Home Effect of laser energy density on surface morphology, microstructure and mechanical behaviour of direct metal laser melted 17-4 PH stainless steel
Article
Licensed
Unlicensed Requires Authentication

Effect of laser energy density on surface morphology, microstructure and mechanical behaviour of direct metal laser melted 17-4 PH stainless steel

  • S. Pradeep Kumar ORCID logo and P. Dinesh Babu ORCID logo EMAIL logo
Published/Copyright: August 16, 2023
Become an author with De Gruyter Brill

Abstract

The surface and microstructural characteristics of 3D printed parts play a significant role under mechanical loading. The authors have explored the effect of laser energy densities on the surface morphology, microstructure and mechanical behaviour of 17-4 precipitation hardened stainless steel fabricated under the direct metal laser melting technique. The considered processing parameters were laser energy density and its technical parameters: laser power, layer thickness, hatch spacing and scanning speed. The mechanical and metallurgical properties of the as-printed samples appeared better than the wrought counterpart due to the higher densification level (99.74 %) induced by the rotating scanning strategy. X‐ray diffraction revealed the presence of both the martensitic α phase and austenitic γ phase in the as-printed sample. There is no significant anisotropy in the mechanical behaviour as the build direction has a random texture with a fine columnar grain structure. The high laser energy density with low layer thickness results in an excellent surface finish. The tensile strength (1180 MPa) and the elongation for the as-printed sample (45.0 %) were considerably more significant than that for the wrought sample (1160 MPa and 26.0 %), which is attributed to the combination of low and high-angle boundaries, as confirmed by the electron backscatter diffraction results.


Corresponding author: P. Dinesh Babu, School of Mechanical Engineering, SASTRA Deemed to be University, Thanjavur, 613401, India, E-mail:

Acknowledgments

The authors would like to thank SASTRA Deemed to be University, Thanjavur, India, for providing the facility to carry out this work. The Shanmugha Precision Forging (SPF), Thanjavur, is acknowledged for machining the samples. The National Institute of Technology, Tiruchirappalli (NITT) is appreciated for the micro-tensile testing and WLI measurement. The Indian Institute of Technology, Bombay (IIT-B) is appreciated for the EBSD analysis.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research received no specific grant from any funding agency.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Gokuldoss, P. K., Kolla, S., Eckert, J. Materials 2017, 10, 672. https://doi.org/10.3390/ma10060672.Search in Google Scholar PubMed PubMed Central

2. Srinivasan, D., Meignanamoorthy, M., Ravichandran, M., Mohanavel, V., Alagarsamy, S. V., Chanakyan, C., Sakthivelu, S., Karthick, A., Prabhu, T. R., Rajkumar, S. Adv. Mater. Sci. Eng. 2021, 1, 1–10. https://doi.org/10.1155/2021/5756563.Search in Google Scholar

3. Yadollahi, A., Shamsaei, N., Thompson, S. M., Elwany, A., Bian, L. Int. J. Fatigue 2017, 94, 218. https://doi.org/10.1016/j.ijfatigue.2016.03.014.Search in Google Scholar

4. Chandra, S., Tan, X., Narayan, R. L., Wang, C., Tor, S. B., Seet, G. Addit. Manuf. 2021, 37, 101633. https://doi.org/10.1016/j.addma.2020.101633.Search in Google Scholar

5. Wen, Y., Zhang, B., Narayan, R. L., Wang, P., Song, X., Zhao, H., Ramamurty, U., Qu, X. Addit. Manuf. 2021, 40, 101926. https://doi.org/10.1016/j.addma.2021.101926.Search in Google Scholar

6. AlMangour, B., Yang, J. M. Mater. Des. 2016, 110, 914. https://doi.org/10.1016/j.matdes.2016.08.037.Search in Google Scholar

7. Larimian, T., Kannan, M., Grzesiak, D., AlMangour, B., Borkar, T. Mater. Sci. Eng., A 2020, 770, 138455. https://doi.org/10.1016/j.msea.2019.138455.Search in Google Scholar

