Home Investigation of microstructural evolution in a hybrid additively manufactured steel bead
Article
Licensed
Unlicensed Requires Authentication

Investigation of microstructural evolution in a hybrid additively manufactured steel bead

  • Md. Anwar Ali Anshari ORCID logo EMAIL logo , Rajnish Mishra and Murshid Imam
Published/Copyright: August 9, 2023
Become an author with De Gruyter Brill

Abstract

Motivated by the beneficial effects of friction stir processing (FSP) for microstructural grain refinement, equiaxed grain production, and minimizing metallurgical defects, additive bead (AB) produced by the gas metal arc welding-wire arc additive manufacturing (GMAW-WAAM) technique was subjected to FSP. This was because deposited additive bead often develops defects such as shrinkage, voids, solidification cracking, during liquid to solid transformation. In this study, a low carbon steel double pass additive bead with 32 % lateral overlap was fabricated by the GMAW-WAAM technique followed by hybridization through FSP in the overlapped region (OR). The peak temperature estimation during bead deposition and FSP on bead was done through modeling by using ABAQUS. The microstructural analysis was carried out by using optical microscopy, scanning electron microscopy, electron backscattered diffraction, and transmission electron microscopy. The microstructure of OR of deposited additive bead is dominated by a combination of ferrite and bainite while that of hybrid additive bead (HAB) is dominated by a combination of ferrite and martensite. Further, the analysis revealed the effects of FSP on the OR in the form of grain refinement from 5.56 µm to 3.50 µm and a decrease in the low angle grain boundaries from 35.4 % to 10.6 %. The continuous dynamic recrystallization is observed since the bainitic fraction in the overlapped region decreased along with an increase in the fraction of martensite in the friction stir processed zone. The kernel average misorientation is observed to decrease after FSP from 1.001 of AB to 0.608. The microhardness test reveals the decrease in the hardness after FSP.


Corresponding author: Md. Anwar Ali Anshari, Department of Mechanical Engineering, Indian Institute of Technology Patna, Bihta 801103, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Dr. Murshid Imam, one of the co-authors, is grateful to acknowledge DST, SPARC, and the Indian government for the partial support with funding for this work.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., Beese, A. M., Wilson-Heid, A., De, A., Zhang, W. Prog. Mater. Sci. 2018, 92, 112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001.Search in Google Scholar

2. Jha, K. K., Kesharwani, R., Imam, M. Trans. Indian Inst. Met. 2022, 76, 323–333. https://doi.org/10.1007/s12666-022-02672-9.Search in Google Scholar

3. Jha, K. K., Kesharwani, R., Imam, M. Mater. Today Proc. 2022, 56, 819–825. https://doi.org/10.1016/j.matpr.2022.02.262.Search in Google Scholar

4. Ding, D., Pan, Z., Cuiuri, D., Li, H. Int. J. Adv. Manuf. Technol. 2015, 81, 465–481. https://doi.org/10.1007/s00170-015-7077-3.Search in Google Scholar

5. Williams, S. W., Martina, F., Addison, A. C., Ding, J., Pardal, G., Colegrove, P. Mater. Sci. Technol. 2016, 32, 641–647. https://doi.org/10.1179/1743284715Y.0000000073.Search in Google Scholar

6. Frazier, W. E. J. Mater. Eng. Perform. 2014, 23, 1917–1928. https://doi.org/10.1007/s11665-014-0958-z.Search in Google Scholar

7. Froes, F. H., Dutta, B. Adv. Mater. Res. 2014, 1019, 19–25. https://doi.org/10.4028/www.scientific.net/AMR.1019.19.Search in Google Scholar

8. Facchini, L., Magalini, E., Robotti, P., Molinari, A. Rapid Prototyp. J. 2009, 15, 171–178. https://doi.org/10.1108/13552540910960262.Search in Google Scholar

9. Li, Y., Sun, Y., Han, Q., Zhang, G., Horváth, I. J. Mater. Process. Technol. 2018, 252, 838–848. https://doi.org/10.1016/j.jmatprotec.2017.10.017.Search in Google Scholar

10. Xue, P., Ma, Z. Y., Komizo, Y., Fujii, H. Mater. Lett. 2016, 162, 161–164. https://doi.org/10.1016/j.matlet.2015.09.115.Search in Google Scholar

