scholar PubMed PubMed Central

12. Toth, J. M., Wang, M., Estes, B. T. Biomaterials 2006, 27, 324–334. https://doi.org/10.1016/j.biomaterials.2005.07.011.Suche in Google Scholar PubMed

13. Almasi, D., Iqbal, N., Sadeghi, M., Sudin, I., Kadir, M. R. A., Kamarul, T. Int. J. Biomater. 2016, 2016, 8202653. https://doi.org/10.1155/2016/8202653.Suche in Google Scholar PubMed PubMed Central

14. Sathishkumar, S., Jawahar, P., Chakraborti, P. Synthesis, properties and application of PEEK based bio materials. In Advanced Materials for Biomedical Applications, 1st ed.; Kumar, A., Gori, Y., Kumar, A., Meena, C. S., Dutt, N., Eds. CRC Press: New York, United States, 2022; pp. 81–107.10.1201/9781003344810-5Suche in Google Scholar

15. Mezrakchi, R. A., Creasy, T., Sue, H. J., Bremner, T. J. Appl. Polym. Sci. 2021, 138, e49930. https://doi.org/10.1002/app.49930.Suche in Google Scholar

16. Singh, S., Prakash, C., Ramakrishna, S. Eur. Polym. J. 2019, 114, 234–248. https://doi.org/10.1016/j.eurpolymj.2019.02.035.Suche in Google Scholar

17. Sivasankar, M., Arunkumar, S., Bakkiyaraj, V., Muruganandam, A., Sathishkumar, S. Int. Res. J. Adv. Eng. Technol. 2016, 2, 589–664.Suche in Google Scholar

18. Ruben, B. K., Imaduddin, F., Ariawan, D., Ubaidillah, Arifin, Z. Open Eng. 2021, 11, 639–649. https://doi.org/10.1515/eng-2021-0063.Suche in Google Scholar

19. Anakhu, P. I., Bolu, C. A., Abioye, A. A., Azeta, J. Int. J. Appl. Eng. Res. 2018, 13, 5113–5119.Suche in Google Scholar

20. Wang, P., Zou, B., Xiao, H., Ding, S., Huang, C. J. Mater. Process. Technol. 2019, 271, 62–74. https://doi.org/10.1016/j.jmatprotec.2019.03.016.Suche in Google Scholar

21. Wang, Y., Muller, W. D., Rumjahn, A., Schmidt, F., Schwitalla, A. D. J. Mech. Behav. Biomed. Mater. 2021, 115, 104250. https://doi.org/10.1016/j.jmbbm.2020.104250.Suche in Google Scholar PubMed

22. Li, Y., Lou, Y. Polymers 2020, 12, 2497. https://doi.org/10.3390/polym12112497.Suche in Google Scholar PubMed PubMed Central

23. Khunt, C. P., Makhesana, M. A., Mawandiya, B. K., Patel, K. M. Adv. Mater. Process. Technol. 2021, 8, 320–336. https://doi.org/10.1080/2374068X.2021.1927651.Suche in Google Scholar

24. Wang, P., Pan, A., Xia, L., Cao, Y., Zhang, H., Wu, W. High Perform. Polym. 2022, 34, 337–351. https://doi.org/10.1177/09540083211067388.Suche in Google Scholar

25. Monich, P. R., Henriques, B., Oliveira, A. P. N., Souza, J. C. M., Fredel, M. C. Mater. Lett. 2016, 185, 593–597. https://doi.org/10.1016/j.matlet.2016.09.005.Suche in Google Scholar

26. Ma, R., Tang, T. Int. J. Mol. Sci. 2014, 15, 5426–5445. https://doi.org/10.3390/ijms15045426.Suche in Google Scholar PubMed PubMed Central

27. Song, P. Y., Jing, W., Ling, P. C. Appl. Mech. Mater. 2013, 325–326, 3–7. https://doi.org/10.4028/www.scientific.net/AMM.325-326.3.Suche in Google Scholar

28. Oladapo, B. I., Zahedi, S. A., Ismail, S. O., Omigbodun, F. T., Oluwole, B., Olawumi, M. A., Muhammad, M. A. Bio-Design and Manufacturing. s42242-020-00098-0, 2020, England.Suche in Google Scholar

