Abstract
The thermal properties of aluminium nitride nano-particles (n-AlN) filled into low-density polyethylene (LDPE) are discussed. Cylindrical specimens were prepared using a melt mixing process. X-ray diffraction was performed to characterize the structural properties of the pellets under investigation. The X-ray diffraction analysis confirms the change in secondary structure, such as crystallinity, of the LDPE due to the dispersion of n-AlN powder. The thermal stability of pure and n-AlN filled LDPE was checked by performing thermo-gravimetric analysis. The analysis confirms an improvement in the thermal stability of LDPE due to n-AlN addition. The thermal conductivity of the samples was measured using a KD2 Pro device (based on the transient hot wire technique of thermal conductivity measurement) at room temperature. Our finding reveals ∼1.36 fold enhancement in the effective thermal conductivity of LDPE due to the addition of 15 vol.% of n-AlN. The room-temperature thermal conductivity data of the investigated pellets were analyzed as a function of n-AlN concentration in the light of available theoretical models and correlations. The variation in thermal conductivity data of LDPE with n-AlN concentration is well explained by the semi-empirical model proposed by Agari and Uno.
-
Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The author declares no conflicts of interest regarding this article.
References
1. Rao, N. J., Ananda, R. G. 49th Electronic Components and Technology Conference, 1-4 June; San Diego, USA, 1999; pp. 895–898.Search in Google Scholar
2. Wong, C. P., Bollampally, R. S. J. Appl. Polym. Sci. 1999, 74, 3396–3403. https://doi.org/10.1002/(sici)10974628(19991227)74:14<3396::aid-app13>3.0.co;2-3.10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3Search in Google Scholar
3. Ishida, H., Rimdusit, S. Thermochim. Acta 1998, 320, 177–186. https://doi.org/10.1016/s0040-6031(98)00463-8.Search in Google Scholar
4. Lu, X., Xu, G. J. Appl. Polym. Sci. 1997, 65, 2733–2738. https://doi.org/10.1002/(SICI)1097-628(19970926)65:13%3C2733: :AID-APP15%3E3.0.CO;2-Y.10.1002/(SICI)1097-4628(19970926)65:13<2733::AID-APP15>3.0.CO;2-YSearch in Google Scholar
5. Agrawal, R., Saxena, N. S., Mathew, G., Thomas, S., Sharma, K. B. J. Appl. Polym. Sci. 2000, 76, 1799–1803. https://doi.org/10.1002/(sici)1097-4628(20000620)76:12<1799::aid-app10>3.0.co;2-d.10.1002/(SICI)1097-4628(20000620)76:12<1799::AID-APP10>3.0.CO;2-DSearch in Google Scholar
6. Weidenfeller, B., Hofer, M., Schilling, F. Composites, Part A 2002, 33, 1041–1053. https://doi.org/10.1016/s1359-835x(02)00085-4.Search in Google Scholar
7. El-Brolossy, T. A., Ibrahim, S. S. Thermochim. Acta 2010, 509, 46–49. https://doi.org/10.1016/j.tca.2010.05.020.Search in Google Scholar
8. Bujard, P., Kuhnlein, G., Ino, S., Shiobara, T. 1994 Proceedings 44th Electronic Components and Technology Conference; Washington, DC, USA, 1994; pp. 159–163.Search in Google Scholar
9. Tavman, I. H. Powder Technol. 1997, 91, 63–67. https://doi.org/10.1016/s0032-5910(96)03247-0.Search in Google Scholar
10. Molefi, J. A., Luyt, A. S., Krupa, I. Exp. Poly. Lett. 2009, 3, 639–649. https://doi.org/10.3144/expresspolymlett.2009.80.Search in Google Scholar
11. Mamunya, Y. P., Davydenko, V. V., Pissis, P., Lebedev, E. V. Eur. Polym. J. 2002, 38, 1887–1897. https://doi.org/10.1016/s0014-3057(02)00064-2.Search in Google Scholar
12. Tripathi, D., Dey, T. K. Indian J. Phys. 2013, 87, 435–445. https://doi.org/10.1007/s12648-013-0256-x.Search in Google Scholar
13. Tripathi, D., Dey, T. K. Bull. Mater. Sci. 2019, 42, 174–184. https://doi.org/10.1007/s12034-019-1853-x.Search in Google Scholar
14. Lopes, C. M. A., Felisberti, M. I. Polym. Test. 2004, 23, 637–643. https://doi.org/10.1016/j.polymertesting.2004.01.013.Search in Google Scholar
15. Dey, T. K., Tripathi, M. Thermochim. Acta 2010, 502, 35–42. https://doi.org/10.1016/j.tca.2010.02.002.Search in Google Scholar
