Abstract
Motivated by the beneficial effects of friction stir processing (FSP) for microstructural grain refinement, equiaxed grain production, and minimizing metallurgical defects, additive bead (AB) produced by the gas metal arc welding-wire arc additive manufacturing (GMAW-WAAM) technique was subjected to FSP. This was because deposited additive bead often develops defects such as shrinkage, voids, solidification cracking, during liquid to solid transformation. In this study, a low carbon steel double pass additive bead with 32 % lateral overlap was fabricated by the GMAW-WAAM technique followed by hybridization through FSP in the overlapped region (OR). The peak temperature estimation during bead deposition and FSP on bead was done through modeling by using ABAQUS. The microstructural analysis was carried out by using optical microscopy, scanning electron microscopy, electron backscattered diffraction, and transmission electron microscopy. The microstructure of OR of deposited additive bead is dominated by a combination of ferrite and bainite while that of hybrid additive bead (HAB) is dominated by a combination of ferrite and martensite. Further, the analysis revealed the effects of FSP on the OR in the form of grain refinement from 5.56 µm to 3.50 µm and a decrease in the low angle grain boundaries from 35.4 % to 10.6 %. The continuous dynamic recrystallization is observed since the bainitic fraction in the overlapped region decreased along with an increase in the fraction of martensite in the friction stir processed zone. The kernel average misorientation is observed to decrease after FSP from 1.001 of AB to 0.608. The microhardness test reveals the decrease in the hardness after FSP.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Dr. Murshid Imam, one of the co-authors, is grateful to acknowledge DST, SPARC, and the Indian government for the partial support with funding for this work.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., Beese, A. M., Wilson-Heid, A., De, A., Zhang, W. Prog. Mater. Sci. 2018, 92, 112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001.Search in Google Scholar
2. Jha, K. K., Kesharwani, R., Imam, M. Trans. Indian Inst. Met. 2022, 76, 323–333. https://doi.org/10.1007/s12666-022-02672-9.Search in Google Scholar
3. Jha, K. K., Kesharwani, R., Imam, M. Mater. Today Proc. 2022, 56, 819–825. https://doi.org/10.1016/j.matpr.2022.02.262.Search in Google Scholar
4. Ding, D., Pan, Z., Cuiuri, D., Li, H. Int. J. Adv. Manuf. Technol. 2015, 81, 465–481. https://doi.org/10.1007/s00170-015-7077-3.Search in Google Scholar
5. Williams, S. W., Martina, F., Addison, A. C., Ding, J., Pardal, G., Colegrove, P. Mater. Sci. Technol. 2016, 32, 641–647. https://doi.org/10.1179/1743284715Y.0000000073.Search in Google Scholar
6. Frazier, W. E. J. Mater. Eng. Perform. 2014, 23, 1917–1928. https://doi.org/10.1007/s11665-014-0958-z.Search in Google Scholar
7. Froes, F. H., Dutta, B. Adv. Mater. Res. 2014, 1019, 19–25. https://doi.org/10.4028/www.scientific.net/AMR.1019.19.Search in Google Scholar
8. Facchini, L., Magalini, E., Robotti, P., Molinari, A. Rapid Prototyp. J. 2009, 15, 171–178. https://doi.org/10.1108/13552540910960262.Search in Google Scholar
9. Li, Y., Sun, Y., Han, Q., Zhang, G., Horváth, I. J. Mater. Process. Technol. 2018, 252, 838–848. https://doi.org/10.1016/j.jmatprotec.2017.10.017.Search in Google Scholar
10. Xue, P., Ma, Z. Y., Komizo, Y., Fujii, H. Mater. Lett. 2016, 162, 161–164. https://doi.org/10.1016/j.matlet.2015.09.115.Search in Google Scholar
11. Ito, K., Okuda, T., Ueji, R., Fujii, H., Shiga, C. Mater. Des. 2014, 61, 275–280. https://doi.org/10.1016/j.matdes.2014.04.076.Search in Google Scholar
12. Yamamoto, H., Danno, Y., Ito, K., Mikami, Y., Fujii, H. Mater. Des. 2018, 160, 1019–1028. https://doi.org/10.1016/j.matdes.2018.10.036.Search in Google Scholar
13. Ghorbani, S., Ghasemi, R., Ebrahimi-Kahrizsangi, R., Hojjati-Najafabadi, A. Mater. Sci. Eng. A 2017, 688, 470–479. https://doi.org/10.1016/j.msea.2017.02.020.Search in Google Scholar
14. Pandey, C., Mahapatra, M. M. J. Mater. Eng. Perform. 2016, 25, 2761–2775. https://doi.org/10.1007/s11665-016-2127-z.Search in Google Scholar
15. Li, X., Chen, J., Hua, P., Chen, K., Kong, W., Chu, H., Wu, Y., Zhou, W. Fusion Eng. Des. 2018, 128, 175–181. https://doi.org/10.1016/j.fusengdes.2018.02.034.Search in Google Scholar
16. Güral, A., Bostan, B., Özdemir, A. T. Mater. Des. 2007, 28, 897–903. https://doi.org/10.1016/j.matdes.2005.10.005.Search in Google Scholar
17. Gomes, A. J. M., Jorge, J. C. F., de Souza, L. F. G., de Souza Bott, I. Mater. Sci. Forum 2013, 758, 21–32. https://doi.org/10.4028/www.scientific.net/MSF.758.21.Search in Google Scholar
18. Jorge, J. C. F., Monteiro, J. L. D., Gomes, A. J. D. C., Bott, I. D. S., De Souza, L. F. G., Mendes, M. C., Araújo, L. S. J. Mater. Res. Technol. 2019, 8, 561–571. https://doi.org/10.1016/j.jmrt.2018.05.007.Search in Google Scholar
19. Kožuh, S., Gojícgojíc, M., Kosec, L. Kov. Mater. 2009, 47, 253–262.Search in Google Scholar
20. Zhao, M. S., Chiew, S. P., Lee, C. K. J. Constr. Steel Res. 2016, 122, 167–177. https://doi.org/10.1016/j.jcsr.2016.03.015.Search in Google Scholar
21. Paddea, S., Francis, J. A., Paradowska, A. M., Bouchard, P. J., Shibli, I. A. Mater. Sci. Eng. A 2012, 534, 663–672. https://doi.org/10.1016/j.msea.2011.12.024.Search in Google Scholar
22. Olabi, A. G., Hashmi, M. S. J. J. Mater. Process. Technol. 1995, 55, 117–122. https://doi.org/10.1016/0924-0136(95)01794-1.Search in Google Scholar
23. Anshari, A. A., Imam, M. Innovation in Materials Science and Engineering, Vol. 2; Springer: Singapore, 2019; pp. 179–18610.1007/978-981-13-2944-9_18Search in Google Scholar
24. Couto, M. O., Rodrigues, A. G., Coutinho, F., Costa, R. R., Leite, A. C., Lizarralde, F., Filho, J. C. P. Autom. Electr. Syst. 2022, 33, 1136–1147. https://doi.org/10.1007/s40313-021-00880-0.Search in Google Scholar
25. Moinuddin, S. Q., Sharma, A. Indian Weld. J. 2019, 51, 73–79. https://doi.org/10.22486/iwj.v52i1.178188.Search in Google Scholar
26. Imam, M., Chittajallu, S. N. S. H., Gururani, H., Yamamoto, H., Ito, K., Parchuri, P. K., Mishra, R., Sharma, A., Richhariya, A., Chinthapenta, V. Mater. Today Proc. 2022, 56, 690–705. https://doi.org/10.1016/j.matpr.2022.01.154.Search in Google Scholar
27. Duan, R. H., Xie, G. M., Xue, P., Ma, Z. Y., Luo, Z. A., Wang, C., Misra, R. D. K., Wang, G. D. J. Mater. Sci. Technol. 2021, 93, 221–231. https://doi.org/10.1016/j.jmst.2021.04.008.Search in Google Scholar
28. Michaleris, P., Debiccari, A. Weld. J. 1997, 76, 172–179.10.1016/S0294-3506(97)89069-2Search in Google Scholar
29. Ding, J., Colegrove, P., Mehnen, J., Ganguly, S., Almeida, P. M. S., Wang, F., Williams, S. Comput. Mater. Sci. 2011, 50, 3315–3322. https://doi.org/10.1016/j.commatsci.2011.06.023.Search in Google Scholar
30. Cambon, C., Rouquette, S., Bendaoud, I., Bordreuil, C., Wimpory, R., Soulie, F. Weld. World 2020, 64, 1427–1435. https://doi.org/10.1007/s40194-020-00951-x.Search in Google Scholar
31. Kiran, A., Li, Y., Hodek, J., Brázda, M., Urbánek, M., Džugan, J. Materials 2022, 15, 2545. https://doi.org/10.3390/ma15072545.Search in Google Scholar PubMed PubMed Central
32. Chujutalli, J. H., Lourenço, M. I., Estefen, S. F. PRADS 2016 – Proc. 13th Int. Symp. Pract. Des. Ships Other Float. Struct., 2016.Search in Google Scholar
33. Iordache, M., Badulescu, C., Nitu, E., Iacomi, D. Solid State Phenom. 2016, 254, 272–277. https://doi.org/10.4028/www.scientific.net/SSP.254.272.Search in Google Scholar
34. Iqbal, M. P., Tripathi, A., Jain, R., Mahto, R. P., Pal, S. K., Mandal, P. Int. J. Mech. Sci. 2020, 185, 105882. https://doi.org/10.1016/j.ijmecsci.2020.105882.Search in Google Scholar
35. Bonifaz, E. A. Modelling of thermal transport in wire + Arc additive manufacturing process. Lect. Notes Comput. Sci. Eng. 2019, 11539, 647–659. https://doi.org/10.1007/978-3-030-22747-0_49.Search in Google Scholar
36. Chen, C. M., Kovacevic, R. Int. J. Mach. Tool Manufact. 2003, 43, 1319–1326. https://doi.org/10.1016/S0890-6955(03)00158-5.10.1016/S0890-6955(03)00158-5Search in Google Scholar