29. Zheng, J., Zhao, H., Dong, E., Kang, J., Liu, C., Sun, C., Li, D., Wang, L. Mater. Sci. Eng. C 2021, 128, 112333. https://doi.org/10.1016/j.msec.2021.112333.Suche in Google Scholar PubMed

30. Zhou, Z. R., Jin, Z. M. Biosurface and Biotribology 2015, 1, 3–24. https://doi.org/10.1016/j.bsbt.2015.03.001.Suche in Google Scholar

31. Puertolas, J. A., Castro, M., Morris, J. A., Rios, R., Casaos, A. A. Carbon 2018, 141, 107–122. https://doi.org/10.1016/j.carbon.2018.09.036.Suche in Google Scholar

32. Verma, S., Sharma, N., Kango, S., Sharma, S. Eur. Polym. J. 2021, 147, 110295. https://doi.org/10.1016/j.eurpolymj.2021.110295.Suche in Google Scholar

33. Rahman, K. M., Letcher, T., Reese, R. Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition. IMECE2015-52209, 2016.Suche in Google Scholar

34. Arif, M. F., Kumar, S., Varadarajan, K. M., Cantwell, W. J. Jmad 2018, 146, 249–259. https://doi.org/10.1016/j.matdes.2018.03.015.Suche in Google Scholar

35. Basgul, C., Yu, T., Donal, D. W. M., Siskey, R., Marcolongo, M., Kurtz, S. M. J. Mater. Res. 2018, 33, 2040–2051. https://doi.org/10.1557/jmr.2018.178.Suche in Google Scholar PubMed PubMed Central

36. Haleem, A., Javaid, M. Clin. Epidemiol. Global Health 2019, 7, 571–577. https://doi.org/10.1016/j.cegh.2019.01.003.Suche in Google Scholar

37. Panayotov, I. V., Orti, V., Cuisinier, F., Yachouh, J. J. Mater. Sci. Mater. Med. 2016, 27, 118. https://doi.org/10.1007/s10856-016-5731-4.Suche in Google Scholar PubMed

38. Steinberg, E. L., Rath, E., Shlaifer, A., Chechik, O., Maman, E., Salai, M. J. Mech. Behav. Biomed. Mater. 2013, 17, 221–228. https://doi.org/10.1016/j.jmbbm.2012.09.013.Suche in Google Scholar PubMed

39. Wang, P., Zou, B., Ding, S., Huang, C., Shi, Z., Ma, Y., Yao, P. Composites, Part B 2020, 198, 108175. https://doi.org/10.1016/j.compositesb.2020.108175.Suche in Google Scholar

40. Boudeau, N., Liksonov, D., Barriere, T., Maslov, L., Gelin, J. C. Mater. Des. 2012, 40, 148–156. https://doi.org/10.1016/j.matdes.2012.03.028.Suche in Google Scholar

41. Dworak, M., Blazewicz, S. Acta Bioeng. Biomech. 2016, 18, 71–79.Suche in Google Scholar

42. Pascual, A. M. D., Naffakh, M., Gomez, M. A., Marco, C., Ellis, G., Martinez, M. T., Anson, A., Dominguez, J. M. G., Ma, Y. Carbon 2009, 47, 3079–3090. https://doi.org/10.1016/j.carbon.2009.07.020.Suche in Google Scholar

43. Arif, M. F., Alhashmi, H., Varadarajan, K. M., Koo, J. H., Hart, A. J., Kumar, S. Composites, Part B 2020, 184, 107625. https://doi.org/10.1016/j.jmbbm.2021.104601.Suche in Google Scholar PubMed

44. Han, X., Sharma, N., Xu, Z., Scheideler, L., Geis-Gerstorfer, J., Rupp, F., Thieringer, F. M., Spintzyk, S. J. Clin. Med. 2019, 8, 771. https://doi.org/10.3390/jcm8060771.Suche in Google Scholar PubMed PubMed Central

45. Liu, D., Fu, J., Fan, H., Li, D., Dong, E., Xiao, X., Wang, L., Guo, Z. J. Bone Oncol. 2018, 2, 78–82. https://doi.org/10.1016/j.jbo.2018.07.012.Suche in Google Scholar PubMed PubMed Central

46. Manzoor, F., Golbang, A., Jindal, S., Dixon, D., McIlhagger, A., Jones, E. H., Crawford, D., Mancuso, E. J. Mech. Behav. Biomed. Mater. 2021, 121, 104601. https://doi.org/10.1016/j.jmbbm.2021.104601.Suche in Google Scholar