16. Xu, Y., Chung, D. D., Mroz, C. Composites, Part A 2001, 32, 1749–1757. https://doi.org/10.1016/s1359-835x(01)00023-9.Search in Google Scholar
17. Yu, S., Hing, P., Hu, X. Composites, Part A 2002, 33, 289–292. https://doi.org/10.1016/s1359-835x(01)00107-5.Search in Google Scholar
18. Jung, J., Kim, J., Uhm, Y. R., Jeon, J. K., Lee, S., Lee, H. M., Rhee, C. K. Thermochim. Acta 2010, 499, 8–14. https://doi.org/10.1016/j.tca.2009.10.013.Search in Google Scholar
19. Keblinski, P., Phillpot, S., Choi, S. U., Eastman, J. Int. J. Heat Mass Transfer 2002, 45, 855–863. https://doi.org/10.1016/s0017-9310(01)00175-2.Search in Google Scholar
20. Morreale, M., Liga, A., Mistretta, M. C., Ascione, L., Mantia, F. P. L. Mater 2015, 8, 7536–7548. https://doi.org/10.3390/ma8115406.10.3390/ma8115406Search in Google Scholar PubMed PubMed Central
21. Yang, J., Wang, X., Zhao, H., Zhang, W., Xu, M. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 1957–1964. https://doi.org/10.1109/tdei.2014.004334.Search in Google Scholar
22. Song, W., Sun, Z., Zhang, D., Han, B., He, L., Wang, X., Lei, Q. J. Mater. Sci.: Mater. Electron. 2015, 27, 2328–2334. https://doi.org/10.1007/s10854-015-4029-5.Search in Google Scholar
23. Marzouk, W., Bettaieb, F., Khiari, R., Majdoub, H. J. Thermoplast. Compos. Mater. 2017, 30, 1200–1216. https://doi.org/10.1177/0892705715618742.Search in Google Scholar
24. Musa, R., Tan, V., Kashani, F. Adv. Polym. Technol. 1983, 3, 89–98. https://doi.org/10.1002/adv.1983.060030203.Search in Google Scholar
25. Kumlutas, D. Compos. Sci. Technol. 2003, 63, 113–117. https://doi.org/10.1016/s0266-3538(02)00194-x.Search in Google Scholar
26. KD2 Pro “Thermal Properties Analyzer Operator’s Manual” Decagon Devices, Version, 2016. https://pdf4pro.com/view/kd2-pro-thermal-properties-analyzer-meter-5b7e74.html.Search in Google Scholar
27. Jenson, J. E., Panneerselvam, K. Mater. Res. Express 2020, 7, 045306. https://doi.org/10.1088/2053-1591/ab8586.Search in Google Scholar
28. Yoganandam, K., Nagaraja Ganes, B., Ganeshan, P., Raja, K. Mater. Res. Express 2019, 6, 105341. https://doi.org/10.1088/2053-1591/ab3bbe.Search in Google Scholar
29. He, L., Zeng, J., Huang, Y., Yang, X., Li, D., Chen, Y., Fu, Z., Wang, D., Zhang, Y. Materials 2020, 13, 4738. https://doi.org/10.3390/ma13214738.Search in Google Scholar PubMed PubMed Central
30. Gu, J., Zhang, Q., Dang, J., Zhang, J., Yang, Z. Polym. Eng. Sci. 2009, 49, 1030–1034. https://doi.org/10.1002/pen.21336.Search in Google Scholar
31. Tavman, I. H. Int. Commun. Heat Mass Transfer 1998, 25, 723–732. https://doi.org/10.1016/s0735-1933(98)00059-1.Search in Google Scholar
32. Hamilton, R. L., Crosser, O. K. Ind. Eng. Chem. Fundam. 1962, 1, 187–191. https://doi.org/10.1021/i160003a005.Search in Google Scholar
33. Maxwell, J. C. A Treatise on Elec. and Magnetism, 3rd ed.; Oxford University Press, vol. 1, 1954, Ch.9. https://www.Aproged.pt/biblioteca/MaxwellII.pdf.Search in Google Scholar
34. Lewis, T. B., Nielsen, L. E. Dynamic mechanical properties of particulate-filled composites. J. Appl. Polym. Sci. 1970, 14, 1449–1471. https://doi.org/10.1002/app.1970.070140604.Search in Google Scholar
35. Cheng, S. C., Vachon, R. I. Int. J. Heat Mass Transfer 1969, 12, 249–264. https://doi.org/10.1016/0017-9310(69)90009-x.Search in Google Scholar
36. Holotescu, S., Stoian, F. D. J. Zhejiang Univ., Sci. A. 2009, 10, 704–709. https://doi.org/10.1631/jzus.a0820733.Search in Google Scholar
37. Agari, Y., Uno, T. J. Appl. Polym. Sci. 1986, 32, 5705–5712. https://doi.org/10.1002/app.1986.070320702.Search in Google Scholar
38. McCullough, R. L. Compos. Sci. Technol. 1985, 22, 3–21. https://doi.org/10.1016/0266-3538(85)90087-9.Search in Google Scholar
39. Russell, H. W. J. Am. Ceram. Soc. 1935, 18, 1–5. https://doi.org/10.1111/j.1151-2916.1935.tb19340.x.Search in Google Scholar