37. Arafat, M. E., Al Badour, F., Merah, N. Int. J. Adv. Manuf. Technol. 2021, 112, 3485–3500. https://doi.org/10.1007/s00170-020-06574-2.Search in Google Scholar
38. Zamani, S. M. M., Behdinan, K., Mohammadpour, A., Razfar, M. R., Mohandesi, J. A. Int. J. Adv. Manuf. Technol. 2021, 116, 3717–3729. https://doi.org/10.1007/s00170-021-07751-7.Search in Google Scholar
39. Ding, J., Colegrove, P., Mehnen, J., Williams, S., Wang, F., Almeida, P. S. Int. J. Adv. Manuf. Technol. 2014, 70, 227–236. https://doi.org/10.1007/s00170-013-5261-x.Search in Google Scholar
40. Yi, M. S., Hyun, C. M., Paik, J. K. World J. Eng. Technol. 2018, 06, 176–200. https://doi.org/10.4236/wjet.2018.61010.Search in Google Scholar
41. Montevecchi, F., Venturini, G., Scippa, A., Campatelli, G. Procedia CIRP 2016, 55, 109–114. https://doi.org/10.1016/j.procir.2016.08.024.Search in Google Scholar
42. Dickerson, T., Shi, Q., Shercliff, H. R. 4th Int. Symp. Frict. Stir Welding, USA, 2003; pp. 1–11.Search in Google Scholar
43. Tang, G., Zhao, X., Li, R., Liang, Y., Jiang, Y., Chen, H. Mater. Res. Express 2019, 6, 076547. https://doi.org/10.1088/2053-1591/ab1557.Search in Google Scholar
44. Cortéz, V. H. L., Medina, G. Y. P., Valdéz, F. A. R., López, H. F. Soldag. Insp. 2010, 15, 234–241. https://doi.org/10.1590/s0104-92242010000300010.Search in Google Scholar
45. Anshari, A. A., Pandit, D., Imam, M. Mater. Today Proc. 2022, 56, 862–867. https://doi.org/10.1016/j.matpr.2022.02.515.Search in Google Scholar
46. Imam, M., Racherla, V., Biswas, K. Mater. Des. 2014, 64, 675–686. https://doi.org/10.1016/j.matdes.2014.08.037.Search in Google Scholar
47. Raut, N., Yakkundi, V., Vartak, A. Mater. Today Proc. 2019, 41, 329–334. https://doi.org/10.1016/j.matpr.2020.09.336.Search in Google Scholar
48. Kesharwani, R., Imam, M., Sarkar, C. Trans. Indian Inst. Met. 2021, 74, 3185–3203. https://doi.org/10.1007/s12666-021-02386-4.Search in Google Scholar
49. Tang, Y., Bringa, E. M., Meyers, M. A. Acta Mater. 2012, 60, 4856–4865. https://doi.org/10.1016/j.actamat.2012.05.030.Search in Google Scholar
50. Heidarzadeh, A., Saeid, T., Klemm, V. Mater. Charact. 2016, 119, 84–91. https://doi.org/10.1016/j.matchar.2016.07.009.Search in Google Scholar
51. Tehrani-Moghadam, H. G., Jafarian, H. R., Heidarzadeh, A., Eivani, A. R., Do, H., Park, N. J. Mater. Res. Technol. 2020, 9, 5431–5441. https://doi.org/10.1016/j.jmrt.2020.03.069.Search in Google Scholar
52. Fressengeas, C., Beausir, B., Kerisit, C., Helbert, A. L., Baudin, T., Brisset, F., Mathon, M. H., Besnard, R., Bozzolo, N. Mater. Technol. 2018, 106, 604. https://doi.org/10.1051/mattech/2018058.Search in Google Scholar
53. Li, H., Gao, S., Tomota, Y., Ii, S., Tsuji, N., Ohmura, T. Acta Mater. 2021, 206, 116621. https://doi.org/10.1016/j.actamat.2021.116621.Search in Google Scholar
54. Saraf, L. Microsc. Microanal. 2011, 17, 424–425. https://doi.org/10.1017/s1431927611002996.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Additive manufacturing and allied technologies
- Original Papers
- Influence of process parameters on ageing and free vibration characteristics of fiber-reinforced polymer composites by fusion filament fabrication process
- 3D biomimetic scaffold’s dimensional accuracy: a crucial geometrical response for bone tissue engineering
- Investigation of mechanical and microstructure properties of metal inert gas based wire arc additive manufactured Inconel 600 superalloy
- Study on the influence of surface roughness on tensile and low-cycle fatigue behavior of electron beam melted Ti‐6Al‐4V
- Effect of tool pin profile on the heat generation model of the friction stir welding of aluminium alloy
- Effect of clamping position on the residual stress in wire arc additive manufacturing
- Effect of welding speed on butt joint quality of laser powder bed fusion AlSi10Mg parts welded using Nd:YAG laser
- Mechanical behaviour, microstructure and texture studies of wire arc additive manufactured 304L stainless steel
- Evolution of microstructure and properties of CoCrFeMnNi high entropy alloy fabricated by selective laser melting
- Effect of laser energy density on surface morphology, microstructure and mechanical behaviour of direct metal laser melted 17-4 PH stainless steel
