Home Microstructure and electrochemical behaviour of laser clad stainless steel 410 substrate with stainless steel 420 particles
Article
Licensed
Unlicensed Requires Authentication

Microstructure and electrochemical behaviour of laser clad stainless steel 410 substrate with stainless steel 420 particles

  • Jeyaprakash Natarajan ORCID logo EMAIL logo , Bhuvanesh Kumar Manickam , Che-Hua Yang and Susila Periyasamy EMAIL logo
Published/Copyright: October 19, 2023
Become an author with De Gruyter Brill

Abstract

Stainless steel (SS) 410 is widely used in many engineering applications such as turbines, nuclear reactor components and seamless pipes due to its superior mechanical properties i.e., high mechanical strength, creep resistance and ductility. Corrosion resistance is an important property which is required for these components to reduce the material degradation from the surface. In the present study, an investigation has been made to enhance the electrochemical behavior of SS410 by depositing SS420 particles using the laser cladding technique. The hardness measured through nano-indentation tests and microstructure of the resulting surface were analysed. Also, electrochemical studies were performed on laser clad specimens with different durations such as 0 h, 8 h, 14 h and 36 h. The improvements in corrosion resistance were analysed using polarization curves and electrochemical impedance spectroscopy (EIS). Further, the morphology and roughness of the corroded surface were analysed. The results showed that a closely packed acicular structure was formed through cladding, which improved the nanohardness compared to the base material. In addition, the clad specimen with 14 h test duration exhibited excellent corrosion resistance amongst the other specimens. The morphological analysis of the corroded specimen revealed the formation of oxides which is indentified to be a major reason for improved corrosion resistance.


Corresponding authors: Jeyaprakash Natarajan, School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China, E-mail: ; and Susila Periyasamy, Department of Mechanical Engineering, College of Engineering Guindy, Anna University, Chennai 600025, Tamil Nadu, India, E-mail:

Acknowledgments

We are grateful for the support from the Priority Academic Program Development of Jiangsu Higher Education Institutions, P.R. China.

  1. Research ethics: Not applicable.

  2. Author contributions: Jeyaprakash Natarajan: Conceptualization, Methodology, Data curation, Investigation, Writing- Original draft preparation. Bhuvanesh Kumar Manickam: Visualization, Investigation, Writing- Reviewing and Editing. Che-Hua Yang: Visualization, Funding, Software, Validation, Writing- Reviewing and Editing. Susila Periyasamy: Software, Validation, Visualization.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Onuike, B., Bandyopadhyay, A. Addit. Manuf. 2020, 31, 100931. https://doi.org/10.1016/j.addma.2019.100931.Search in Google Scholar PubMed PubMed Central

2. Ramkumar, K., Sivasankaran, S., Al-Mufadi, F. A., Siddharth, S., Raghu, R. Arch. Civ. Mech. Eng. A 2019, 19, 2. https://doi.org/10.1016/j.acme.2018.12.003.Search in Google Scholar

3. Wang, Y., Northwood, D. O. Int. J. Hydrogen Energy 2007, 32, 7. https://doi.org/10.1016/j.ijhydene.2007.02.006.Search in Google Scholar

4. Xu, Z., Wang, Z., Chen, J., Qiao, Y., Zhang, J., Huang, Y. Coatings 2019, 9, 10; https://doi.org/10.3390/coatings9100636.Search in Google Scholar

5. De Waard, C., Lotz, U., Milliams, D. Corrosion 1991, 47, 12. https://doi.org/10.5006/1.3585212.Search in Google Scholar

6. Moreira, D., Furtado, H., Buarque, J., Cardoso, B., Merlin, B., Moreira, D. Eng. Fail. Anal. 2019, 97, 506. https://doi.org/10.1016/j.engfailanal.2019.01.035.Search in Google Scholar

7. Botcha, V. D., Hong, Y., Huang, Z., Li, Z., Liu, Q., Wu, J., Lu, Y., Liu, X. J. Alloys Compd. 2019, 773, 698. https://doi.org/10.1016/j.jallcom.2018.09.335.Search in Google Scholar

8. Houdková, Š., Pala, Z., Smazalová, E., Vostřák, M., Česánek, Z. Surf. Coat. Technol. 2017, 318, 129. https://doi.org/10.1016/j.surfcoat.2016.09.012.Search in Google Scholar

9. Wu, A., Ren, J., Peng, Z., Murakawa, H., Ueda, Y. J. Mater. Process. Technol. 2000, 101, 1–3. https://doi.org/10.1016/S0924-0136(99)00456-2.Search in Google Scholar

10. Ya, W., Pathiraj, B., Matthews, D. T., Bright, M., Melzer, S. Surf. Coat. Technol. 2018, 350, 323. https://doi.org/10.1016/j.surfcoat.2018.06.069.Search in Google Scholar

11. Jeyaprakash, N., Yang, C.-H., Bhuvanesh Kumar, M. Laser Machining; IntechOpen: London, 2020.10.5772/intechopen.93779Search in Google Scholar