40. Tsao, G. T. N. Ind. Eng. Chem. 1961, 53, 395–397. https://doi.org/10.1021/ie50617a031.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- International conference on energy and advanced materials
- Review
- Analysis of different printing technologies for metallization of crystalline silicon solar cells
- Original Papers
- DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
- Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
- Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
- Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
- Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
- Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
- Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
- Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
- A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
- Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
- Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
- Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
- Impact of top metal electrodes on current conduction in WO3 thin films
- Atomistic simulation of Stoner–Wohlfarth (SW) particle
- Optimization of Coulomb glass system using quenching and annealing at small disorders
- Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
- Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
- Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
- Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
- Thermal properties of AlN (nano) filled LDPE composites
- Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
- Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
- AlGaN/GaN heterostructures for high power and high-speed applications
- Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
- Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
- Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
- Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
- Rotating magnetic field configuration for controlled particle flux in material processing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Editorial
- International conference on energy and advanced materials
- Review
- Analysis of different printing technologies for metallization of crystalline silicon solar cells
- Original Papers
- DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
- Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
- Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
- Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
- Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
- Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
- Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
- Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
- A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
- Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
- Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
- Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
- Impact of top metal electrodes on current conduction in WO3 thin films
- Atomistic simulation of Stoner–Wohlfarth (SW) particle
- Optimization of Coulomb glass system using quenching and annealing at small disorders
- Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
- Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
- Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
- Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
- Thermal properties of AlN (nano) filled LDPE composites
- Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
- Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
- AlGaN/GaN heterostructures for high power and high-speed applications
- Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
- Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
- Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
- Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
- Rotating magnetic field configuration for controlled particle flux in material processing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde