Home Thermal properties of AlN (nano) filled LDPE composites
Article
Licensed
Unlicensed Requires Authentication

Thermal properties of AlN (nano) filled LDPE composites

  • Dinesh Tripathi EMAIL logo
Published/Copyright: May 24, 2023
Become an author with De Gruyter Brill

Abstract

The thermal properties of aluminium nitride nano-particles (n-AlN) filled into low-density polyethylene (LDPE) are discussed. Cylindrical specimens were prepared using a melt mixing process. X-ray diffraction was performed to characterize the structural properties of the pellets under investigation. The X-ray diffraction analysis confirms the change in secondary structure, such as crystallinity, of the LDPE due to the dispersion of n-AlN powder. The thermal stability of pure and n-AlN filled LDPE was checked by performing thermo-gravimetric analysis. The analysis confirms an improvement in the thermal stability of LDPE due to n-AlN addition. The thermal conductivity of the samples was measured using a KD2 Pro device (based on the transient hot wire technique of thermal conductivity measurement) at room temperature. Our finding reveals ∼1.36 fold enhancement in the effective thermal conductivity of LDPE due to the addition of 15 vol.% of n-AlN. The room-temperature thermal conductivity data of the investigated pellets were analyzed as a function of n-AlN concentration in the light of available theoretical models and correlations. The variation in thermal conductivity data of LDPE with n-AlN concentration is well explained by the semi-empirical model proposed by Agari and Uno.


Corresponding author: Dinesh Tripathi, Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida-62, Noida, U.P. 201309, India, E-mail:

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

1. Rao, N. J., Ananda, R. G. 49th Electronic Components and Technology Conference, 1-4 June; San Diego, USA, 1999; pp. 895–898.Search in Google Scholar

2. Wong, C. P., Bollampally, R. S. J. Appl. Polym. Sci. 1999, 74, 3396–3403. https://doi.org/10.1002/(sici)10974628(19991227)74:14<3396::aid-app13>3.0.co;2-3.10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3Search in Google Scholar

3. Ishida, H., Rimdusit, S. Thermochim. Acta 1998, 320, 177–186. https://doi.org/10.1016/s0040-6031(98)00463-8.Search in Google Scholar

4. Lu, X., Xu, G. J. Appl. Polym. Sci. 1997, 65, 2733–2738. https://doi.org/10.1002/(SICI)1097-628(19970926)65:13%3C2733: :AID-APP15%3E3.0.CO;2-Y.10.1002/(SICI)1097-4628(19970926)65:13<2733::AID-APP15>3.0.CO;2-YSearch in Google Scholar

5. Agrawal, R., Saxena, N. S., Mathew, G., Thomas, S., Sharma, K. B. J. Appl. Polym. Sci. 2000, 76, 1799–1803. https://doi.org/10.1002/(sici)1097-4628(20000620)76:12<1799::aid-app10>3.0.co;2-d.10.1002/(SICI)1097-4628(20000620)76:12<1799::AID-APP10>3.0.CO;2-DSearch in Google Scholar

6. Weidenfeller, B., Hofer, M., Schilling, F. Composites, Part A 2002, 33, 1041–1053. https://doi.org/10.1016/s1359-835x(02)00085-4.Search in Google Scholar

7. El-Brolossy, T. A., Ibrahim, S. S. Thermochim. Acta 2010, 509, 46–49. https://doi.org/10.1016/j.tca.2010.05.020.Search in Google Scholar

8. Bujard, P., Kuhnlein, G., Ino, S., Shiobara, T. 1994 Proceedings 44th Electronic Components and Technology Conference; Washington, DC, USA, 1994; pp. 159–163.Search in Google Scholar

9. Tavman, I. H. Powder Technol. 1997, 91, 63–67. https://doi.org/10.1016/s0032-5910(96)03247-0.Search in Google Scholar

10. Molefi, J. A., Luyt, A. S., Krupa, I. Exp. Poly. Lett. 2009, 3, 639–649. https://doi.org/10.3144/expresspolymlett.2009.80.Search in Google Scholar