12. Mohseni, E., Zalnezhad, E., Bushroa, A. R. Int. J. Adhes. Adhes. 2014, 48, 238. https://doi.org/10.1016/j.ijadhadh.2013.09.030.Search in Google Scholar

13. Jeyaprakash, N., Yang, C.-H. Mater. Manuf. Process. 2020, 35, 12. https://doi.org/10.1080/10426914.2020.1779933.Search in Google Scholar

14. Jeyaprakash, N., Yang, C.-H., Sivasankaran, S. Mater. Manuf. Process. 2020, 35, 2. https://doi.org/10.1080/10426914.2019.1692354.Search in Google Scholar

15. Jeyaprakash, N., Yang, C.-H., Ramkumar, K. Appl. Phys. A 2020, 126, 455. https://doi.org/10.1007/s00339-020-03637-9.Search in Google Scholar

16. Atamert, S., Bhadeshia, H. Metall. Mater. Trans. 1989, 20, 6. https://doi.org/10.1007/BF02650140.Search in Google Scholar

17. Jeyaprakash, N., Yang, C.-H. Trans. Indian Inst. Met. 2020, 73, 1527. https://doi.org/10.1007/s12666-020-01927-7.Search in Google Scholar

18. Chandra, K., Kain, V., Srinivasan, N., Samajdar, I., Balasubrahmanian, A. Adv. Mat. Res. 2013, 794, 757. https://doi.org/10.4028/www.scientific.net/AMR.794.757.Search in Google Scholar

19. Alam, M. K., Edrisy, A., Urbanic, J., Pineault, J. J. Mater. Eng. Perform. 2017, 26, 3. https://doi.org/10.1007/s11665-017-2541-x.Search in Google Scholar

20. Zhang, Z., Yu, T., Kovacevic, R. Appl. Surf. Sci. 2017, 410, 225; https://doi.org/10.1016/j.apsusc.2017.03.137.Search in Google Scholar

21. Li, D., Guruvenket, S., Hassani, S., Bousser, E., Azzi, M., Szpunar, J., Klemberg-Sapieha, J. Thin Solid Films 2011, 519, 10. https://doi.org/10.1016/j.tsf.2010.12.020.Search in Google Scholar

22. Lei, J., Shi, C., Zhou, S., Gu, Z., Zhang, L.-C. Surf. Coat. Technol. 2018, 334, 274. https://doi.org/10.1016/j.surfcoat.2017.11.051.Search in Google Scholar

23. Nikitasari, A., Amrani, D. O., Zulaifa, L., Prasetyo, M. A., Anwar, M. S., Mabruri, E. AIP Conf. Proc; AIP Publishing LLC: USA, 2020; p. 1.Search in Google Scholar

24. Rao, C. J., Shankar, A. R., Ajikumar, P., Kamruddin, M., Mallika, C., Mudali, U. K. Corrosion 2015, 71, 4; https://doi.org/10.1016/j.jnucmat.2018.01.012.Search in Google Scholar

25. Jeyaprakash, N., Yang, C.-H., Ramkumar, K., Sui, G.-Z. J. Iron Steel Res. Int. 2020, 27, 12. https://doi.org/10.1007/s42243-020-00447-4.Search in Google Scholar

26. Bobbio, L. D., Bocklund, B., Reichardt, A., Otis, R., Borgonia, J. P., Dillon, R. P., Shapiro, A. A., McEnerney, B. W., Hosemann, P., Liu, Z.-K. J. Alloys Compd. 2020, 814, 151729. https://doi.org/10.1016/j.jallcom.2019.151729.Search in Google Scholar

27. Gupta, A., Choudhari, A., Kadaka, T., Rayar, P. Proc. – 2019 12th Int. Conf. Intell. Comput. Technol. Autom. ICICTA 2019; Springer: Singapore, 2019.Search in Google Scholar

28. Momenzadeh, N., Nath, S. D., Berfield, T. A., Atre, S. V. Exp. Mech. 2019, 59, 6; https://doi.org/10.1007/s11340-019-00513-3.Search in Google Scholar

29. Chen, J., Khalifa, A., Xue, L., King, M. J. Mater. Process. Technol. 2018, 255, 184. https://doi.org/10.1016/j.jmatprotec.2017.12.003.Search in Google Scholar

30. Bhuvanesh Kumar, M., Sathiya, P. Thin-Walled Struct. 2020, 159, 107228. https://doi.org/10.1016/j.tws.2020.107228.Search in Google Scholar

31. Zhang, P., Li, S., Zhang, Z. Mater. Sci. Eng. A 2011, 529, 62. https://doi.org/10.1016/j.msea.2011.08.061.Search in Google Scholar

32. Bhuvanesh Kumar, M., Sathiya, P., Rajesh Kannan, G., Karthikeyan, M. Mater. Lett. 2022, 317, 132115. https://doi.org/10.1016/j.matlet.2022.132115.Search in Google Scholar

33. Lu, J., Han, B., Cui, C., Li, C., Luo, K. Opt Laser. Technol. 2017, 88, 250. https://doi.org/10.1016/j.optlastec.2016.09.025.Search in Google Scholar

34. Harun, W., Asri, R., Romlay, F., Sharif, S., Jan, N., Tsumori, F. J. Alloys Compd. 2018, 748, 1044. https://doi.org/10.1016/j.jallcom.2018.03.233.Search in Google Scholar

35. Niu, L., Cheng, Y. Appl. Surf. Sci. 2007, 253, 21. https://doi.org/10.1016/j.apsusc.2007.04.066.Search in Google Scholar

36. Shreir, L. L. Corrosion: Metal/environment Reactions; Newnes: London, 2013.Search in Google Scholar

37. Li, C., Bell, T. Corros. Sci. 2006, 48, 8. https://doi.org/10.1016/j.corsci.2005.08.011.Search in Google Scholar

38. Wu, Z., Mahmud, A., Zhang, J., Liu, Y., Yang, H. Mater. Des. 2018, 140, 123. https://doi.org/10.1016/j.matdes.2017.11.061.Search in Google Scholar

39. Choi, W. T., Oh, K., Singh, P. M., Breedveld, V., Hess, D. W. J. Mater. Sci. 2016, 51, 11. https://doi.org/10.1007/s10853-016-9821-y.Search in Google Scholar

40. Dai, N., Zhang, L.-C., Zhang, J., Zhang, X., Ni, Q., Chen, Y., Wu, M., Yang, C. Corros. Sci. 2016, 111, 703. https://doi.org/10.1016/j.corsci.2016.06.009.Search in Google Scholar

41. Santamaria, M., Tranchida, G., Di Franco, F. Corros. Sci. 2020, 173, 108778. https://doi.org/10.1016/j.corsci.2020.108778.Search in Google Scholar

42. Kumar, M. B., Parameshwaran, R., Deepandurai, K., Senthil, S. Trans. Indian Inst. Met. 2020, 73, 5.10.1007/s12666-020-01960-6Search in Google Scholar

43. Kumar, M. B., Sathiya, P., Parameshwaran, R. Trans. Indian Inst. Met. 2020, 73, 11.10.1007/s12666-020-01978-wSearch in Google Scholar

44. Tandon, V., Patil, A. P. Surf. Eng. Appl. Electrochem., 2020, 56, 63. https://doi.org/10.3103/S1068375520010147.10.3103/S1068375520010147Search in Google Scholar

Received: 2022-03-24
Accepted: 2022-12-23
Published Online: 2023-10-19
Published in Print: 2023-10-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Additive manufacturing and allied technologies
  4. Original Papers
  5. Influence of process parameters on ageing and free vibration characteristics of fiber-reinforced polymer composites by fusion filament fabrication process
  6. 3D biomimetic scaffold’s dimensional accuracy: a crucial geometrical response for bone tissue engineering
  7. Investigation of mechanical and microstructure properties of metal inert gas based wire arc additive manufactured Inconel 600 superalloy
  8. Study on the influence of surface roughness on tensile and low-cycle fatigue behavior of electron beam melted Ti‐6Al‐4V
  9. Effect of tool pin profile on the heat generation model of the friction stir welding of aluminium alloy
  10. Effect of clamping position on the residual stress in wire arc additive manufacturing
  11. Effect of welding speed on butt joint quality of laser powder bed fusion AlSi10Mg parts welded using Nd:YAG laser
  12. Mechanical behaviour, microstructure and texture studies of wire arc additive manufactured 304L stainless steel
  13. Evolution of microstructure and properties of CoCrFeMnNi high entropy alloy fabricated by selective laser melting
  14. Effect of laser energy density on surface morphology, microstructure and mechanical behaviour of direct metal laser melted 17-4 PH stainless steel
  15. The influence of rheology in the fabrication of ceramic-based scaffold for bone tissue engineering
  16. Behaviour of glass fiber reinforced polymer (GFRP) structural profile columns under axial compression
  17. Desirability function analysis approach for optimization of fused deposition modelling process parameters
  18. Effect of robotic weaving motion on mechanical and microstructural characteristics of wire arc additively manufactured NiTi shape memory alloy
  19. Rapid tooling of composite aluminium filled epoxy mould for injection moulding of polypropylene parts with small protruded features
  20. Investigation of microstructural evolution in a hybrid additively manufactured steel bead
  21. Fused filament fabricated PEEK based polymer composites for orthopaedic implants: a review
  22. Design of fixture for ultrasonic assisted gas tungsten arc welding using an integrated approach
  23. Effect of post-processing treatment on 3D-printed polylactic acid parts: layer interfaces and mechanical properties
  24. Investigating the effect of input parameters on tool wear in incremental sheet metal forming
  25. Microstructural evolution and improved corrosion resistance of NiCrSiFeB coatings prepared by laser cladding
  26. Microstructure and electrochemical behaviour of laser clad stainless steel 410 substrate with stainless steel 420 particles
  27. News
  28. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0166/html
Scroll to top button