Home Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
Article
Licensed
Unlicensed Requires Authentication

Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures

  • Jing Feng EMAIL logo , Xinli Jing and Yu Li
Published/Copyright: May 3, 2013
Become an author with De Gruyter Brill

Abstract

Aniline chemical oxidative polymerisation (COP), which produces various polyaniline (PANI) and oligoaniline supra-molecular structures, can be regarded as an in situ self-assembly process. This review provides a brief introduction to recent work on the structural characters and self-assembly behaviours of oligomeric aniline chemical oxidation products; it is focused on the relationships between the oligomeric species and morphology of the final products such as PANI nanoparticles, nanofibres/rods, nanotubes or oligoaniline nanosheets, micro/nanospheres in aniline COP systems. Several mechanisms proposed as explanations for the formation of typical supra-molecular structures are discussed in order to illustrate the roles of aniline oligomers. This article concludes with our perspectives on future work remaining to be done to uncover the formation mechanism of supra-molecular structures constructed by aniline chemical oxidation products and their controllable synthesis.

[1] Basavaiah, K., & Prasada Rao, A. V. (2012). Preparation and characterization of P-TSA doped tetraaniline nanorods via micellar-assisted method. E-Journal of Chemistry, 9, 1175–1180. DOI: 10.1155/2012/679462. http://dx.doi.org/10.1155/2012/67946210.1155/2012/679462Search in Google Scholar

[2] Cao, Y., Qiu, J., & Smith, P. (1995). Effect of solvents and co-solvents on the processibility of polyaniline: I. Solubility and conductivity studies. Synthetic Metals, 69, 187–190. DOI: 10.1016/0379-6779(94)02412-r. http://dx.doi.org/10.1016/0379-6779(94)02412-R10.1016/0379-6779(94)02412-RSearch in Google Scholar

[3] Cao, Y., & Mallouk, T. E. (2008). Morphology of templategrown polyaniline nanowires and its effect on the electrochemical capacitance of nanowire rays. Chemistry of Materials, 20, 5260–5265. DOI: 10.1021/cm801028a. http://dx.doi.org/10.1021/cm801028a10.1021/cm801028aSearch in Google Scholar

[4] Casado, U. M., Quintanilla, R. M., Aranguren, M. I., & Marcovich, N. E. (2012). Composite films based on shape memory polyurethanes and nanostructured polyaniline or cellulose-polyaniline particles. Synthetic Metals, 162, 1654–1664. DOI: 10.1016/j.synthmet.2012.07.020. http://dx.doi.org/10.1016/j.synthmet.2012.07.02010.1016/j.synthmet.2012.07.020Search in Google Scholar

[5] Cataldo, F. (1996). On the polymerization of p-phenylenediamine. European Polymer Journal, 32, 43–50. DOI: 10.1016/ 0014-3057(95)00118-2. http://dx.doi.org/10.1016/0014-3057(95)00118-210.1016/0014-3057(95)00118-2Search in Google Scholar

[6] Chen, L., Yu, Y., Mao, H., Lu, X., Zhang, W., & Wei, Y. (2005a). Synthesis of parent aniline tetramer and pentamer and redox properties. Materials Letters, 59, 2446–2450. DOI: 10.1016/j.matlet.2005.03.018. http://dx.doi.org/10.1016/j.matlet.2005.03.01810.1016/j.matlet.2005.03.018Search in Google Scholar

[7] Chen, L., Yu, Y., Mao, H., Lu, X., Zhang, W., & Wei, Y. (2005b). Synthesis of phenyl-capped aniline heptamer and its UV-vis spectral study. Synthetic Metals, 149, 129–134. DOI: 10.1016/j.synthmet.2004.12.013. http://dx.doi.org/10.1016/j.synthmet.2004.12.01310.1016/j.synthmet.2004.12.013Search in Google Scholar

[8] Chiou, N. R., & Epstein, A. J. (2005). Polyaniline nanofiber prepared by dilute polymerization. Advanced Materials, 17, 1679–1683. DOI: 10.1002/adma.200401000. http://dx.doi.org/10.1002/adma.20040100010.1002/adma.200401000Search in Google Scholar

[9] Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2006). MNDO-PM3 study of the early stages of the chemical oxidative polymerization of aniline. Collection of Czechoslovak Chemical Communications, 71, 1407–1426. DOI: 10.1135/cccc20061407. http://dx.doi.org/10.1135/cccc2006140710.1135/cccc20061407Search in Google Scholar

[10] Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2008a). Theoretical study of the oxidative polymerization of aniline with peroxydisulfate: Tetramer formation. International Journal of Quantum Chemistry, 108, 318–333. DOI: 10.1002/qua.21506. http://dx.doi.org/10.1002/qua.2150610.1002/qua.21506Search in Google Scholar

[11] Ćirić-Marjanović, G., Konyushenko, E. N., Trchová, M., & Stejskal, J. (2008b). Chemical oxidative polymerization of anilinium sulfate versus aniline: Theory and experiment. Synthetic Metals, 158, 200–211. DOI: 10.1016/j.synthmet.2008.01.005. http://dx.doi.org/10.1016/j.synthmet.2008.01.00510.1016/j.synthmet.2008.01.005Search in Google Scholar

[12] Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2008c). The chemical oxidative polymerization of aniline in water: Raman spectroscopy. Journal of Raman Spectroscopy, 39, 1375–1387. DOI: 10.1002/jrs.2007. http://dx.doi.org/10.1002/jrs.200710.1002/jrs.2007Search in Google Scholar

[13] Ding, L., Wang, X., & Gregory, R. V. (1999). Thermal properties of chemically synthesized polyaniline (EB) powder. Synthetic Metals, 104, 73–78. DOI: 10.1016/s0379-6779(99)00035-1. http://dx.doi.org/10.1016/S0379-6779(99)00035-110.1016/S0379-6779(99)00035-1Search in Google Scholar

[14] Ding, H., Shen, J., Wan, M., & Chen, Z. (2008). Formation mechanism of polyaniline nanotubes by a simplified template-free method. Macromolecular Chemistry and Physics, 209, 864–871. DOI: 10.1002/macp.200700624. http://dx.doi.org/10.1002/macp.20070062410.1002/macp.200700624Search in Google Scholar

[15] Ding, Z., Currier, R. P., Zhao, Y., & Yang, D. (2009a). Self-assembled polyaniline nanotubes with rectangular cross sections. Macromolecular Chemistry and Physics, 210, 1600–1606. DOI: 10.1002/macp.200900250. http://dx.doi.org/10.1002/macp.20090025010.1002/macp.200900250Search in Google Scholar

[16] Ding, H., Wang, G., Yang, M., Luan, Y., Wang, Y., & Yao, X. (2009b). Novel sea urchin-like polyaniline microspheressupported molybdenum catalyst: Preparation, characteristic and functionality. Journal of Molecular Catalysis A: Chemical, 308, 25–31. DOI: 10.1016/j.molcata.2009.03.038. http://dx.doi.org/10.1016/j.molcata.2009.03.03810.1016/j.molcata.2009.03.038Search in Google Scholar

[17] Ding, Z., Sanchez, T., Labouriau, A., Iyer, S., Larson, T., Currier, R., Zhao, Y., & Dali Yang, D. (2010a). Characterization of reaction intermediate aggregates in aniline oxidative polymerization at low proton concentration. The Journal of Physical Chemistry B, 114, 10337–10346. DOI: 10.1021/jp102623z. http://dx.doi.org/10.1021/jp102623z10.1021/jp102623zSearch in Google Scholar PubMed

[18] Ding, Z., Yang, D., Currier, R. P., Obrey, S. J., & Zhao, Y. (2010b). Polyaniline morphology and detectable intermediate aggregates. Macromolecular Chemistry and Physics, 211, 627–634. DOI: 10.1002/macp.200900444. http://dx.doi.org/10.1002/macp.20090044410.1002/macp.200900444Search in Google Scholar

