Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
Abstract
Aniline was polymerised enzymatically in aqueous solution at pH = 4.3 and 25°C in the presence of submicrometer-sized vesicles formed from sodium bis(2-ethylhexyl)sulphosuccinate (AOT). H2O2 served as oxidant and the enzyme used was either horseradish peroxidase isoenzyme C (HRPC) or soybean peroxidase (SBP), both being class III peroxidases. From previous studies with HRPC, it is known that stable vesicle suspensions containing the emeraldine salt form of polyaniline (PANI-ES) can be obtained within 1–2 days with a 90–95 % yield, provided that optimal reaction conditions are applied. Unfortunately, HRPC becomes inactivated during polymerisation. In the present study, a linear dendritic block copolymer was added to HRPC, resulting in higher operational enzyme stability; the stabilising effect, however, was too small to afford a substantial decrease in the required amount of enzyme. Moreover, replacing HRPC with SBP was of no advantage, although SBP is known to be more stable towards inactivation by H2O2 than HRPC. By contrast, SBP was found to be much slower in oxidising aniline, and complete inactivation of SBP occurred before all the aniline monomers were oxidised, leading to low yields and the formation of over-oxidised products. The same was observed for HRP isoenzyme A2. Reactions without vesicles indicated that peroxidase inactivation was probably caused by PANI-ES.
[1] Aibara, S., Yamashita, H., Mori, E., Kato, M., & Morita, Y. (1982). Isolation and characterization of five neutral isoenzymes of horseradish peroxidase. The Journal of Biochemistry, 92, 531–539. 10.1093/oxfordjournals.jbchem.a133961Search in Google Scholar
[2] Ator, M. A., & Ortiz de Montellano, P. R. (1987). Protein control of prosthetic heme reactivity. Reaction of substrates with the heme edge of horseradish peroxidase. The Journal of Biological Chemistry, 262, 1542–1551. 10.1016/S0021-9258(19)75669-5Search in Google Scholar
[3] Berglund, G. I., Carlsson, G. H., Smith, A. T., Szöke, H., Henriksen, A., & Hajdu, J. (2002). The catalytic pathway of horseradish peroxidase at high resolution. Nature, 417, 463–468. DOI: 10.1038/417463a. http://dx.doi.org/10.1038/417463a10.1038/417463aSearch in Google Scholar
[4] Cao, Y., Smith, P., & Heeger, A. J. (1989). Spectroscopic studies of polyaniline in solution and in spin-cast films. Synthetic Metals, 32, 263–281. DOI: 10.1016/0379-6779(89)90770-4. http://dx.doi.org/10.1016/0379-6779(89)90770-410.1016/0379-6779(89)90770-4Search in Google Scholar
[5] Caramyshev, A. V., Evtushenko, E. G., Ivanov, V. F., Barceló, A. R., Roig, M. G., Shnyrov, V. L., van Hystee, R. B., Kurochinkin, I. N., Vorobiev, A. Kh., & Sakharov, I. Yu. (2005). Synthesis of conducting polyelectrolyte complexes of polyaniline and poly(2-acrylamido-3-methyl-1-propanesulfonic acid) catalyzed by pH-stable palm tree peroxidase. Biomacromolecules, 6, 1360–1366. DOI: 10.1021/bm049370 w. http://dx.doi.org/10.1021/bm049370wSearch in Google Scholar
[6] Caramyshev, A. V., Lobachov, V. M., Selivanov, D. V., Sheval, E. V., Vorobiev, A. Kh., Katasova, O. N., Polyakov, V. Y., Makarov, A. A., & Sakharov, I. Yu. (2007). Micellar peroxidase-catalyzed synthesis of chiral polyaniline. Biomacromolecules, 8, 2549–2555. DOI: 10.1021/bm070212p. http://dx.doi.org/10.1021/bm070212p10.1021/bm070212pSearch in Google Scholar