- The influence of rheology in the fabrication of ceramic-based scaffold for bone tissue engineering
- Behaviour of glass fiber reinforced polymer (GFRP) structural profile columns under axial compression
- Desirability function analysis approach for optimization of fused deposition modelling process parameters
- Effect of robotic weaving motion on mechanical and microstructural characteristics of wire arc additively manufactured NiTi shape memory alloy
- Rapid tooling of composite aluminium filled epoxy mould for injection moulding of polypropylene parts with small protruded features
- Investigation of microstructural evolution in a hybrid additively manufactured steel bead
- Fused filament fabricated PEEK based polymer composites for orthopaedic implants: a review
- Design of fixture for ultrasonic assisted gas tungsten arc welding using an integrated approach
- Effect of post-processing treatment on 3D-printed polylactic acid parts: layer interfaces and mechanical properties
- Investigating the effect of input parameters on tool wear in incremental sheet metal forming
- Microstructural evolution and improved corrosion resistance of NiCrSiFeB coatings prepared by laser cladding
- Microstructure and electrochemical behaviour of laser clad stainless steel 410 substrate with stainless steel 420 particles
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Editorial
- Additive manufacturing and allied technologies
- Original Papers
- Influence of process parameters on ageing and free vibration characteristics of fiber-reinforced polymer composites by fusion filament fabrication process
- 3D biomimetic scaffold’s dimensional accuracy: a crucial geometrical response for bone tissue engineering
- Investigation of mechanical and microstructure properties of metal inert gas based wire arc additive manufactured Inconel 600 superalloy
- Study on the influence of surface roughness on tensile and low-cycle fatigue behavior of electron beam melted Ti‐6Al‐4V
- Effect of tool pin profile on the heat generation model of the friction stir welding of aluminium alloy
- Effect of clamping position on the residual stress in wire arc additive manufacturing
- Effect of welding speed on butt joint quality of laser powder bed fusion AlSi10Mg parts welded using Nd:YAG laser
- Mechanical behaviour, microstructure and texture studies of wire arc additive manufactured 304L stainless steel
- Evolution of microstructure and properties of CoCrFeMnNi high entropy alloy fabricated by selective laser melting
- Effect of laser energy density on surface morphology, microstructure and mechanical behaviour of direct metal laser melted 17-4 PH stainless steel
- The influence of rheology in the fabrication of ceramic-based scaffold for bone tissue engineering
- Behaviour of glass fiber reinforced polymer (GFRP) structural profile columns under axial compression
- Desirability function analysis approach for optimization of fused deposition modelling process parameters
- Effect of robotic weaving motion on mechanical and microstructural characteristics of wire arc additively manufactured NiTi shape memory alloy
- Rapid tooling of composite aluminium filled epoxy mould for injection moulding of polypropylene parts with small protruded features
- Investigation of microstructural evolution in a hybrid additively manufactured steel bead
- Fused filament fabricated PEEK based polymer composites for orthopaedic implants: a review
- Design of fixture for ultrasonic assisted gas tungsten arc welding using an integrated approach
- Effect of post-processing treatment on 3D-printed polylactic acid parts: layer interfaces and mechanical properties
- Investigating the effect of input parameters on tool wear in incremental sheet metal forming
- Microstructural evolution and improved corrosion resistance of NiCrSiFeB coatings prepared by laser cladding
- Microstructure and electrochemical behaviour of laser clad stainless steel 410 substrate with stainless steel 420 particles
- News
- DGM – Deutsche Gesellschaft für Materialkunde