Abstract
The surface and microstructural characteristics of 3D printed parts play a significant role under mechanical loading. The authors have explored the effect of laser energy densities on the surface morphology, microstructure and mechanical behaviour of 17-4 precipitation hardened stainless steel fabricated under the direct metal laser melting technique. The considered processing parameters were laser energy density and its technical parameters: laser power, layer thickness, hatch spacing and scanning speed. The mechanical and metallurgical properties of the as-printed samples appeared better than the wrought counterpart due to the higher densification level (99.74 %) induced by the rotating scanning strategy. X‐ray diffraction revealed the presence of both the martensitic α phase and austenitic γ phase in the as-printed sample. There is no significant anisotropy in the mechanical behaviour as the build direction has a random texture with a fine columnar grain structure. The high laser energy density with low layer thickness results in an excellent surface finish. The tensile strength (1180 MPa) and the elongation for the as-printed sample (45.0 %) were considerably more significant than that for the wrought sample (1160 MPa and 26.0 %), which is attributed to the combination of low and high-angle boundaries, as confirmed by the electron backscatter diffraction results.
Acknowledgments
The authors would like to thank SASTRA Deemed to be University, Thanjavur, India, for providing the facility to carry out this work. The Shanmugha Precision Forging (SPF), Thanjavur, is acknowledged for machining the samples. The National Institute of Technology, Tiruchirappalli (NITT) is appreciated for the micro-tensile testing and WLI measurement. The Indian Institute of Technology, Bombay (IIT-B) is appreciated for the EBSD analysis.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research received no specific grant from any funding agency.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Gokuldoss, P. K., Kolla, S., Eckert, J. Materials 2017, 10, 672. https://doi.org/10.3390/ma10060672.Search in Google Scholar PubMed PubMed Central
2. Srinivasan, D., Meignanamoorthy, M., Ravichandran, M., Mohanavel, V., Alagarsamy, S. V., Chanakyan, C., Sakthivelu, S., Karthick, A., Prabhu, T. R., Rajkumar, S. Adv. Mater. Sci. Eng. 2021, 1, 1–10. https://doi.org/10.1155/2021/5756563.Search in Google Scholar
3. Yadollahi, A., Shamsaei, N., Thompson, S. M., Elwany, A., Bian, L. Int. J. Fatigue 2017, 94, 218. https://doi.org/10.1016/j.ijfatigue.2016.03.014.Search in Google Scholar
4. Chandra, S., Tan, X., Narayan, R. L., Wang, C., Tor, S. B., Seet, G. Addit. Manuf. 2021, 37, 101633. https://doi.org/10.1016/j.addma.2020.101633.Search in Google Scholar
5. Wen, Y., Zhang, B., Narayan, R. L., Wang, P., Song, X., Zhao, H., Ramamurty, U., Qu, X. Addit. Manuf. 2021, 40, 101926. https://doi.org/10.1016/j.addma.2021.101926.Search in Google Scholar
6. AlMangour, B., Yang, J. M. Mater. Des. 2016, 110, 914. https://doi.org/10.1016/j.matdes.2016.08.037.Search in Google Scholar
7. Larimian, T., Kannan, M., Grzesiak, D., AlMangour, B., Borkar, T. Mater. Sci. Eng., A 2020, 770, 138455. https://doi.org/10.1016/j.msea.2019.138455.Search in Google Scholar
8. Gowtham, S., Kumar, T. C. A., Devi, N. S. M. P. L., Chakravarthi, M. K., Pradeep Kumar, S., Karthik, R., Anandaram, H., Kumar, N. M., Ramaswamy, K. J. Nanomater. 2022, 1, 1–7 . https://doi.org/10.1155/2022/8998451.Search in Google Scholar
9. Idury, K. S. N. S., Chakkravarthy, V., Narayan, R. L. Trans. Indian Natl. Acad. Eng. 2021, 6, 975. https://doi.org/10.1007/s41403-021-00269-0.Search in Google Scholar
10. Wei, W. H., Shen, J. Int. J. Mater. Res. 2018, 109, 437. https://doi.org/10.3139/146.111615.Search in Google Scholar
11. Tillmann, W., Lopes Dias, N. F., Stangier, D., Schaak, C., Höges, S. Mater. Des. 2022, 213, 110304. https://doi.org/10.1016/j.matdes.2021.110304.Search in Google Scholar