[19] Duić, L., Kraljić, M., & Grigić, S. (2004). Influence of phenylenediamine additions on the morphology and on the catalytic effect of polyaniline. Journal of Polymer Science Part A: Polymer Chemistry, 42, 1599–1608. DOI: 10.1002/pola.11068. http://dx.doi.org/10.1002/pola.1106810.1002/pola.11068Search in Google Scholar

[20] Ferreira, D. C., & Temperini, M. L. A. (2010). Raman characterization of oligoaniline self-assembled microspheres. In L. D. Ziegler, & P. M. Champion (Eds.), XXII International Conference on Raman Spectroscopy (AIP Conference Proceedings/Atomic, Molecular, Chemical Physics) (Vol. 1267, pp. 689–690). Melville, NY, USA: American Institute of Physics. Search in Google Scholar

[21] Ferreira, D. C., Pires, J. R., & Temperini, M. L. A. (2011). Spectroscopic characterization of oligoaniline microspheres obtained by an aniline-persulfate approach. The Journal of Physical Chemistry B, 115, 1368–1375. DOI: 10.1021/ jp111065m. http://dx.doi.org/10.1021/jp111065m10.1021/jp111065mSearch in Google Scholar PubMed

[22] Gao, J., Li, K., Zhang, W., Wang, C., Wu, Z., Ji, Y., Zhou, Y., Shibata, M., & Yosomiya, R. (1999). Facile synthesis of phenyl-capped oligoanilines using pseudo-high dilution technique. Macromolecular Rapid Communications, 20, 560–563. DOI: 10.1002/(SICI)1521-3927(19991001)20:10〈560::AIDMARC560〉3.0.CO;2-A. http://dx.doi.org/10.1002/(SICI)1521-3927(19991001)20:10<560::AID-MARC560>3.0.CO;2-A10.1002/(SICI)1521-3927(19991001)20:10<560::AID-MARC560>3.0.CO;2-ASearch in Google Scholar

[23] Gao, Y., Li, X., Gong, J., Fan, B., Su, Z., & Qu, L. (2008). Polyaniline nanotubes prepared using fiber mats membrane as the template and their gas-response behavior. The Journal of Physical Chemistry C, 112, 8215–8222. DOI: 10.1021/jp711601f. http://dx.doi.org/10.1021/jp711601f10.1021/jp711601fSearch in Google Scholar

[24] Gao, C., Ai, M., Li, X., & Xu, Z. (2011). Basic amino acid assisted-fabrication of rectangular nanotube, circular nanotube, and hollow microsphere of polyaniline: Adjusting and controlling effect of pH value. Journal of Polymer Science Part A: Polymer Chemistry, 49, 2173–2182. DOI: 10.1002/pola.24647. http://dx.doi.org/10.1002/pola.2464710.1002/pola.24647Search in Google Scholar

[25] Genies, E. M., & Lapkowski, M. (1987). Spectroelectrochemical evidence for an intermediate in the electropolymerization of aniline. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 236, 189–197. DOI: 10.1016/0022-0728(87)88026-9. http://dx.doi.org/10.1016/0022-0728(87)88026-910.1016/0022-0728(87)88026-9Search in Google Scholar

[26] Gizdavic-Nikolaidis, M. R., Stanisavljev, D. R., Easteal, A. J., & Zujovic, Z. D. (2010a). Microwave-assisted synthesis of functionalized polyaniline nanostructures with advanced antioxidant properties. The Journal of Physical Chemistry C, 114, 18790–18796. DOI: 10.1021/jp106213m. http://dx.doi.org/10.1021/jp106213m10.1021/jp106213mSearch in Google Scholar

[27] Gizdavic-Nikolaidis, M. R., Stanisavljev, D. R., Easteal, A. J., & Zujovic, Z. D. (2010b). A rapid and facile synthesis of nanofibrillar polyaniline using microwave radiation. Macromolecular Rapid Communications, 31, 657–661. DOI: 10.1002/marc.200900800. http://dx.doi.org/10.1002/marc.20090080010.1002/marc.200900800Search in Google Scholar

[28] Gizdavic-Nikolaidis, M. R., Jevremovic, M., Stanisavljev, D. R., & Zujovic, Z. D. (2012). Enhanced microwave synthesis: Fine-tuning of polyaniline polymerization. The Journal of Physical Chemistry C, 116, 3235–3241. DOI: 10.1021/ jp2086939. http://dx.doi.org/10.1021/jp208693910.1021/jp2086939Search in Google Scholar

[29] Gospodinova, N., & Terlemezyan, L. (1998). Conducting polymers prepared by oxidative polymerization: Polyaniline. Progress in Polymer Science, 23, 1443–1484. DOI: 10.1016/s0079-6700(98)00008-2. http://dx.doi.org/10.1016/S0079-6700(98)00008-210.1016/S0079-6700(98)00008-2Search in Google Scholar

[30] Han, Y. G., Kusunose, T., & Sekino, T. (2009). Facile one-pot synthesis and characterization of novel nanostructured organic dispersible polyaniline. Journal of Polymer Science Part B: Polymer Physics, 47, 1024–1029. DOI: 10.1002/polb.21703. http://dx.doi.org/10.1002/polb.2170310.1002/polb.21703Search in Google Scholar

[31] Han, J., Fang, P., Dai, J., & Guo, R. (2012). One-pot surfactantless route to polyaniline hollow nanospheres with incontinuous multicavities and application for the removal of lead ions from water. Langmuir, 28, 6468–6475. DOI: 10.1021/la300619d. http://dx.doi.org/10.1021/la300619d10.1021/la300619dSearch in Google Scholar

[32] He, D., Wu, Y., & Xu, B. Q. (2007). Formation of 2,3-diaminophenazines and their self-assembly into nanobelts in aqueous medium. European Polymer Journal, 43, 3703–3709. DOI: 10.1016/j.eurpolymj.2007.06.038. http://dx.doi.org/10.1016/j.eurpolymj.2007.06.03810.1016/j.eurpolymj.2007.06.038Search in Google Scholar

[33] He, W., Zhang, W., Li, Y., & Jing, X. (2012). A high concentration graphene dispersion stabilized by polyaniline nanofibers. Synthetic Metals, 162, 1107–1113. DOI: 10.1016/j.synthmet.2012.04.027. http://dx.doi.org/10.1016/j.synthmet.2012.04.02710.1016/j.synthmet.2012.04.027Search in Google Scholar

[34] Ho, K. S., Han, Y. K., Tuan, Y. T., Huang, Y. J., Wang, Y. Z., Ho, T. H., Hsieh, T. H., Lin, J. J., & Lin, S. C. (2009). Formation and degradation mechanism of a novel nanofibrous polyaniline. Synthetic Metals, 159, 1202–1209. DOI: 10.1016/j.synthmet.2009.02.047. http://dx.doi.org/10.1016/j.synthmet.2009.02.04710.1016/j.synthmet.2009.02.047Search in Google Scholar

[35] Hu, X., Bao, H., Wang, P., Jin, S., & Gu, Z. (2012). Mechanism of formation of polyaniline flakes with high degree of crystallization using a soft template in the presence of cetyltrimethylammonium bromide. Polymer International, 61, 768–773. DOI: 10.1002/pi.4137. http://dx.doi.org/10.1002/pi.413710.1002/pi.4137Search in Google Scholar

[36] Huang, J., & Wan, M. (1999). Polyaniline doped with different sulfonic acids by in situ doping polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 37, 1277–1284. DOI: 10.1002/(sici)1099-0518(19990501)37:9〈1277::aidpola7〉3.0.co;2-a. http://dx.doi.org/10.1002/(SICI)1099-0518(19990501)37:9<1277::AID-POLA7>3.0.CO;2-A10.1002/(SICI)1099-0518(19990501)37:9<1277::AID-POLA7>3.0.CO;2-ASearch in Google Scholar