11. Ito, K., Okuda, T., Ueji, R., Fujii, H., Shiga, C. Mater. Des. 2014, 61, 275–280. https://doi.org/10.1016/j.matdes.2014.04.076.Search in Google Scholar

12. Yamamoto, H., Danno, Y., Ito, K., Mikami, Y., Fujii, H. Mater. Des. 2018, 160, 1019–1028. https://doi.org/10.1016/j.matdes.2018.10.036.Search in Google Scholar

13. Ghorbani, S., Ghasemi, R., Ebrahimi-Kahrizsangi, R., Hojjati-Najafabadi, A. Mater. Sci. Eng. A 2017, 688, 470–479. https://doi.org/10.1016/j.msea.2017.02.020.Search in Google Scholar

14. Pandey, C., Mahapatra, M. M. J. Mater. Eng. Perform. 2016, 25, 2761–2775. https://doi.org/10.1007/s11665-016-2127-z.Search in Google Scholar

15. Li, X., Chen, J., Hua, P., Chen, K., Kong, W., Chu, H., Wu, Y., Zhou, W. Fusion Eng. Des. 2018, 128, 175–181. https://doi.org/10.1016/j.fusengdes.2018.02.034.Search in Google Scholar

16. Güral, A., Bostan, B., Özdemir, A. T. Mater. Des. 2007, 28, 897–903. https://doi.org/10.1016/j.matdes.2005.10.005.Search in Google Scholar

17. Gomes, A. J. M., Jorge, J. C. F., de Souza, L. F. G., de Souza Bott, I. Mater. Sci. Forum 2013, 758, 21–32. https://doi.org/10.4028/www.scientific.net/MSF.758.21.Search in Google Scholar

18. Jorge, J. C. F., Monteiro, J. L. D., Gomes, A. J. D. C., Bott, I. D. S., De Souza, L. F. G., Mendes, M. C., Araújo, L. S. J. Mater. Res. Technol. 2019, 8, 561–571. https://doi.org/10.1016/j.jmrt.2018.05.007.Search in Google Scholar

19. Kožuh, S., Gojícgojíc, M., Kosec, L. Kov. Mater. 2009, 47, 253–262.Search in Google Scholar

20. Zhao, M. S., Chiew, S. P., Lee, C. K. J. Constr. Steel Res. 2016, 122, 167–177. https://doi.org/10.1016/j.jcsr.2016.03.015.Search in Google Scholar

21. Paddea, S., Francis, J. A., Paradowska, A. M., Bouchard, P. J., Shibli, I. A. Mater. Sci. Eng. A 2012, 534, 663–672. https://doi.org/10.1016/j.msea.2011.12.024.Search in Google Scholar

22. Olabi, A. G., Hashmi, M. S. J. J. Mater. Process. Technol. 1995, 55, 117–122. https://doi.org/10.1016/0924-0136(95)01794-1.Search in Google Scholar

23. Anshari, A. A., Imam, M. Innovation in Materials Science and Engineering, Vol. 2; Springer: Singapore, 2019; pp. 179–18610.1007/978-981-13-2944-9_18Search in Google Scholar

24. Couto, M. O., Rodrigues, A. G., Coutinho, F., Costa, R. R., Leite, A. C., Lizarralde, F., Filho, J. C. P. Autom. Electr. Syst. 2022, 33, 1136–1147. https://doi.org/10.1007/s40313-021-00880-0.Search in Google Scholar

25. Moinuddin, S. Q., Sharma, A. Indian Weld. J. 2019, 51, 73–79. https://doi.org/10.22486/iwj.v52i1.178188.Search in Google Scholar

26. Imam, M., Chittajallu, S. N. S. H., Gururani, H., Yamamoto, H., Ito, K., Parchuri, P. K., Mishra, R., Sharma, A., Richhariya, A., Chinthapenta, V. Mater. Today Proc. 2022, 56, 690–705. https://doi.org/10.1016/j.matpr.2022.01.154.Search in Google Scholar

27. Duan, R. H., Xie, G. M., Xue, P., Ma, Z. Y., Luo, Z. A., Wang, C., Misra, R. D. K., Wang, G. D. J. Mater. Sci. Technol. 2021, 93, 221–231. https://doi.org/10.1016/j.jmst.2021.04.008.Search in Google Scholar