8. Gowtham, S., Kumar, T. C. A., Devi, N. S. M. P. L., Chakravarthi, M. K., Pradeep Kumar, S., Karthik, R., Anandaram, H., Kumar, N. M., Ramaswamy, K. J. Nanomater. 2022, 1, 1–7 . https://doi.org/10.1155/2022/8998451.Search in Google Scholar

9. Idury, K. S. N. S., Chakkravarthy, V., Narayan, R. L. Trans. Indian Natl. Acad. Eng. 2021, 6, 975. https://doi.org/10.1007/s41403-021-00269-0.Search in Google Scholar

10. Wei, W. H., Shen, J. Int. J. Mater. Res. 2018, 109, 437. https://doi.org/10.3139/146.111615.Search in Google Scholar

11. Tillmann, W., Lopes Dias, N. F., Stangier, D., Schaak, C., Höges, S. Mater. Des. 2022, 213, 110304. https://doi.org/10.1016/j.matdes.2021.110304.Search in Google Scholar

12. Yu, N., Yang, Y., Jourdain, R., Gourma, M., Bennett, A., Fang, F. Int. J. Adv. Manuf. Technol. 2020, 108, 2559. https://doi.org/10.1007/s00170-020-05568-4.Search in Google Scholar

13. Bennett, A., Yu, N., Castelli, M., Chen, G., Balleri, A., Urayama, T., Fang, F. Front. Mech. Eng. 2021, 16, 122. https://doi.org/10.1007/s11465-020-0603-5.Search in Google Scholar

14. Melentiev, R., Yu, N., Lubineau, G. Addit. Manuf. 2021, 48, 102459. https://doi.org/10.1016/j.addma.2021.102459.Search in Google Scholar

15. KC, S., Nezhadfar, P. D., Phillips, C., Kennedy, M. S., Shamsaei, N., Jackson, R. L. Wear 2019, 440–441, 203100. https://doi.org/10.1016/j.wear.2019.203100.Search in Google Scholar

16. Hu, Z., Zhu, H., Zhang, H., Zeng, X. Opt. Laser Technol. 2017, 87, 17. https://doi.org/10.1016/j.optlastec.2016.07.012.Search in Google Scholar

17. Pal, S., Lojen, G., Hudak, R., Rajtukova, V., Brajlih, T., Kokol, V., Drstvenšek, I. Addit. Manuf. 2020, 33, 101147. https://doi.org/10.1016/j.addma.2020.101147.Search in Google Scholar

18. Nguyen, Q. B., Luu, D. N., Nai, S. M. L., Zhu, Z., Chen, Z., Wei, J. Arch. Civ. Mech. Eng. 2018, 18, 948. https://doi.org/10.1016/j.acme.2018.01.015.Search in Google Scholar

19. Sufiiarov, V. S., Popovich, A. A., Borisov, E. V., Polozov, I. A., Masaylo, D. V., Orlov, A. V. Procedia Eng. 2017, 174, 126. https://doi.org/10.1016/j.proeng.2017.01.179.Search in Google Scholar

20. Zhang, B., Dembinski, L., Coddet, C. Mater. Sci. Eng., A 2013, 584, 21. https://doi.org/10.1016/j.msea.2013.06.055.Search in Google Scholar

21. Cherry, J. A., Davies, H. M., Mehmood, S., Lavery, N. P., Brown, S. G. R., Sienz, J. Int. J. Adv. Manuf. Technol. 2015, 76, 869. https://doi.org/10.1007/s00170-014-6297-2.Search in Google Scholar

22. Dinesh Babu, P., Prasannakumar, B., Marimuthu, P., Mishra, R. K., Ram Prabhu, T. Arch. Civ. Mech. Eng. 2019, 19, 756. https://doi.org/10.1016/j.acme.2019.03.001.Search in Google Scholar

23. Shanmuganathan, P. K., Purushothaman, D. B., Ponnusamy, M. 3D Print Addit Manuf. 2021, 10, 383–392. https://doi.org/10.1089/3dp.2021.0061.Search in Google Scholar PubMed PubMed Central

24. Lakshmanan, M., SelwinRajadurai, J., Chakkravarthy, V., Rajakarunakaran, S. Mater. Lett. 2020, 272, 127879. https://doi.org/10.1016/j.matlet.2020.127879.Search in Google Scholar

25. Chakkravarthy, V., Jose, S. P., Lakshmanan, M., Manojkumar, P., Lakshmi Narayan, R., Kumaran, M. Mater. Today: Proc. 2022, 64, 1711–1716. https://doi.org/10.1016/j.matpr.2022.05.469.Search in Google Scholar

26. Sun, Y., Hebert, R. J., Aindow, M. Mater. Des. 2018, 156, 429. https://doi.org/10.1016/j.matdes.2018.07.015.Search in Google Scholar

27. Rafi, H. K., Pal, D., Patil, N., Starr, T. L., Stucker, B. E. J. Mater. Eng. Perform. 2014, 23, 4421. https://doi.org/10.1007/s11665-014-1226-y.Search in Google Scholar

28. Radhakrishnan, R. M., Ramamoorthi, V., Srinivasan, R. Proc. Inst. Mech. Eng., Part L 2021, 48, 2715–2735. https://doi.org/10.1177/14644207211057002.Search in Google Scholar

29. Pradeep, G. V. K., Duraiselvam, M., Sivaprasad, K. J. Mater. Eng. Perform. 2022, 31, 1009. https://doi.org/10.1007/s11665-021-06278-y.Search in Google Scholar

30. Nezhadfar, P. D., Shrestha, R., Phan, N., Shamsaei, N. Int. J. Fatigue 2019, 124, 188. https://doi.org/10.1016/j.ijfatigue.2019.02.039.Search in Google Scholar

31. Lakshmanan, M., Selwin Rajadurai, J., Chakkravarthy, V., Rajakarunakaran, S. Mater. Lett. 2021, 285, 129113. https://doi.org/10.1016/j.matlet.2020.129113.Search in Google Scholar

32. Marimuthu, P., Dinesh Babu, P., Ram Prabhu, T. Trans. Indian Inst. Met. 2020, 73, 1587. https://doi.org/10.1007/s12666-020-01938-4.Search in Google Scholar

33. Rashid, R., Masood, S. H., Ruan, D., Palanisamy, S., Rahman Rashid, R. A., Brandt, M. J. Mater. Process. Technol. 2017, 249, 502. https://doi.org/10.1016/j.jmatprotec.2017.06.023.Search in Google Scholar

34. Kurzynowski, T., Gruber, K., Stopyra, W., Kuźnicka, B., Chlebus, E. Mater. Sci. Eng., A 2018, 718, 64. https://doi.org/10.1016/j.msea.2018.01.103.Search in Google Scholar

35. Prabu, G., Duraiselvam, M., Jeyaprakash, N., Yang, C.-H. Met. Mater. Int. 2021, 27, 2328. https://doi.org/10.1007/s12540-020-00873-9.Search in Google Scholar

36. Huang, L., Cao, Y., Zhao, H., Li, Y., Wang, Y., Wei, L. Open Phys. 2022, 20, 66. https://doi.org/10.1515/phys-2022-0008.Search in Google Scholar

37. Ponnusamy, P., Masood, S. H., Ruan, D., Palanisamy, S., Mohamed, O. A. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 220. https://doi.org/10.1088/1757-899X/220/1/012001.Search in Google Scholar

38. Rajeshshyam, R., Venkatraman, R., Raghuraman, S. Arabian J. Sci. Eng. 2021, 47, 8009–8030. https://doi.org/10.1007/s13369-021-05908-w.Search in Google Scholar

39. Nikam, P. P., Arun, D., Ramkumar, K. D., Sivashanmugam, N. Mater. Charact. 2020, 169, 110671. https://doi.org/10.1016/j.matchar.2020.110671.Search in Google Scholar

40. Chakkravarthy, V., Lakshmanan, M., Manojkumar, P., Prabhakaran, R. Mater. Lett. 2022, 306, 130936. https://doi.org/10.1016/j.matlet.2021.130936.Search in Google Scholar

41. Stoudt, M. R., Ricker, R. E., Lass, E. A., Levine, L. E. Jom 2017, 69, 506. https://doi.org/10.1007/s11837-016-2237-y.Search in Google Scholar PubMed PubMed Central