12. Yu, N., Yang, Y., Jourdain, R., Gourma, M., Bennett, A., Fang, F. Int. J. Adv. Manuf. Technol. 2020, 108, 2559. https://doi.org/10.1007/s00170-020-05568-4.Search in Google Scholar
13. Bennett, A., Yu, N., Castelli, M., Chen, G., Balleri, A., Urayama, T., Fang, F. Front. Mech. Eng. 2021, 16, 122. https://doi.org/10.1007/s11465-020-0603-5.Search in Google Scholar
14. Melentiev, R., Yu, N., Lubineau, G. Addit. Manuf. 2021, 48, 102459. https://doi.org/10.1016/j.addma.2021.102459.Search in Google Scholar
15. KC, S., Nezhadfar, P. D., Phillips, C., Kennedy, M. S., Shamsaei, N., Jackson, R. L. Wear 2019, 440–441, 203100. https://doi.org/10.1016/j.wear.2019.203100.Search in Google Scholar
16. Hu, Z., Zhu, H., Zhang, H., Zeng, X. Opt. Laser Technol. 2017, 87, 17. https://doi.org/10.1016/j.optlastec.2016.07.012.Search in Google Scholar
17. Pal, S., Lojen, G., Hudak, R., Rajtukova, V., Brajlih, T., Kokol, V., Drstvenšek, I. Addit. Manuf. 2020, 33, 101147. https://doi.org/10.1016/j.addma.2020.101147.Search in Google Scholar
18. Nguyen, Q. B., Luu, D. N., Nai, S. M. L., Zhu, Z., Chen, Z., Wei, J. Arch. Civ. Mech. Eng. 2018, 18, 948. https://doi.org/10.1016/j.acme.2018.01.015.Search in Google Scholar
19. Sufiiarov, V. S., Popovich, A. A., Borisov, E. V., Polozov, I. A., Masaylo, D. V., Orlov, A. V. Procedia Eng. 2017, 174, 126. https://doi.org/10.1016/j.proeng.2017.01.179.Search in Google Scholar
20. Zhang, B., Dembinski, L., Coddet, C. Mater. Sci. Eng., A 2013, 584, 21. https://doi.org/10.1016/j.msea.2013.06.055.Search in Google Scholar
21. Cherry, J. A., Davies, H. M., Mehmood, S., Lavery, N. P., Brown, S. G. R., Sienz, J. Int. J. Adv. Manuf. Technol. 2015, 76, 869. https://doi.org/10.1007/s00170-014-6297-2.Search in Google Scholar
22. Dinesh Babu, P., Prasannakumar, B., Marimuthu, P., Mishra, R. K., Ram Prabhu, T. Arch. Civ. Mech. Eng. 2019, 19, 756. https://doi.org/10.1016/j.acme.2019.03.001.Search in Google Scholar
23. Shanmuganathan, P. K., Purushothaman, D. B., Ponnusamy, M. 3D Print Addit Manuf. 2021, 10, 383–392. https://doi.org/10.1089/3dp.2021.0061.Search in Google Scholar PubMed PubMed Central
24. Lakshmanan, M., SelwinRajadurai, J., Chakkravarthy, V., Rajakarunakaran, S. Mater. Lett. 2020, 272, 127879. https://doi.org/10.1016/j.matlet.2020.127879.Search in Google Scholar
25. Chakkravarthy, V., Jose, S. P., Lakshmanan, M., Manojkumar, P., Lakshmi Narayan, R., Kumaran, M. Mater. Today: Proc. 2022, 64, 1711–1716. https://doi.org/10.1016/j.matpr.2022.05.469.Search in Google Scholar
26. Sun, Y., Hebert, R. J., Aindow, M. Mater. Des. 2018, 156, 429. https://doi.org/10.1016/j.matdes.2018.07.015.Search in Google Scholar
27. Rafi, H. K., Pal, D., Patil, N., Starr, T. L., Stucker, B. E. J. Mater. Eng. Perform. 2014, 23, 4421. https://doi.org/10.1007/s11665-014-1226-y.Search in Google Scholar
28. Radhakrishnan, R. M., Ramamoorthi, V., Srinivasan, R. Proc. Inst. Mech. Eng., Part L 2021, 48, 2715–2735. https://doi.org/10.1177/14644207211057002.Search in Google Scholar
29. Pradeep, G. V. K., Duraiselvam, M., Sivaprasad, K. J. Mater. Eng. Perform. 2022, 31, 1009. https://doi.org/10.1007/s11665-021-06278-y.Search in Google Scholar
30. Nezhadfar, P. D., Shrestha, R., Phan, N., Shamsaei, N. Int. J. Fatigue 2019, 124, 188. https://doi.org/10.1016/j.ijfatigue.2019.02.039.Search in Google Scholar
31. Lakshmanan, M., Selwin Rajadurai, J., Chakkravarthy, V., Rajakarunakaran, S. Mater. Lett. 2021, 285, 129113. https://doi.org/10.1016/j.matlet.2020.129113.Search in Google Scholar
32. Marimuthu, P., Dinesh Babu, P., Ram Prabhu, T. Trans. Indian Inst. Met. 2020, 73, 1587. https://doi.org/10.1007/s12666-020-01938-4.Search in Google Scholar
33. Rashid, R., Masood, S. H., Ruan, D., Palanisamy, S., Rahman Rashid, R. A., Brandt, M. J. Mater. Process. Technol. 2017, 249, 502. https://doi.org/10.1016/j.jmatprotec.2017.06.023.Search in Google Scholar