11. Mamunya, Y. P., Davydenko, V. V., Pissis, P., Lebedev, E. V. Eur. Polym. J. 2002, 38, 1887–1897. https://doi.org/10.1016/s0014-3057(02)00064-2.Search in Google Scholar

12. Tripathi, D., Dey, T. K. Indian J. Phys. 2013, 87, 435–445. https://doi.org/10.1007/s12648-013-0256-x.Search in Google Scholar

13. Tripathi, D., Dey, T. K. Bull. Mater. Sci. 2019, 42, 174–184. https://doi.org/10.1007/s12034-019-1853-x.Search in Google Scholar

14. Lopes, C. M. A., Felisberti, M. I. Polym. Test. 2004, 23, 637–643. https://doi.org/10.1016/j.polymertesting.2004.01.013.Search in Google Scholar

15. Dey, T. K., Tripathi, M. Thermochim. Acta 2010, 502, 35–42. https://doi.org/10.1016/j.tca.2010.02.002.Search in Google Scholar

16. Xu, Y., Chung, D. D., Mroz, C. Composites, Part A 2001, 32, 1749–1757. https://doi.org/10.1016/s1359-835x(01)00023-9.Search in Google Scholar

17. Yu, S., Hing, P., Hu, X. Composites, Part A 2002, 33, 289–292. https://doi.org/10.1016/s1359-835x(01)00107-5.Search in Google Scholar

18. Jung, J., Kim, J., Uhm, Y. R., Jeon, J. K., Lee, S., Lee, H. M., Rhee, C. K. Thermochim. Acta 2010, 499, 8–14. https://doi.org/10.1016/j.tca.2009.10.013.Search in Google Scholar

19. Keblinski, P., Phillpot, S., Choi, S. U., Eastman, J. Int. J. Heat Mass Transfer 2002, 45, 855–863. https://doi.org/10.1016/s0017-9310(01)00175-2.Search in Google Scholar

20. Morreale, M., Liga, A., Mistretta, M. C., Ascione, L., Mantia, F. P. L. Mater 2015, 8, 7536–7548. https://doi.org/10.3390/ma8115406.10.3390/ma8115406Search in Google Scholar PubMed PubMed Central

21. Yang, J., Wang, X., Zhao, H., Zhang, W., Xu, M. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 1957–1964. https://doi.org/10.1109/tdei.2014.004334.Search in Google Scholar

22. Song, W., Sun, Z., Zhang, D., Han, B., He, L., Wang, X., Lei, Q. J. Mater. Sci.: Mater. Electron. 2015, 27, 2328–2334. https://doi.org/10.1007/s10854-015-4029-5.Search in Google Scholar

23. Marzouk, W., Bettaieb, F., Khiari, R., Majdoub, H. J. Thermoplast. Compos. Mater. 2017, 30, 1200–1216. https://doi.org/10.1177/0892705715618742.Search in Google Scholar

24. Musa, R., Tan, V., Kashani, F. Adv. Polym. Technol. 1983, 3, 89–98. https://doi.org/10.1002/adv.1983.060030203.Search in Google Scholar

25. Kumlutas, D. Compos. Sci. Technol. 2003, 63, 113–117. https://doi.org/10.1016/s0266-3538(02)00194-x.Search in Google Scholar

26. KD2 Pro “Thermal Properties Analyzer Operator’s Manual” Decagon Devices, Version, 2016. https://pdf4pro.com/view/kd2-pro-thermal-properties-analyzer-meter-5b7e74.html.Search in Google Scholar

27. Jenson, J. E., Panneerselvam, K. Mater. Res. Express 2020, 7, 045306. https://doi.org/10.1088/2053-1591/ab8586.Search in Google Scholar