[37] Huang, J., Virji, S., Weiller, B. H., & Kaner, R. B. (2003). Polyaniline nanofibers: Facile synthesis and chemical sensors. Journal of the American Chemical Society, 125, 314–315. DOI: 10.1021/ja028371y. http://dx.doi.org/10.1021/ja028371y10.1021/ja028371ySearch in Google Scholar

[38] Huang, J., & Kaner, R. B. (2004a). A general chemical route to polyaniline nanofibers. Journal of the American Chemical Society, 126, 851–855. DOI: 10.1021/ja0371754. http://dx.doi.org/10.1021/ja037175410.1021/ja0371754Search in Google Scholar

[39] Huang, J. X., & Kaner, R. B. (2004b). Nanofiber formation in the chemical polymerization of aniline: A mechanistic study. Angewandte Chemie International Edition, 43, 5817–5821. DOI: 10.1002/anie.200460616. http://dx.doi.org/10.1002/anie.20046061610.1002/anie.200460616Search in Google Scholar

[40] Huang, J. (2006). Syntheses and applications of conducting polymer polyaniline nanofibers. Pure and Applied Chemistry, 78, 15–27. DOI: 10.1351/pac200678010015. http://dx.doi.org/10.1351/pac20067801001510.1351/pac200678010015Search in Google Scholar

[41] Huang, J., & Kaner, R. B. (2006). The intrinsic nanofibrillar morphology of polyaniline. Chemical Communications, 2006, 367–376. DOI: 10.1039/b510956f. http://dx.doi.org/10.1039/b510956f10.1039/B510956FSearch in Google Scholar

[42] Huang, J. Y., Ding, F., Jiao, K., & Yakobson, B. I. (2007). Real time microscopy, kinetics, and mechanism of giant fullerene evaporation. Physical Review Letters, 99, 175503. DOI: 10.1103/physrevlett.99.175503. http://dx.doi.org/10.1103/PhysRevLett.99.17550310.1103/PhysRevLett.99.175503Search in Google Scholar PubMed

[43] Huang, Y. F., & Lin, C. W. (2009). Introduction of methanol in the formation of polyaniline nanotubes in an acid-free aqueous solution through a self-curling process. Polymer, 50, 775–782. DOI: 10.1016/j.polymer.2008.12.016. http://dx.doi.org/10.1016/j.polymer.2008.12.01610.1016/j.polymer.2008.12.016Search in Google Scholar

[44] Huang, Y. F., & Lin, C. W. (2010). Exploration of the morphological transition phenomenon of polyaniline from microspheres to nanotubes in acid-free aqueous 1-propanol solution in a single polymerization process. Polymer International, 59, 1226–1232. DOI: 10.1002/pi.2852. http://dx.doi.org/10.1002/pi.285210.1002/pi.2852Search in Google Scholar

[45] Janošević, A., Pašti, I., Gavrilov, N., Mentus, S., Ćirić-Marjanović, G., Krstić, J., & Stejskal, J. (2011). Micro/mesoporous conducting carbonized polyaniline 5-sulfosalicylate nanorods/nanotubes: Synthesis, characterization and electrocatalysis. Synthetic Metals, 161, 2179–2184. DOI: 10.1016/j.synthmet.2011.08.028. http://dx.doi.org/10.1016/j.synthmet.2011.08.02810.1016/j.synthmet.2011.08.028Search in Google Scholar

[46] Jiang, H., Sun, X., Huang, M., Wang, Y., Li, D., & Dong, S. (2006). Rapid self-assembly of oligo(o-phenylenediamine) into one-dimensional structures through a facile reprecipitation route. Langmuir, 22, 3358–3361. DOI: 10.1021/la0530 91s. http://dx.doi.org/10.1021/la053091sSearch in Google Scholar

[47] Jiang, Z., Cheng, Q., Yan, Y., Zhang, L., & Li, C. (2012). Synthesis, characterization and electrochemical capacitance of urchin-like hierarchical polyaniline microspheres. Journal of Macromolecular Science Part B: Physics, 51, 897–905. DOI: 10.1080/00222348.2011.610251. http://dx.doi.org/10.1080/00222348.2011.61025110.1080/00222348.2011.610251Search in Google Scholar

[48] Jiao, L., Zhang, L., Wang, X., Diankov, G., & Dai, H. (2009). Narrow graphene nanoribbons from carbon nanotubes. Nature, 458, 877–880. DOI: 10.1038/nature07919. http://dx.doi.org/10.1038/nature0791910.1038/nature07919Search in Google Scholar PubMed

[49] Jin, E., Liu, N., Lu, X., & Zhang, W. (2007). Novel micro/nanostructures of polyaniline in the presence of different amino acids via a self-assembly process. Chemistry Letters, 36, 1288–1289. DOI: 10.1246/cl.2007.1288. http://dx.doi.org/10.1246/cl.2007.128810.1246/cl.2007.1288Search in Google Scholar

[50] Jin, E., Lu, X., Bian, X., Kong, L., Zhang, W., & Wang, C. (2010). Unique tetragonal starlike polyaniline microstructure and its application in electrochemical biosensing. Journal of Materials Chemistry, 20, 3079–3083. DOI: 10.1039/b925753e. http://dx.doi.org/10.1039/b925753e10.1039/b925753eSearch in Google Scholar

[51] Kong, L., Lu, X., Jin, E., Jiang, S., Wang, C., & Zhang, W. (2009). Templated synthesis of polyaniline nanotubes with Pd nanoparticles attached onto their inner walls and its catalytic activity on the reduction of p-nitroanilinum. Composites Science and Technology, 69, 561–566. DOI: 10.1016/j.compscitech.2008.11.021. http://dx.doi.org/10.1016/j.compscitech.2008.11.02110.1016/j.compscitech.2008.11.021Search in Google Scholar

[52] Konyushenko, E. N., Stejskal, J., Šeděnková, I., Trchová, M., Sapurina, I., Cieslar, M., & Prokeš, J. (2006). Polyaniline nanotubes: conditions of formation. Polymer International, 55, 31–39. DOI: 10.1002/pi.1899. http://dx.doi.org/10.1002/pi.189910.1002/pi.1899Search in Google Scholar

[53] Konyushenko, E. N., Trchová, M., Stejskal, J., & Sapurina, I. (2010). The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 64, 56–64. DOI: 10.2478/s11696-009-0101-z. http://dx.doi.org/10.2478/s11696-009-0101-z10.2478/s11696-009-0101-zSearch in Google Scholar

[54] Kosynkin, D. V., Higginbotham, A. L., Sinitskii, A., Lomeda, J. R., Dimiev, A., Price, B. K., & Tour, J. M. (2009). Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 458, 872–876. DOI: 10.1038/nature07872. http://dx.doi.org/10.1038/nature0787210.1038/nature07872Search in Google Scholar PubMed

[55] Kříž, J., Starovoytova, L., Trchová, M., Konyushenko, E. N., & Stejskal, J. (2009). NMR investigation of aniline oligomers produced in the early stages of oxidative polymerization of aniline. The Journal of Physical Chemistry B, 113, 6666–6673. DOI: 10.1021/jp9007834. http://dx.doi.org/10.1021/jp900783410.1021/jp9007834Search in Google Scholar PubMed

[56] Kulszewicz-Bajer, I., Róźalska, I., & Kuryłlek, M. (2004). Synthesis and spectroscopic properties of aniline tetramers. Comparative studies. New Journal of Chemistry, 28, 669–675. DOI: 10.1039/b311096f. http://dx.doi.org/10.1039/b311096f10.1039/B311096FSearch in Google Scholar

[57] Laslau, C., Zujovic, Z. D., & Travas-Sejdic, J. (2009a). Polyaniline “nanotube” self-assembly: The stage of granular agglomeration on nanorod templates. Macromolecular Rapid Communications, 30, 1663–1668. DOI: 10.1002/marc.200900244. http://dx.doi.org/10.1002/marc.20090024410.1002/marc.200900244Search in Google Scholar PubMed

[58] Laslau, C., Zujovic, Z. D., Zhang, L., Bowmaker, G. A., & Travas-Sejdic, J. (2009b). Morphological evolution of selfassembled polyaniline nanostuctures obtained by pH-stat chemical oxidation. Chemistry of Materials, 21, 954–962. DOI: 10.1021/cm803447a. http://dx.doi.org/10.1021/cm803447a10.1021/cm803447aSearch in Google Scholar

[59] Laslau, C., Zujovic, Z. D., & Travas-Sejdic, J. (2010). Theories of polyaniline nanostructure self-assembly: Towards an expanded, comprehensive Multi-Layer Theory (MLT). Progress in Polymer Science, 35, 1403–1419. DOI: 10.1016/j.progpolymsci.2010.08.002. http://dx.doi.org/10.1016/j.progpolymsci.2010.08.00210.1016/j.progpolymsci.2010.08.002Search in Google Scholar

[60] Lee, D. C., Cao, B., Jang, K., & Forster, P. M. (2010). Selfassembly of halogen substituted phenazines. Journal of Materials Chemistry, 20, 867–873. DOI: 10.1039/b917601b. http://dx.doi.org/10.1039/b917601b10.1039/B917601BSearch in Google Scholar

[61] Leng, W., Zhou, S., & Wu, L. (2011). Fabrication of polyaniline: Nail/spindle-shaped morphology. Macromolecular Chemistry and Physics, 212, 1900–1909. DOI: 10.1002/macp.201100150. http://dx.doi.org/10.1002/macp.20119003810.1002/macp.201100150Search in Google Scholar

[62] Leng, W., Zhou, S., You, B., & Wu, L. (2012). Controllable synthesis of aniline oligomers into uniform, dispersed cross and needle morphologies. Journal of Colloid and Interface Science, 374, 331–338. DOI: 10.1016/j.jcis.2012.02.018. http://dx.doi.org/10.1016/j.jcis.2012.02.01810.1016/j.jcis.2012.02.018Search in Google Scholar PubMed

[63] Li, W., & Wang, H. L. (2004). Oligomer-assisted synthesis of chiral polyaniline nanofibers. Journal of the American Chemical Society, 126, 2278–2279. DOI: 10.1021/ja039672q. http://dx.doi.org/10.1021/ja039672q10.1021/ja039672qSearch in Google Scholar PubMed

[64] Li, G., Martinez, C., Janata, J., Smith, J. A., Josowicz, M., & Semancik, S. (2004). Effect of morphology on the response of polyaniline-based conductometric gas sensors: Nanofibers vs. thin films. Electrochemical and Solid-State Letters, 7, H44–H47. DOI: 10.1149/1.1795053. http://dx.doi.org/10.1149/1.179505310.1149/1.1795053Search in Google Scholar

[65] Li, D., & Kaner, R. B. (2006). Shape and aggregation control of nanoparticles: Not shaken, not stirred. Journal of the American Chemical Society, 128, 968–975. DOI: 10.1021/ja056609n. http://dx.doi.org/10.1021/ja056609n10.1021/ja056609nSearch in Google Scholar PubMed

[66] Li, G., Zhang, C., & Peng, H. (2008a). Facile synthesis of self-assembled polyaniline nanodisks. Macromolecular Rapid Communications, 29, 63–67. DOI: 10.1002/marc.200700584. http://dx.doi.org/10.1002/marc.20070058410.1002/marc.200700584Search in Google Scholar

[67] Li, G., Zhang, C., Peng, H., Chen, K., & Zhang, Z. (2008b). Hollow self-doped polyaniline micro/nanostructures: Microspheres, aligned pearls, and nanotubes. Macromolecular Rapid Communications, 29, 1954–1958. DOI: 10.1002/marc.200800501. http://dx.doi.org/10.1002/marc.20080050110.1002/marc.200800501Search in Google Scholar

[68] Li, Y., & Jing, X. (2009). Morphology control of chemically prepared polyaniline nanostructures: Effects of mass transfer. Reactive & Functional Polymers, 69, 797–807. DOI: 10.1016/j.reactfunctpolym.2009.06.009. http://dx.doi.org/10.1016/j.reactfunctpolym.2009.06.00910.1016/j.reactfunctpolym.2009.06.009Search in Google Scholar

[69] Li, Y., Wang, Y., Wu, D., & Jing, X. (2009a). Effects of ultrasonic irradiation on the morphology of chemically prepared polyaniline nanofibers. Journal of Applied Polymer Science, 113, 868–875. DOI: 10.1002/app.29970. http://dx.doi.org/10.1002/app.2997010.1002/app.29970Search in Google Scholar

[70] Li, W., Hoa, N. D., Cho, Y., Kim, D., & Kim, J. S. (2009b). Nanofibers of conducting polyaniline for aromatic organic compound sensor. Sensors and Actuators B: Chemical, 143, 132–138. DOI: 10.1016/j.snb.2009.09.006. http://dx.doi.org/10.1016/j.snb.2009.09.00610.1016/j.snb.2009.09.006Search in Google Scholar

[71] Li, X., Gao, Y., Gong, J., Zhang, L., & Qu, L. (2009c). Polyaniline/ Ag composite nanotubes prepared through UV rays irradiation via fiber template approach and their NH3 gas sensitivity. The Journal of Physical Chemistry C, 113, 69–73. DOI: 10.1021/jp807535v. http://dx.doi.org/10.1021/jp807535v10.1021/jp807535vSearch in Google Scholar

[72] Li, Y., Wang, Y., Jing, X., & Zhu, R. (2011). Early stage pH profile: the key factor controlling the construction of polyaniline micro/nanostructures. Journal of Polymer Research, 18, 2119–2131. DOI: 10.1007/s10965-011-9622-6. http://dx.doi.org/10.1007/s10965-011-9622-610.1007/s10965-011-9622-6Search in Google Scholar

[73] Li, Y., He, W., Feng, J., & Jing, X. (2012). Self-assembly of aniline oligomers in aqueous medium. Colloid and Polymer Science, 290, 817–828. DOI: 10.1007/s00396-012-2597-y. 10.1007/s00396-012-2597-ySearch in Google Scholar

[74] Lin, C. W., & Huang, Y. F. (2009). Introduction of methanol in the formation of polyaniline nanotubes in an acid-free aqueous solution through a self-curling process. Polymer, 50, 775–782. DOI: 10.1016/j.polymer.2008.12.016. http://dx.doi.org/10.1016/j.polymer.2008.12.01610.1016/j.polymer.2008.12.016Search in Google Scholar

[75] Lin, Q., Li, Y., & Yang, M. (2012). Highly sensitive and ultrafast response surface acoustic wave humidity sensor based on electrospun polyaniline/poly(vinyl butyral) nanofibers. Analytica Chimica Acta, 748, 73–80. DOI: 10.1016/j.aca.2012.08.041. http://dx.doi.org/10.1016/j.aca.2012.08.04110.1016/j.aca.2012.08.041Search in Google Scholar

[76] Liu, C., Hayashi, K., & Toko, K. (2011). Template-free deposition of polyaniline nanostructures on solid substrates with horizontal orientation. Macromolecules, 44, 2212–2219. DOI: 10.1021/ma1023878. http://dx.doi.org/10.1021/ma102387810.1021/ma1023878Search in Google Scholar

[77] Liu, P., Qiu, J., Wang, X., & Wu, X. (2012). Facile preparation of polyaniline nanosheets via chemical oxidative polymerization in saturated NaCl aqueous solution for supercapacitors. International Journal of Electrochemical Science, 7, 6134–6141. Search in Google Scholar

[78] Luo, C., Peng, H., Zhang, L., Lu, G. L., Wang, Y., & Travas-Sejdic, J. (2011). Formation of nano-/microstructures of polyaniline and its derivatives. Macromolecules, 44, 6899–6907. DOI: 10.1021/ma201350m. http://dx.doi.org/10.1021/ma201350m10.1021/ma201350mSearch in Google Scholar