28. Michaleris, P., Debiccari, A. Weld. J. 1997, 76, 172–179.10.1016/S0294-3506(97)89069-2Search in Google Scholar

29. Ding, J., Colegrove, P., Mehnen, J., Ganguly, S., Almeida, P. M. S., Wang, F., Williams, S. Comput. Mater. Sci. 2011, 50, 3315–3322. https://doi.org/10.1016/j.commatsci.2011.06.023.Search in Google Scholar

30. Cambon, C., Rouquette, S., Bendaoud, I., Bordreuil, C., Wimpory, R., Soulie, F. Weld. World 2020, 64, 1427–1435. https://doi.org/10.1007/s40194-020-00951-x.Search in Google Scholar

31. Kiran, A., Li, Y., Hodek, J., Brázda, M., Urbánek, M., Džugan, J. Materials 2022, 15, 2545. https://doi.org/10.3390/ma15072545.Search in Google Scholar PubMed PubMed Central

32. Chujutalli, J. H., Lourenço, M. I., Estefen, S. F. PRADS 2016 – Proc. 13th Int. Symp. Pract. Des. Ships Other Float. Struct., 2016.Search in Google Scholar

33. Iordache, M., Badulescu, C., Nitu, E., Iacomi, D. Solid State Phenom. 2016, 254, 272–277. https://doi.org/10.4028/www.scientific.net/SSP.254.272.Search in Google Scholar

34. Iqbal, M. P., Tripathi, A., Jain, R., Mahto, R. P., Pal, S. K., Mandal, P. Int. J. Mech. Sci. 2020, 185, 105882. https://doi.org/10.1016/j.ijmecsci.2020.105882.Search in Google Scholar

35. Bonifaz, E. A. Modelling of thermal transport in wire + Arc additive manufacturing process. Lect. Notes Comput. Sci. Eng. 2019, 11539, 647–659. https://doi.org/10.1007/978-3-030-22747-0_49.Search in Google Scholar

36. Chen, C. M., Kovacevic, R. Int. J. Mach. Tool Manufact. 2003, 43, 1319–1326. https://doi.org/10.1016/S0890-6955(03)00158-5.10.1016/S0890-6955(03)00158-5Search in Google Scholar

37. Arafat, M. E., Al Badour, F., Merah, N. Int. J. Adv. Manuf. Technol. 2021, 112, 3485–3500. https://doi.org/10.1007/s00170-020-06574-2.Search in Google Scholar

38. Zamani, S. M. M., Behdinan, K., Mohammadpour, A., Razfar, M. R., Mohandesi, J. A. Int. J. Adv. Manuf. Technol. 2021, 116, 3717–3729. https://doi.org/10.1007/s00170-021-07751-7.Search in Google Scholar

39. Ding, J., Colegrove, P., Mehnen, J., Williams, S., Wang, F., Almeida, P. S. Int. J. Adv. Manuf. Technol. 2014, 70, 227–236. https://doi.org/10.1007/s00170-013-5261-x.Search in Google Scholar

40. Yi, M. S., Hyun, C. M., Paik, J. K. World J. Eng. Technol. 2018, 06, 176–200. https://doi.org/10.4236/wjet.2018.61010.Search in Google Scholar

41. Montevecchi, F., Venturini, G., Scippa, A., Campatelli, G. Procedia CIRP 2016, 55, 109–114. https://doi.org/10.1016/j.procir.2016.08.024.Search in Google Scholar

42. Dickerson, T., Shi, Q., Shercliff, H. R. 4th Int. Symp. Frict. Stir Welding, USA, 2003; pp. 1–11.Search in Google Scholar

43. Tang, G., Zhao, X., Li, R., Liang, Y., Jiang, Y., Chen, H. Mater. Res. Express 2019, 6, 076547. https://doi.org/10.1088/2053-1591/ab1557.Search in Google Scholar

44. Cortéz, V. H. L., Medina, G. Y. P., Valdéz, F. A. R., López, H. F. Soldag. Insp. 2010, 15, 234–241. https://doi.org/10.1590/s0104-92242010000300010.Search in Google Scholar

45. Anshari, A. A., Pandit, D., Imam, M. Mater. Today Proc. 2022, 56, 862–867. https://doi.org/10.1016/j.matpr.2022.02.515.Search in Google Scholar

46. Imam, M., Racherla, V., Biswas, K. Mater. Des. 2014, 64, 675–686. https://doi.org/10.1016/j.matdes.2014.08.037.Search in Google Scholar