34. Kurzynowski, T., Gruber, K., Stopyra, W., Kuźnicka, B., Chlebus, E. Mater. Sci. Eng., A 2018, 718, 64. https://doi.org/10.1016/j.msea.2018.01.103.Search in Google Scholar
35. Prabu, G., Duraiselvam, M., Jeyaprakash, N., Yang, C.-H. Met. Mater. Int. 2021, 27, 2328. https://doi.org/10.1007/s12540-020-00873-9.Search in Google Scholar
36. Huang, L., Cao, Y., Zhao, H., Li, Y., Wang, Y., Wei, L. Open Phys. 2022, 20, 66. https://doi.org/10.1515/phys-2022-0008.Search in Google Scholar
37. Ponnusamy, P., Masood, S. H., Ruan, D., Palanisamy, S., Mohamed, O. A. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 220. https://doi.org/10.1088/1757-899X/220/1/012001.Search in Google Scholar
38. Rajeshshyam, R., Venkatraman, R., Raghuraman, S. Arabian J. Sci. Eng. 2021, 47, 8009–8030. https://doi.org/10.1007/s13369-021-05908-w.Search in Google Scholar
39. Nikam, P. P., Arun, D., Ramkumar, K. D., Sivashanmugam, N. Mater. Charact. 2020, 169, 110671. https://doi.org/10.1016/j.matchar.2020.110671.Search in Google Scholar
40. Chakkravarthy, V., Lakshmanan, M., Manojkumar, P., Prabhakaran, R. Mater. Lett. 2022, 306, 130936. https://doi.org/10.1016/j.matlet.2021.130936.Search in Google Scholar
41. Stoudt, M. R., Ricker, R. E., Lass, E. A., Levine, L. E. Jom 2017, 69, 506. https://doi.org/10.1007/s11837-016-2237-y.Search in Google Scholar PubMed PubMed Central
42. Gu, H., Gong, H., Pal, D., Rafi, K., Starr, T., Stucker, B. 24th Int SFF Symp – An Addit Manuf Conf., 2013, p. 474.Search in Google Scholar
43. Chakkravarthy, V., Jerome, S. Mater. Lett. 2020, 260, 126981. https://doi.org/10.1016/j.matlet.2019.126981.Search in Google Scholar
44. Li, Y., Chen, K., Narayan, R. L., Ramamurty, U., Wang, Y., Long, J., Tamura, N., Zhou, X. Addit. Manuf. 2020, 34, 101220. https://doi.org/10.1016/j.addma.2020.101220.Search in Google Scholar
45. Chakkravarthy, V., Jerome, S. Mater. Lett. 2020, 280, 128578. https://doi.org/10.1016/j.matlet.2020.128578.Search in Google Scholar
46. Yadollahi, A., Shamsaei, N., Thompson, S. M., Elwany, A., Bian, L. Adv. Manuf. 2015, 2A, 1–5. https://doi.org/10.1115/IMECE2015-52362.Search in Google Scholar
47. Lass, E. A., Stoudt, M. R., Williams, M. E. Metall. Mater. Trans. A 2019, 50, 1619. https://doi.org/10.1007/s11661-019-05124-0.Search in Google Scholar
48. Jeyaprakash, N., Yang, C.-H., Ramkumar, K. R. Mater. Sci. Technol. 2021, 37, 326. https://doi.org/10.1080/02670836.2021.1893457.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Additive manufacturing and allied technologies
- Original Papers
- Influence of process parameters on ageing and free vibration characteristics of fiber-reinforced polymer composites by fusion filament fabrication process
- 3D biomimetic scaffold’s dimensional accuracy: a crucial geometrical response for bone tissue engineering
- Investigation of mechanical and microstructure properties of metal inert gas based wire arc additive manufactured Inconel 600 superalloy
- Study on the influence of surface roughness on tensile and low-cycle fatigue behavior of electron beam melted Ti‐6Al‐4V
- Effect of tool pin profile on the heat generation model of the friction stir welding of aluminium alloy
- Effect of clamping position on the residual stress in wire arc additive manufacturing
- Effect of welding speed on butt joint quality of laser powder bed fusion AlSi10Mg parts welded using Nd:YAG laser
- Mechanical behaviour, microstructure and texture studies of wire arc additive manufactured 304L stainless steel
- Evolution of microstructure and properties of CoCrFeMnNi high entropy alloy fabricated by selective laser melting
- Effect of laser energy density on surface morphology, microstructure and mechanical behaviour of direct metal laser melted 17-4 PH stainless steel
- The influence of rheology in the fabrication of ceramic-based scaffold for bone tissue engineering
- Behaviour of glass fiber reinforced polymer (GFRP) structural profile columns under axial compression
- Desirability function analysis approach for optimization of fused deposition modelling process parameters
- Effect of robotic weaving motion on mechanical and microstructural characteristics of wire arc additively manufactured NiTi shape memory alloy
- Rapid tooling of composite aluminium filled epoxy mould for injection moulding of polypropylene parts with small protruded features
- Investigation of microstructural evolution in a hybrid additively manufactured steel bead
- Fused filament fabricated PEEK based polymer composites for orthopaedic implants: a review
- Design of fixture for ultrasonic assisted gas tungsten arc welding using an integrated approach
- Effect of post-processing treatment on 3D-printed polylactic acid parts: layer interfaces and mechanical properties
- Investigating the effect of input parameters on tool wear in incremental sheet metal forming
- Microstructural evolution and improved corrosion resistance of NiCrSiFeB coatings prepared by laser cladding
- Microstructure and electrochemical behaviour of laser clad stainless steel 410 substrate with stainless steel 420 particles
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Editorial
- Additive manufacturing and allied technologies
- Original Papers
- Influence of process parameters on ageing and free vibration characteristics of fiber-reinforced polymer composites by fusion filament fabrication process
- 3D biomimetic scaffold’s dimensional accuracy: a crucial geometrical response for bone tissue engineering
- Investigation of mechanical and microstructure properties of metal inert gas based wire arc additive manufactured Inconel 600 superalloy
- Study on the influence of surface roughness on tensile and low-cycle fatigue behavior of electron beam melted Ti‐6Al‐4V
- Effect of tool pin profile on the heat generation model of the friction stir welding of aluminium alloy
- Effect of clamping position on the residual stress in wire arc additive manufacturing
- Effect of welding speed on butt joint quality of laser powder bed fusion AlSi10Mg parts welded using Nd:YAG laser
- Mechanical behaviour, microstructure and texture studies of wire arc additive manufactured 304L stainless steel
- Evolution of microstructure and properties of CoCrFeMnNi high entropy alloy fabricated by selective laser melting
- Effect of laser energy density on surface morphology, microstructure and mechanical behaviour of direct metal laser melted 17-4 PH stainless steel
- The influence of rheology in the fabrication of ceramic-based scaffold for bone tissue engineering
- Behaviour of glass fiber reinforced polymer (GFRP) structural profile columns under axial compression
- Desirability function analysis approach for optimization of fused deposition modelling process parameters
- Effect of robotic weaving motion on mechanical and microstructural characteristics of wire arc additively manufactured NiTi shape memory alloy
- Rapid tooling of composite aluminium filled epoxy mould for injection moulding of polypropylene parts with small protruded features
- Investigation of microstructural evolution in a hybrid additively manufactured steel bead
- Fused filament fabricated PEEK based polymer composites for orthopaedic implants: a review
- Design of fixture for ultrasonic assisted gas tungsten arc welding using an integrated approach
- Effect of post-processing treatment on 3D-printed polylactic acid parts: layer interfaces and mechanical properties
- Investigating the effect of input parameters on tool wear in incremental sheet metal forming
- Microstructural evolution and improved corrosion resistance of NiCrSiFeB coatings prepared by laser cladding
- Microstructure and electrochemical behaviour of laser clad stainless steel 410 substrate with stainless steel 420 particles
- News
- DGM – Deutsche Gesellschaft für Materialkunde