42. Gu, H., Gong, H., Pal, D., Rafi, K., Starr, T., Stucker, B. 24th Int SFF Symp – An Addit Manuf Conf., 2013, p. 474.Search in Google Scholar

43. Chakkravarthy, V., Jerome, S. Mater. Lett. 2020, 260, 126981. https://doi.org/10.1016/j.matlet.2019.126981.Search in Google Scholar

44. Li, Y., Chen, K., Narayan, R. L., Ramamurty, U., Wang, Y., Long, J., Tamura, N., Zhou, X. Addit. Manuf. 2020, 34, 101220. https://doi.org/10.1016/j.addma.2020.101220.Search in Google Scholar

45. Chakkravarthy, V., Jerome, S. Mater. Lett. 2020, 280, 128578. https://doi.org/10.1016/j.matlet.2020.128578.Search in Google Scholar

46. Yadollahi, A., Shamsaei, N., Thompson, S. M., Elwany, A., Bian, L. Adv. Manuf. 2015, 2A, 1–5. https://doi.org/10.1115/IMECE2015-52362.Search in Google Scholar

47. Lass, E. A., Stoudt, M. R., Williams, M. E. Metall. Mater. Trans. A 2019, 50, 1619. https://doi.org/10.1007/s11661-019-05124-0.Search in Google Scholar

48. Jeyaprakash, N., Yang, C.-H., Ramkumar, K. R. Mater. Sci. Technol. 2021, 37, 326. https://doi.org/10.1080/02670836.2021.1893457.Search in Google Scholar

Received: 2022-05-25
Accepted: 2022-07-08
Published Online: 2023-08-16
Published in Print: 2023-10-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Additive manufacturing and allied technologies
  4. Original Papers
  5. Influence of process parameters on ageing and free vibration characteristics of fiber-reinforced polymer composites by fusion filament fabrication process
  6. 3D biomimetic scaffold’s dimensional accuracy: a crucial geometrical response for bone tissue engineering
  7. Investigation of mechanical and microstructure properties of metal inert gas based wire arc additive manufactured Inconel 600 superalloy
  8. Study on the influence of surface roughness on tensile and low-cycle fatigue behavior of electron beam melted Ti‐6Al‐4V
  9. Effect of tool pin profile on the heat generation model of the friction stir welding of aluminium alloy
  10. Effect of clamping position on the residual stress in wire arc additive manufacturing
  11. Effect of welding speed on butt joint quality of laser powder bed fusion AlSi10Mg parts welded using Nd:YAG laser
  12. Mechanical behaviour, microstructure and texture studies of wire arc additive manufactured 304L stainless steel
  13. Evolution of microstructure and properties of CoCrFeMnNi high entropy alloy fabricated by selective laser melting
  14. Effect of laser energy density on surface morphology, microstructure and mechanical behaviour of direct metal laser melted 17-4 PH stainless steel
  15. The influence of rheology in the fabrication of ceramic-based scaffold for bone tissue engineering
  16. Behaviour of glass fiber reinforced polymer (GFRP) structural profile columns under axial compression
  17. Desirability function analysis approach for optimization of fused deposition modelling process parameters
  18. Effect of robotic weaving motion on mechanical and microstructural characteristics of wire arc additively manufactured NiTi shape memory alloy
  19. Rapid tooling of composite aluminium filled epoxy mould for injection moulding of polypropylene parts with small protruded features
  20. Investigation of microstructural evolution in a hybrid additively manufactured steel bead
  21. Fused filament fabricated PEEK based polymer composites for orthopaedic implants: a review
  22. Design of fixture for ultrasonic assisted gas tungsten arc welding using an integrated approach
  23. Effect of post-processing treatment on 3D-printed polylactic acid parts: layer interfaces and mechanical properties
  24. Investigating the effect of input parameters on tool wear in incremental sheet metal forming
  25. Microstructural evolution and improved corrosion resistance of NiCrSiFeB coatings prepared by laser cladding
  26. Microstructure and electrochemical behaviour of laser clad stainless steel 410 substrate with stainless steel 420 particles
  27. News
  28. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0242/html
Scroll to top button