47. Raut, N., Yakkundi, V., Vartak, A. Mater. Today Proc. 2019, 41, 329–334. https://doi.org/10.1016/j.matpr.2020.09.336.Search in Google Scholar

48. Kesharwani, R., Imam, M., Sarkar, C. Trans. Indian Inst. Met. 2021, 74, 3185–3203. https://doi.org/10.1007/s12666-021-02386-4.Search in Google Scholar

49. Tang, Y., Bringa, E. M., Meyers, M. A. Acta Mater. 2012, 60, 4856–4865. https://doi.org/10.1016/j.actamat.2012.05.030.Search in Google Scholar

50. Heidarzadeh, A., Saeid, T., Klemm, V. Mater. Charact. 2016, 119, 84–91. https://doi.org/10.1016/j.matchar.2016.07.009.Search in Google Scholar

51. Tehrani-Moghadam, H. G., Jafarian, H. R., Heidarzadeh, A., Eivani, A. R., Do, H., Park, N. J. Mater. Res. Technol. 2020, 9, 5431–5441. https://doi.org/10.1016/j.jmrt.2020.03.069.Search in Google Scholar

52. Fressengeas, C., Beausir, B., Kerisit, C., Helbert, A. L., Baudin, T., Brisset, F., Mathon, M. H., Besnard, R., Bozzolo, N. Mater. Technol. 2018, 106, 604. https://doi.org/10.1051/mattech/2018058.Search in Google Scholar

53. Li, H., Gao, S., Tomota, Y., Ii, S., Tsuji, N., Ohmura, T. Acta Mater. 2021, 206, 116621. https://doi.org/10.1016/j.actamat.2021.116621.Search in Google Scholar

54. Saraf, L. Microsc. Microanal. 2011, 17, 424–425. https://doi.org/10.1017/s1431927611002996.Search in Google Scholar

Received: 2022-03-17
Accepted: 2022-07-25
Published Online: 2023-08-09
Published in Print: 2023-10-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Additive manufacturing and allied technologies
  4. Original Papers
  5. Influence of process parameters on ageing and free vibration characteristics of fiber-reinforced polymer composites by fusion filament fabrication process
  6. 3D biomimetic scaffold’s dimensional accuracy: a crucial geometrical response for bone tissue engineering
  7. Investigation of mechanical and microstructure properties of metal inert gas based wire arc additive manufactured Inconel 600 superalloy
  8. Study on the influence of surface roughness on tensile and low-cycle fatigue behavior of electron beam melted Ti‐6Al‐4V
  9. Effect of tool pin profile on the heat generation model of the friction stir welding of aluminium alloy
  10. Effect of clamping position on the residual stress in wire arc additive manufacturing
  11. Effect of welding speed on butt joint quality of laser powder bed fusion AlSi10Mg parts welded using Nd:YAG laser
  12. Mechanical behaviour, microstructure and texture studies of wire arc additive manufactured 304L stainless steel
  13. Evolution of microstructure and properties of CoCrFeMnNi high entropy alloy fabricated by selective laser melting
  14. Effect of laser energy density on surface morphology, microstructure and mechanical behaviour of direct metal laser melted 17-4 PH stainless steel
  15. The influence of rheology in the fabrication of ceramic-based scaffold for bone tissue engineering
  16. Behaviour of glass fiber reinforced polymer (GFRP) structural profile columns under axial compression
  17. Desirability function analysis approach for optimization of fused deposition modelling process parameters
  18. Effect of robotic weaving motion on mechanical and microstructural characteristics of wire arc additively manufactured NiTi shape memory alloy
  19. Rapid tooling of composite aluminium filled epoxy mould for injection moulding of polypropylene parts with small protruded features
  20. Investigation of microstructural evolution in a hybrid additively manufactured steel bead
  21. Fused filament fabricated PEEK based polymer composites for orthopaedic implants: a review
  22. Design of fixture for ultrasonic assisted gas tungsten arc welding using an integrated approach
  23. Effect of post-processing treatment on 3D-printed polylactic acid parts: layer interfaces and mechanical properties
  24. Investigating the effect of input parameters on tool wear in incremental sheet metal forming
  25. Microstructural evolution and improved corrosion resistance of NiCrSiFeB coatings prepared by laser cladding
  26. Microstructure and electrochemical behaviour of laser clad stainless steel 410 substrate with stainless steel 420 particles
  27. News
  28. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0152/html
Scroll to top button