28. Yoganandam, K., Nagaraja Ganes, B., Ganeshan, P., Raja, K. Mater. Res. Express 2019, 6, 105341. https://doi.org/10.1088/2053-1591/ab3bbe.Search in Google Scholar

29. He, L., Zeng, J., Huang, Y., Yang, X., Li, D., Chen, Y., Fu, Z., Wang, D., Zhang, Y. Materials 2020, 13, 4738. https://doi.org/10.3390/ma13214738.Search in Google Scholar PubMed PubMed Central

30. Gu, J., Zhang, Q., Dang, J., Zhang, J., Yang, Z. Polym. Eng. Sci. 2009, 49, 1030–1034. https://doi.org/10.1002/pen.21336.Search in Google Scholar

31. Tavman, I. H. Int. Commun. Heat Mass Transfer 1998, 25, 723–732. https://doi.org/10.1016/s0735-1933(98)00059-1.Search in Google Scholar

32. Hamilton, R. L., Crosser, O. K. Ind. Eng. Chem. Fundam. 1962, 1, 187–191. https://doi.org/10.1021/i160003a005.Search in Google Scholar

33. Maxwell, J. C. A Treatise on Elec. and Magnetism, 3rd ed.; Oxford University Press, vol. 1, 1954, Ch.9. https://www.Aproged.pt/biblioteca/MaxwellII.pdf.Search in Google Scholar

34. Lewis, T. B., Nielsen, L. E. Dynamic mechanical properties of particulate-filled composites. J. Appl. Polym. Sci. 1970, 14, 1449–1471. https://doi.org/10.1002/app.1970.070140604.Search in Google Scholar

35. Cheng, S. C., Vachon, R. I. Int. J. Heat Mass Transfer 1969, 12, 249–264. https://doi.org/10.1016/0017-9310(69)90009-x.Search in Google Scholar

36. Holotescu, S., Stoian, F. D. J. Zhejiang Univ., Sci. A. 2009, 10, 704–709. https://doi.org/10.1631/jzus.a0820733.Search in Google Scholar

37. Agari, Y., Uno, T. J. Appl. Polym. Sci. 1986, 32, 5705–5712. https://doi.org/10.1002/app.1986.070320702.Search in Google Scholar

38. McCullough, R. L. Compos. Sci. Technol. 1985, 22, 3–21. https://doi.org/10.1016/0266-3538(85)90087-9.Search in Google Scholar

39. Russell, H. W. J. Am. Ceram. Soc. 1935, 18, 1–5. https://doi.org/10.1111/j.1151-2916.1935.tb19340.x.Search in Google Scholar

40. Tsao, G. T. N. Ind. Eng. Chem. 1961, 53, 395–397. https://doi.org/10.1021/ie50617a031.Search in Google Scholar

Received: 2021-12-24
Accepted: 2023-01-27
Published Online: 2023-05-24
Published in Print: 2023-07-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. International conference on energy and advanced materials
  4. Review
  5. Analysis of different printing technologies for metallization of crystalline silicon solar cells
  6. Original Papers
  7. DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
  8. Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
  9. Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
  10. Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
  11. Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
  12. Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
  13. Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
  14. Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
  15. A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
  16. Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
  17. Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
  18. Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
  19. Impact of top metal electrodes on current conduction in WO3 thin films
  20. Atomistic simulation of Stoner–Wohlfarth (SW) particle
  21. Optimization of Coulomb glass system using quenching and annealing at small disorders
  22. Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
  23. Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
  24. Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
  25. Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
  26. Thermal properties of AlN (nano) filled LDPE composites
  27. Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
  28. Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
  29. AlGaN/GaN heterostructures for high power and high-speed applications
  30. Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
  31. Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
  32. Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
  33. Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
  34. Rotating magnetic field configuration for controlled particle flux in material processing applications
  35. News
  36. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8750/html?lang=en
Scroll to top button