[79] MacDiarmid, A. G., Chiang, J. C., Richter, A. F., & Epstein, A. J. (1987). Polyaniline: A new concept in conducting polymers. Synthetic Metals, 18, 285–290. DOI: 10.1016/0379-6779(87)90893-9. http://dx.doi.org/10.1016/0379-6779(87)90893-910.1016/0379-6779(87)90893-9Search in Google Scholar

[80] Mohilner, D. M., Adams, R. N., & Argersinger, W. J. (1962). Investigation of the kinetics and mechanism of the anodic oxidation of aniline in aqueous sulfuric acid solution at a platinum electrode. Journal of the American Chemical Society, 84, 3618–3622. DOI: 10.1021/ja00878a003. http://dx.doi.org/10.1021/ja00878a00310.1021/ja00878a003Search in Google Scholar

[81] Neelgund, G. M., & Oki, A. (2011). A facile method for the synthesis of polyaniline nanospheres and the effect of doping on their electrical conductivity. Polymer International, 60, 1291–1295. DOI: 10.1002/pi.3068. 10.1002/pi.3068Search in Google Scholar PubMed PubMed Central

[82] Nemzer, L. R., Schwartz, A., & Epstein, A. J. (2010). Enzyme entrapment in reprecipitated polyaniline nanoand microparticles. Macromolecules, 43, 4324–4330. DOI: 10.1021/ma100112g. http://dx.doi.org/10.1021/ma100112g10.1021/ma100112gSearch in Google Scholar

[83] Omastová, M., & Mičušík, M. (2012). Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerisation. Chemical Papers, 66, 392–414. DOI: 10.2478/s11696-011-0120-4. http://dx.doi.org/10.2478/s11696-011-0120-410.2478/s11696-011-0120-4Search in Google Scholar

[84] Park, J. K., Jeon, S. S., & Im, S. S. (2010). Effect of 4-sulfobenzoic acid monopotassium salt on oligoanilines for inducing polyaniline nanostructures. Polymer, 51, 3023–3030. DOI: 10.1016/j.polymer.2010.05.003. http://dx.doi.org/10.1016/j.polymer.2010.05.00310.1016/j.polymer.2010.05.003Search in Google Scholar

[85] Patil, S. S., Koiry, S. P., Aswal, D. K., Koinkar, P. M., Murakami, R., & More, M. A. (2011). Promising field emission characteristics of polyaniline nanotubes. Journal of the Electrochemical Society, 158, E63–E66. DOI: 10.1149/1.3582525. http://dx.doi.org/10.1149/1.358252510.1149/1.3582525Search in Google Scholar

[86] Patil, S. S., Koiry, S. P., Veerender, P., Aswal, D. K., Gupta, S. K., Joag, D. S., & More, M. A. (2012). Synthesis of vertically aligned polyaniline (PANI) nanofibers, nanotubes on APTMS monolayer and their field emission characteristics. RSC Advances, 2, 5822–5827. DOI: 10.1039/c2ra01294d. http://dx.doi.org/10.1039/c2ra01294d10.1039/c2ra01294dSearch in Google Scholar

[87] Peng, H., Soeller, C., & Travas-Sejdic, J. (2007). Novel conducting polymers for DNA sensing. Macromolecules, 40, 909–914. DOI: 10.1021/ma062060g. http://dx.doi.org/10.1021/ma062060g10.1021/ma062060gSearch in Google Scholar

[88] Petr, A., & Dunsch, L. (1996a). Direct evidence of indamine cation radicals in the anodic oxidation of aniline by in situ ESR spectroscopy. Journal of Electroanalytical Chemistry, 419, 55–59. DOI: 10.1016/s0022-0728(96)04861-9. http://dx.doi.org/10.1016/S0022-0728(96)04861-910.1016/S0022-0728(96)04861-9Search in Google Scholar

[89] Petr, A., & Dunsch, L. (1996b). Kinetics of the p-aminodiphenylamine radical in organic solution: An electrochemical and electron spin resonance study. The Journal of Physical Chemistry, 100, 4867–4872. DOI: 10.1021/jp952965o. http://dx.doi.org/10.1021/jp952965o10.1021/jp952965oSearch in Google Scholar

[90] Rajesh, B., Thampi, K. R., Bonard, J. M., Mathieu, H. J., Xanthopoulos, N., & Viswanathan, B. (2004). Nanostructured conducting polyaniline tubules as catalyst support for Pt particles for possible fuel cell applications. Electrochemical and Solid-State Letters, 7, A404–A407. DOI: 10.1149/1.1799955. http://dx.doi.org/10.1149/1.179995510.1149/1.1799955Search in Google Scholar

[91] Ran, F., Tan, Y., Liu, J., Zhao, L., Kong, L., Luo, Y., & Kang, L. (2012). Preparation of hierarchical polyaniline nanotubes based on self-assembly and its electrochemical capacitance. Polymers for Advanced Technologies, 23, 1297–1301. DOI: 10.1002/pat.2048. http://dx.doi.org/10.1002/pat.204810.1002/pat.2048Search in Google Scholar

[92] Ray, A., Asturias, G. E., Kershner, D. L., Richter, A. F., Mac-Diarmid, A. G., & Epstein, A. J. (1989). Polyaniline: Doping, structure and derivatives. Synthetic Metals, 29, E141–E150. DOI: 10.1016/0379-6779(89)90289-0. http://dx.doi.org/10.1016/0379-6779(89)90289-010.1016/0379-6779(89)90289-0Search in Google Scholar

[93] Ren, R., Leng, C., & Zhang, S. (2010). A chronocoulometric DNA sensor based on screen-printed electrode doped with ionic liquid and polyaniline nanotubes. Biosensors and Bioelectronics, 25, 2089–2094. DOI: 10.1016/j.bios.2010.02.006. http://dx.doi.org/10.1016/j.bios.2010.02.00610.1016/j.bios.2010.02.006Search in Google Scholar PubMed

[94] Rezaei, S. J. T., Bide, Y., & Nabid, M. R. (2011). A new approach for the synthesis of polyaniline microstructures with a unique tetragonal star-like morphology. Synthetic Metals, 161, 1414–1419. DOI: 10.1016/j.synthmet.2011.05.011. http://dx.doi.org/10.1016/j.synthmet.2011.05.01110.1016/j.synthmet.2011.05.011Search in Google Scholar

[95] Róźalska, I., Kułyk, P., & Kulszewicz-Bajer, I. (2004). Linear 1,4-coupled oligoanilines of defined length: preparation and spectroscopic properties. New Journal of Chemistry, 28, 1235–1243. DOI: 10.1039/b404828h. http://dx.doi.org/10.1039/b404828h10.1039/B404828HSearch in Google Scholar

[96] Sadek, A. Z., Wlodarski, W., Shin, K., Kaner, R. B., & Kalantar-zadeh, K. (2006). A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite. Nanotechnology, 17, 4488–4492. DOI: 10.1088/0957-4484/17/17/034. http://dx.doi.org/10.1088/0957-4484/17/17/03410.1088/0957-4484/17/17/034Search in Google Scholar

[97] Sapurina, I., & Stejskal, J. (2008). The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, 57, 1295–1325. DOI: 10.1002/pi.2476. http://dx.doi.org/10.1002/pi.247610.1002/pi.2476Search in Google Scholar

[98] Sarma, B., Reddy, L. S., & Nangia, A. (2008). The role of π-stacking in the composition of phloroglucinol and phenazine cocrystals. Crystal Growth and Design, 8, 4546–4552. DOI: 10.1021/cg800585d. http://dx.doi.org/10.1021/cg800585d10.1021/cg800585dSearch in Google Scholar

[99] Shishov, M. A., Moshnikov, V. A., & Sapurina, I. Y. (2011). Nanostructures of oligoaniline and polyaniline and their properties. Glass Physics and Chemistry, 37, 106–110. DOI: 10.1134/s1087659611010135. http://dx.doi.org/10.1134/S108765961101013510.1134/S1087659611010135Search in Google Scholar

[100] Silva, C. H. B., Ferreira, D. C., Constantino, V. R. L., & Temperini, M. L. A. (2011). Characterization of the products of aniline peroxydisulfate oligo/polymerization in media with different pH by resonance Raman spectroscopy at 413.1 and 1064 nm excitation wavelengths. Journal of Raman Spectroscopy, 42, 1653–1659. DOI: 10.1002/jrs.2898. http://dx.doi.org/10.1002/jrs.289810.1002/jrs.2898Search in Google Scholar

[101] Song, S., Pan, L., Li, Y., Shi, Y., Pu, L., Zhang, R., & Zheng, Y. (2008). Self-assembly of polyaniline: Mechanism study. Chinese Journal of Chemical Physics, 21, 187–192. DOI: 10.1088/1674-0068/21/02/187-192. http://dx.doi.org/10.1088/1674-0068/21/02/187-19210.1088/1674-0068/21/02/187-192Search in Google Scholar

[102] Sreedhar, B., Radhika, P., Neelima, B., Hebalkar, N., & Basaveswara Rao, M. V. (2009). Synthesis and characterization of polyaniline: nanospheres, nanorods, and nanotubes-catalytic application for sulfoxidation reactions. Polymers for Advanced Technologies, 20, 950–958. DOI: 10.1002/pat.1344. http://dx.doi.org/10.1002/pat.134410.1002/pat.1344Search in Google Scholar

[103] Stejskal, J., Riede, A., Hlavatá, D., Prokeš, J., Helmstedt, M., & Holler, P. (1998). The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline. Synthetic Metals, 96, 55–61. DOI: 10.1016/s0379-6779(98)00064-2. http://dx.doi.org/10.1016/S0379-6779(98)00064-210.1016/S0379-6779(98)00064-2Search in Google Scholar

[104] Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC Technical Report). Pure and Applied Chemistry, 74, 857–868. DOI: 10.1351/pac200274050857. http://dx.doi.org/10.1351/pac20027405085710.1351/pac200274050857Search in Google Scholar

[105] Stejskal, J., & Sapurina, I. (2005). Polyaniline: Thin films and colloidal dispersions (IUPAC Technical Report). Pure and Applied Chemistry, 77, 815–826. DOI: 10.1351/pac200577050815. http://dx.doi.org/10.1351/pac20057705081510.1351/pac200577050815Search in Google Scholar

[106] Stejskal, J., Sapurina, I., Trchová, M., Konyushenko, E. N., & Holler, P. (2006). The genesis of polyaniline nanotubes. Polymer, 47, 8253–8262. DOI: 10.1016/j.polymer.2006.10.007. http://dx.doi.org/10.1016/j.polymer.2006.10.00710.1016/j.polymer.2006.10.007Search in Google Scholar

[107] Stejskal, J., & Sapurina, I. (2008). Polyaniline — a conducting polymer. Materials Syntheses, 2008, 199–207. DOI: 10.1007/978-3-211-75125-1 26. http://dx.doi.org/10.1007/978-3-211-75125-1_2610.1007/978-3-211-75125-1Search in Google Scholar

[108] Stejskal, J., Sapurina, I., Trchová, M., & Konyushenko, E. N. (2008). Oxidation of aniline: Polyaniline granules, nan otubes, and oligoaniline microspheres. Macromolecules, 41, 3530–3536. DOI: 10.1021/ma702601q. http://dx.doi.org/10.1021/ma702601q10.1021/ma702601qSearch in Google Scholar

[109] Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI: 10.1016/j.progpolymsci.2010.07.006. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.00610.1016/j.progpolymsci.2010.07.006Search in Google Scholar

[110] Stejskal, J., & Trchová, M. (2012). Aniline oligomers versus polyaniline. Polymer International, 61, 240–251. DOI: 10.1002/pi.3179. http://dx.doi.org/10.1002/pi.317910.1002/pi.3179Search in Google Scholar

[111] Surwade, S. P., Dua, V., Manohar, N., Manohar, S. K., Beck, E., & Ferraris, J. P. (2009a). Oligoaniline intermediates in the aniline-peroxydisulfate system. Synthetic Metals, 159, 445–455. DOI: 10.1016/j.synthmet.2008.11.002. http://dx.doi.org/10.1016/j.synthmet.2008.11.00210.1016/j.synthmet.2008.11.002Search in Google Scholar

[112] Surwade, S. P., Manohar, N., & Manohar, S. K. (2009b). Origin of bulk nanoscale morphology in conducting polymers. Macromolecules, 42, 1792–1795. DOI: 10.1021/ma900141g. http://dx.doi.org/10.1021/ma900141g10.1021/ma900141gSearch in Google Scholar

[113] Tang, Q., Wu, J., Sun, X., Li, Q., & Lin, J. (2009). Layerby-layer self-assembly of conducting multilayer film from poly(sodium styrenesulfonate) and polyaniline. Journal of Colloid and Interface Science, 337, 155–161. DOI: 10.1016/j.jcis.2009.04.069. http://dx.doi.org/10.1016/j.jcis.2009.04.06910.1016/j.jcis.2009.04.069Search in Google Scholar PubMed

[114] Tran, H. D., Wang, Y., D’Arcy, J. M., & Kaner, R. B. (2008a). Toward an understanding of the formation of conducting polymer nanofibers. ACS Nano, 2, 1841–1848. DOI: 10.1021/nn800272z. http://dx.doi.org/10.1021/nn800272z10.1021/nn800272zSearch in Google Scholar

[115] Tran, H. D., Norris, I., D’Arcy, J. M., Tsang, H., Wang, Y., Mattes, B. R., & Kaner, R. B. (2008b). Substituted polyaniline nanofibers produced via rapid initiated polymerization. Macromolecules, 41, 7405–7410. DOI: 10.1021/ma800122d. http://dx.doi.org/10.1021/ma800122d10.1021/ma800122dSearch in Google Scholar

[116] Tran, H. D., D’Arcy, J. M., Wang, Y., Beltramo, P. J., Strong, V. A., & Kaner, R. B. (2011). The oxidation of aniline to produce ”polyaniline”: a process yielding many different nanoscale structures. Journal of Materials Chemistry, 21, 3534–3550. DOI: 10.1039/c0jm02699a. http://dx.doi.org/10.1039/c0jm02699a10.1039/C0JM02699ASearch in Google Scholar

[117] Trchová, M., Šeděnková, I., Konyushenko, E. N., Stejskal, J., Holler, P., & Ćirić-Marjanović, G. (2006). Evolution of polyaniline nanotubes: The oxidation of aniline in water. The Journal of Physical Chemistry B, 110, 9461–9468. DOI: 10.1021/jp057528g. http://dx.doi.org/10.1021/jp057528g10.1021/jp057528gSearch in Google Scholar

[118] Venancio, E. C., Wang, P. C., & MacDiarmid, A. G. (2006). The azanes: A class of material incorporating nano/micro self-assembled hollow spheres obtained by aqueous oxidative polymerization of aniline. Synthetic Metals, 156, 357–369. DOI: 10.1016/j.synthmet.2005.08.035. http://dx.doi.org/10.1016/j.synthmet.2005.08.03510.1016/j.synthmet.2005.08.035Search in Google Scholar

[119] Virji, S., Fowler, J. D., Baker, C. O., Huang, J., Kaner, R. B., & Weiller, B. H. (2005). Polyaniline nanofiber composites with metal salts: chemical sensors for hydrogen sulfide. Small, 1, 624–627. DOI: 10.1002/smll.200400155. http://dx.doi.org/10.1002/smll.20040015510.1002/smll.200400155Search in Google Scholar

[120] Virji, S., Kaner, R. B., & Weiller, B. H. (2006). Hydrogen sensors based on conductivity changes in polyaniline nanofibers. The Journal of Physical Chemistry B, 110, 22266–22270. DOI: 10.1021/jp063166g. http://dx.doi.org/10.1021/jp063166g10.1021/jp063166gSearch in Google Scholar