47. Zhao, M., Li, H., Liu, X., Wei, J., Ji, J., Yang, S., Hu, Z., Wei, S. Sci. Rep. 2016, 6, 22832. https://doi.org/10.1038/srep22832.Suche in Google Scholar PubMed PubMed Central

48. Ma, R., Weng, L., Bao, X., Ni, Z., Song, S., Cai, W. Mater. Lett. 2012, 71, 117–119. https://doi.org/10.1016/j.matlet.2011.12.007.Suche in Google Scholar

49. Wong, K. L., Wong, C. T., Liu, W. C., Pan, H. B., Fong, M. K., Lam, W. M., Cheung, W. L., Tang, W. M., Chiu, K. Y., Luk, K. D., Lu, W. W. Biomaterials 2009, 23–24, 3810–3817. https://doi.org/10.1016/j.biomaterials.2009.04.016.Suche in Google Scholar PubMed

50. Wang, L., Weng, L., Song, S., Sun, Q. Mater. Lett. 2010, 64, 2201–2204. https://doi.org/10.1016/j.matlet.2010.06.067.Suche in Google Scholar

51. Kurtz, S. M., Devine, J. N. Biomaterials 2007, 28, 4845–4869. https://doi.org/10.1016/j.biomaterials.2007.07.013.Suche in Google Scholar PubMed PubMed Central

52. Kumar, U. K., Murgod, S. Int. J. Oral Health Sci. 2020, 10, 68–77. https://doi.org/10.4103/ijohs.ijohs_4_20.Suche in Google Scholar

Received: 2022-05-12
Accepted: 2023-01-05
Published Online: 2023-10-23
Published in Print: 2023-10-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Additive manufacturing and allied technologies
  4. Original Papers
  5. Influence of process parameters on ageing and free vibration characteristics of fiber-reinforced polymer composites by fusion filament fabrication process
  6. 3D biomimetic scaffold’s dimensional accuracy: a crucial geometrical response for bone tissue engineering
  7. Investigation of mechanical and microstructure properties of metal inert gas based wire arc additive manufactured Inconel 600 superalloy
  8. Study on the influence of surface roughness on tensile and low-cycle fatigue behavior of electron beam melted Ti‐6Al‐4V
  9. Effect of tool pin profile on the heat generation model of the friction stir welding of aluminium alloy
  10. Effect of clamping position on the residual stress in wire arc additive manufacturing
  11. Effect of welding speed on butt joint quality of laser powder bed fusion AlSi10Mg parts welded using Nd:YAG laser
  12. Mechanical behaviour, microstructure and texture studies of wire arc additive manufactured 304L stainless steel
  13. Evolution of microstructure and properties of CoCrFeMnNi high entropy alloy fabricated by selective laser melting
  14. Effect of laser energy density on surface morphology, microstructure and mechanical behaviour of direct metal laser melted 17-4 PH stainless steel
  15. The influence of rheology in the fabrication of ceramic-based scaffold for bone tissue engineering
  16. Behaviour of glass fiber reinforced polymer (GFRP) structural profile columns under axial compression
  17. Desirability function analysis approach for optimization of fused deposition modelling process parameters
  18. Effect of robotic weaving motion on mechanical and microstructural characteristics of wire arc additively manufactured NiTi shape memory alloy
  19. Rapid tooling of composite aluminium filled epoxy mould for injection moulding of polypropylene parts with small protruded features
  20. Investigation of microstructural evolution in a hybrid additively manufactured steel bead
  21. Fused filament fabricated PEEK based polymer composites for orthopaedic implants: a review
  22. Design of fixture for ultrasonic assisted gas tungsten arc welding using an integrated approach
  23. Effect of post-processing treatment on 3D-printed polylactic acid parts: layer interfaces and mechanical properties
  24. Investigating the effect of input parameters on tool wear in incremental sheet metal forming
  25. Microstructural evolution and improved corrosion resistance of NiCrSiFeB coatings prepared by laser cladding
  26. Microstructure and electrochemical behaviour of laser clad stainless steel 410 substrate with stainless steel 420 particles
  27. News
  28. DGM – Deutsche Gesellschaft für Materialkunde
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0225/html
Button zum nach oben scrollen