[121] Wan, M. (2009). Some issues related to polyaniline micro-/nanostructures. Macromolecular Rapid Communications, 30, 963–975. DOI: 10.1002/marc.200800817. http://dx.doi.org/10.1002/marc.20080081710.1002/marc.200800817Search in Google Scholar

[122] Wang, C., Wang, Z., Li, M., & Li, H. (2001). Well-aligned polyaniline nano-fibril array membrane and its field emission property. Chemical Physics Letters, 341, 431–434. DOI: 10.1016/s0009-2614(01)00509-7. http://dx.doi.org/10.1016/S0009-2614(01)00509-710.1016/S0009-2614(01)00509-7Search in Google Scholar

[123] Wang, X., Liu, N., Yan, X., Zhang, W. J., & Wei, Y. (2005). Alkali-guided synthesis of polyaniline hollow microspheres. Chemistry Letters, 34, 42–43. DOI: 10.1246/cl.2005.42. http://dx.doi.org/10.1246/cl.2005.4210.1246/cl.2005.42Search in Google Scholar

[124] Wang, Y., & Jing, X. (2007). Transparent conductive thin films based on polyaniline nanofibers. Materials Science and Engineering B, 138, 95–100. DOI: 10.1016/j.mseb.2006.12.016. http://dx.doi.org/10.1016/j.mseb.2006.12.01610.1016/j.mseb.2006.12.016Search in Google Scholar

[125] Wang, Y., & Jing, X. (2008). Formation of polyaniline nanofibers: A morphological study. The Journal of Physical Chemistry B, 112, 1157–1162. DOI: 10.1021/jp076112v. http://dx.doi.org/10.1021/jp076112v10.1021/jp076112vSearch in Google Scholar

[126] Wang, J. S., Wang, J. X., Yang, Z., Wang, Z., Zhang, F. B., & Wang, S. C. (2008). A novel strategy for the synthesis of polyaniline nanostructures with controlled morphology. Reactive & Functional Polymers, 68, 1435–1440. DOI: 10.1016/j.reactfunctpolym.2008.07.002. http://dx.doi.org/10.1016/j.reactfunctpolym.2008.07.00210.1016/j.reactfunctpolym.2008.07.002Search in Google Scholar

[127] Wang, J. S., Wang, J. X., Wang, Z., & Zhang, F. B. (2009). A template-free method toward urchin-like polyaniline microspheres. Macromolecular Rapid Communications, 30, 604–608. DOI: 10.1002/marc.200800726. http://dx.doi.org/10.1002/marc.20080072610.1002/marc.200800726Search in Google Scholar

[128] Wang, Y., Tran, H. D., Liao, L., Duan, X., & Kaner, R. B. (2010). Nanoscale morphology, dimensional control, and electrical properties of oligoanilines. Journal of the American Chemical Society, 132, 10365–10373. DOI: 10.1021/ja1014184. http://dx.doi.org/10.1021/ja101418410.1021/ja1014184Search in Google Scholar

[129] Wang, Y., Tran, H. D., & Kaner, R. B. (2011). Applications of oligomers for nanostructured conducting polymers. Macromolecular Rapid Communications, 32, 35–49. DOI: 10.1002/marc.201000280. http://dx.doi.org/10.1002/marc.20100028010.1002/marc.201000280Search in Google Scholar

[130] Wang, Y., Liu, J., Tran, H. D., Mecklenburg, M., Guan, X. N., Stieg, A. Z., Regan, B. C., Martin, D. C., & Kaner, R. B. (2012a). Morphological and dimensional control via hierarchical assembly of doped oligoaniline single crystals. Journal of the American Chemical Society, 134, 9251–9262. DOI: 10.1021/ja301061a. http://dx.doi.org/10.1021/ja301061a10.1021/ja301061aSearch in Google Scholar

[131] Wang, Z. L., Guo, R., Li, G. R., Lu, H. L., Liu, Z. Q., Xiao, F. M., Zhang, M., & Tong, Y. X. (2012b). Polyaniline nanotube arrays as high-performance flexible electrodes for electrochemical energy storage devices. Journal of Materials Chemistry, 22, 2401–2404. DOI: 10.1039/c2jm15070k. http://dx.doi.org/10.1039/c2jm15070k10.1039/c2jm15070kSearch in Google Scholar

[132] Wei, Y., Sun, Y., & Tang, X. (1989). Autoacceleration and kinetics of electrochemical polymerization of aniline. The Journal of Physical Chemistry, 93, 4878–4881. DOI: 10.1021/j100349a039. http://dx.doi.org/10.1021/j100349a03910.1021/j100349a039Search in Google Scholar

[133] Wei, Z., & Wan, M. (2002). Hollow microspheres of polyaniline synthesized with an aniline emulsion template. Advanced Materials, 14, 1314–1317. DOI: 10.1002/1521-4095(20020916) 14:18〈1314::AID-ADMA1314〉3.0.CO;2-9. http://dx.doi.org/10.1002/1521-4095(20020916)14:18<1314::AID-ADMA1314>3.0.CO;2-910.1002/1521-4095(20020916)14:18<1314::AID-ADMA1314>3.0.CO;2-9Search in Google Scholar

[134] Wei, Z., Zhang, Z., & Wan, M. (2002). Formation mechanism of self-assembled polyaniline micro/nanotubes. Langmuir, 18, 917–921. DOI: 10.1021/la0155799. http://dx.doi.org/10.1021/la015579910.1021/la0155799Search in Google Scholar

[135] Wei, Z., & Faul, C. F. J. (2008). Aniline oligomers — architecture, function and new opportunities for nanostructured materials. Macromolecular Rapid Communications, 29, 280–292. DOI: 10.1002/marc.200700741. http://dx.doi.org/10.1002/marc.20070074110.1002/marc.200700741Search in Google Scholar

[136] Xu, J., Wang, K., Zu, S. Z., Han, B. H., & Wei, Z. (2010). Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano, 4, 5019–5026. DOI: 10.1021/nn1006539. http://dx.doi.org/10.1021/nn100653910.1021/nn1006539Search in Google Scholar

[137] Yan, X., Liu, N., Jin, E., Wang, X., & Zhang, W. J. (2007). Polyaniline morphological regulation and control under alkaline condition. Gaodeng Xuexiao Huaxue Xuebao/Chemical Journal of Chinese Universities, 28, 391–393. Search in Google Scholar

[138] Yang, M., Yao, X. X., Wang, G., & Ding, H. (2008). A simple method to synthesize sea urchin-like polyaniline hollow spheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 324, 113–116. DOI: 10.1016/j.colsurfa.2008.04.004. http://dx.doi.org/10.1016/j.colsurfa.2008.04.00410.1016/j.colsurfa.2008.04.004Search in Google Scholar

[139] Yu, Y., Mao, H., Chen, L., Lu, X., Zhang, W., & Wei, Y. (2004). Synthesis of a novel oligoaniline: ”Dumbbell-shaped” oligoaniline. Macromolecular Rapid Communications, 25, 664–668. DOI: 10.1002/marc.200300117. http://dx.doi.org/10.1002/marc.20030011710.1002/marc.200300117Search in Google Scholar

[140] Zhang, W. J., Feng, J., MacDiarmid, A. G., & Epstein, A. J. (1997). Synthesis of oligomeric anilines. Synthetic Metals, 84, 119–120. DOI: 10.1016/s0379-6779(97)80674-1. http://dx.doi.org/10.1016/S0379-6779(97)80674-110.1016/S0379-6779(97)80674-1Search in Google Scholar

[141] Zhang, Z., Wei, Z., & Wan, M. (2002). Nanostructures of polyaniline doped with inorganic acids. Macromolecules, 35, 5937–5942. DOI: 10.1021/ma020199v. http://dx.doi.org/10.1021/ma020199v10.1021/ma020199vSearch in Google Scholar

[142] Zhang, L., & Wan, M. (2003). Self-assembly of polyaniline-from nanotubes to hollow microspheres. Advanced Functional Materials, 13, 815–820. DOI: 10.1002/adfm.200304458. http://dx.doi.org/10.1002/adfm.20030445810.1002/adfm.200304458Search in Google Scholar

[143] Zhang, X., Goux, W. J., & Manohar, S. K. (2004). Synthesis of polyaniline nanofibers by ”nanofiber seeding”. Journal of the American Chemical Society, 126, 4502–4503. DOI: 10.1021/ja031867a. http://dx.doi.org/10.1021/ja031867a10.1021/ja031867aSearch in Google Scholar PubMed

[144] Zhang, L., Peng, H., Kilmartin, P. A., Soeller, C., & Travas-Sejdic, J. (2007). Polymeric acid doped polyaniline nanotubes for oligonucleotide sensors. Electroanalysis, 19, 870–875. DOI: 10.1002/elan.200603790. http://dx.doi.org/10.1002/elan.20060379010.1002/elan.200603790Search in Google Scholar

[145] Zhang, L., Zujovic, Z. D., Peng, H., Bowmaker, G. A., Kilmartin, P. A., & Travas-Sejdic, J. (2008a). Structural characteristics of polyaniline nanotubes synthesized from different buffer solutions. Macromolecules, 41, 8877–8884. DOI: 10.1021/ma801728j. http://dx.doi.org/10.1021/ma801728j10.1021/ma801728jSearch in Google Scholar

[146] Zhang, H., Li, H., Zhang, F., Wang, J., Wang, Z., & Wang, S. (2008b). Polyaniline nanofibers prepared by a facile electrochemical approach and their supercapacitor performance. Journal of Materials Research, 23, 2326–2332. DOI: 10.1557/jmr.2008.0304. http://dx.doi.org/10.1557/jmr.2008.030410.1557/jmr.2008.0304Search in Google Scholar

[147] Zhang, H., Wang, J., Wang, Z., Zhang, F., & Wang, S. (2009). A novel strategy for the synthesis of sheet-like polyaniline. Macromolecular Rapid Communications, 30, 1577–1582. DOI: 10.1002/marc.200900228. http://dx.doi.org/10.1002/marc.20090022810.1002/marc.200900228Search in Google Scholar PubMed

[148] Zhang, H., Zhao, Q., Zhou, S., Liu, N., Wang, X., Li, J., & Wang, F. (2011a). Aqueous dispersed conducting polyaniline nanofibers: Promising high specific capacity electrode materials for supercapacitor. Journal of Power Sources, 196, 10484–10489. DOI: 10.1016/j.jpowsour.2011.08.066. http://dx.doi.org/10.1016/j.jpowsour.2011.08.06610.1016/j.jpowsour.2011.08.066Search in Google Scholar

[149] Zhang, L., Zhang, Z., Kilmartin, P. A., & Travas-Sejdic, J. (2011b). Hollow polyaniline and indomethacin composite microspheres for controlled indomethacin release. Macromolecular Chemistry and Physics, 212, 2674–2684. DOI: 10.1002/macp.201100379. http://dx.doi.org/10.1002/macp.20110037910.1002/macp.201100379Search in Google Scholar

[150] Zhang, X., Zhu, J., Haldolaarachchige, N., Ryu, J., Young, D. P., Wei, S., & Guo, Z. (2012). Synthetic process engineered polyaniline nanostructures with tunable morphology and physical properties. Polymer, 53, 2109–2120. DOI: 10.1016/j.polymer.2012.02.042. http://dx.doi.org/10.1016/j.polymer.2012.02.04210.1016/j.polymer.2012.02.042Search in Google Scholar

[151] Zhou, C., Han, J., Song, G., & Guo, R. (2007). Polyaniline hierarchical structures synthesized in aqueous solution: Micromats of nanofibers. Macromolecules, 40, 7075–7078. DOI: 10.1021/ma071400a. http://dx.doi.org/10.1021/ma071400a10.1021/ma071400aSearch in Google Scholar

[152] Zhou, C., Han, J., & Guo, R. (2008a). Controllable synthesis of polyaniline multidimensional architectures: From plate-like structures to flower-like superstructures. Macromolecules, 41, 6473–6479. DOI: 10.1021/ma800500u. http://dx.doi.org/10.1021/ma800500u10.1021/ma800500uSearch in Google Scholar

[153] Zhou, C., Han, J., Song, G., & Guo, R. (2008b). Fabrication of polyaniline with hierarchical structures in alkaline solution. European Polymer Journal, 44, 2850–2858. DOI: 10.1016/j.eurpolymj.2008.01.025. http://dx.doi.org/10.1016/j.eurpolymj.2008.01.02510.1016/j.eurpolymj.2008.01.025Search in Google Scholar

[154] Zhu, S., Chen, X., Gou, Y., Zhou, Z., Jiang, M., Lu, J., & Hui, D. (2012). Synthesis and mechanism of polyaniline nanotubes with rectangular cross section via in situ polymerization. Polymers for Advanced Technologies, 23, 796–802. DOI: 10.1002/pat.1967. http://dx.doi.org/10.1002/pat.196710.1002/pat.1967Search in Google Scholar

[155] Zou, W., Quan, B., Wang, K., Xia, L., Yao, J., & Wei, Z. (2011). Patterned growth of polyaniline nanowire arrays on a flexible substrate for high-performance gas sensing. Small, 7, 3287–3291. DOI: 10.1002/smll.201100889. http://dx.doi.org/10.1002/smll.20110088910.1002/smll.201100889Search in Google Scholar PubMed

[156] Zujovic, Z. D., Laslau, C., Bowmaker, G. A., Kilmartin, P. A., Webber, A. L., Brown, S. P., & Travas-Sejdic, J. (2010). Role of aniline oligomeric nanosheets in the formation of polyaniline nanotubes. Macromolecules, 43, 662–670. DOI: 10.1021/ma902109r. http://dx.doi.org/10.1021/ma902109r10.1021/ma902109rSearch in Google Scholar

[157] Zujovic, Z. D., Wang, Y., Bowmaker, G. A., & Kaner, R. B. (2011a). Structure of ultralong polyaniline nanofibers using initiators. Macromolecules, 44, 2735–2742. DOI: 10.1021/ma102772t. http://dx.doi.org/10.1021/ma102772t10.1021/ma102772tSearch in Google Scholar

[158] Zujovic, Z. D., Laslau, C., & Travas-Sejdic, J. (2011b). Lamellar-structured nanoflakes comprised of stacked oligoaniline nanosheets. Chemistry — An Asian Journal, 6, 791–796. DOI: 10.1002/asia.201000703. http://dx.doi.org/10.1002/asia.20100070310.1002/asia.201000703Search in Google Scholar PubMed

Published Online: 2013-5-3
Published in Print: 2013-8-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
  2. Printing polyaniline for sensor applications
  3. Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
  4. Conducting polymer-silver composites
  5. Electrorheological response of polyaniline and its hybrids
  6. Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
  7. Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
  8. Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
  9. Self-organization of polyaniline during oxidative polymerization: formation of granular structure
  10. Influence of ethanol on the chain-ordering of carbonised polyaniline
  11. X-ray absorption spectroscopy of nanostructured polyanilines
  12. Effect of cations on polyaniline morphology
  13. Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
  14. Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
  15. Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
  16. Polyamide grafted with polypyrrole: formation, properties, and stability
  17. Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
  18. Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
  19. Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
  20. Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
  21. Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
  22. Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
  23. Multi-wall carbon nanotubes with nitrogen-containing carbon coating
  24. Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
  25. Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
  26. Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
  27. Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
  28. Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
  29. Antibacterial properties of polyaniline-silver films
  30. Effect of compression pressure on mechanical and electrical properties of polyaniline pellets
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0376-y/pdf
Scroll to top button