[7] Carvalho, A. S. L., Sommer Ferreira, B., Neves-Petersen, M. T., Petersen, S. B., Aires-Barros, M. R., & Melo, E. P. (2007). Thermal denaturation of HRPA2: pH-dependent conformational changes. Enzyme and Microbial Technology, 40, 696–703. DOI: 10.1016/j.enzmictec.2006.05.029. http://dx.doi.org/10.1016/j.enzmictec.2006.05.02910.1016/j.enzmictec.2006.05.029Search in Google Scholar
[8] Chiang, J. C., & MacDiarmid, A. G. (1986). ’Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime. Synthetic Metals, 13, 193–205: DOI: 10.1016/0379-6779(86)90070-6 http://dx.doi.org/10.1016/0379-6779(86)90070-610.1016/0379-6779(86)90070-6Search in Google Scholar
[9] Cruz-Silva, R., Roman, P., & Romero, J. (2011). Enzymatic synthesis of polyaniline and other electrically conductive polymers. In K. Loos (Ed.), Biocatalysis in polymer chemistry (chapter 8, pp. 187–210). Weinheim, Germany: Wiley-VCH. DOI: 10.1002/9783527632534.ch8. 10.1002/9783527632534.ch8Search in Google Scholar
[10] Ding, Y., Padias, A. B., & Hall, H. K., Jr. (1999). Chemical trapping experiments support a cation-radical mechanism for the oxidative polymerisation of aniline. Journal of Polymer Science Part A: Polymer Chemistry, 37, 2569–2579. DOI: 10.1002/(SICI)1099-0518(19990715)37:14〈2569::AIDPOLA30〉3.0.CO;2-N. http://dx.doi.org/10.1002/(SICI)1099-0518(19990715)37:14<2569::AID-POLA30>3.0.CO;2-N10.1002/(SICI)1099-0518(19990715)37:14<2569::AID-POLA30>3.0.CO;2-NSearch in Google Scholar
[11] Dmitrieva, E., & Dunsch, L. (2011). How linear is “linear” polyaniline? The Journal of Physical Chemistry B, 115, 6401–6411. DOI: 10.1021/jp200599f. http://dx.doi.org/10.1021/jp200599f10.1021/jp200599fSearch in Google Scholar
[12] do Nascimento, G. M., & de Souza, M. A. (2010). Spectroscopy of nanostructured conductive polymers. In A. Eftekhari (Ed.), Nanostructured conductive polymers (chapter 8, pp. 341–373). Chichester, UK: Wiley. http://dx.doi.org/10.1002/9780470661338.ch810.1002/9780470661338.ch8Search in Google Scholar
[13] Dunford, H. B. (2010). Peroxidases and catalases: Biochemistry, biophysics, biotechnology, and physiology (2nd ed.). Hoboken, NJ, USA: Wiley. Search in Google Scholar
[14] Duroux, L., & Welinder, K. G. (2003). The peroxidase gene family in plants: A phyolgenetic overview. Journal of Molecular Evolution, 57, 397–407. DOI: 10.1007/s00239-003-2489-3. http://dx.doi.org/10.1007/s00239-003-2489-310.1007/s00239-003-2489-3Search in Google Scholar
[15] Gajhede, M., Schuller, D. J., Henriksen, A., Smith, A. T., & Poulos, T. L. (1997). Crystal struture of horseradish peroxidase C at 2.15 Å resolution. Nature Structural & Molecular Biology, 4, 1032–1038. DOI: 10.1038/nsb1297-1032. http://dx.doi.org/10.1038/nsb1297-103210.1038/nsb1297-1032Search in Google Scholar
[16] Geniès, E. M., & Tsintavis, C. (1985). Redox mechanism and elctrochemical behaviour of polyaniline deposites. Journal of Electroanalytical Chemistry, 195, 109–128. DOI: 10.1016/0022-0728(85)80009-7. http://dx.doi.org/10.1016/0022-0728(85)80009-710.1016/0022-0728(85)80009-7Search in Google Scholar
[17] Geni`es, E. M., Boyle, A., Lapkowski, M., & Tsintavis, C. (1990). Polyaniline: A historical survey. Synthetic Metals, 36, 139–182. DOI: 10.1016/0379-6779(90)90050-u. http://dx.doi.org/10.1016/0379-6779(90)90050-U10.1016/0379-6779(90)90050-USearch in Google Scholar
[18] Gillikin, J. W., & Graham, J. S. (1991). Purification and developmental analysis of the major anionic peroxidase from the seed coat of Glycine max. Plant Physiology, 96, 214–220. DOI: 10.1104/pp.96.1.214. http://dx.doi.org/10.1104/pp.96.1.21410.1104/pp.96.1.214Search in Google Scholar PubMed PubMed Central
[19] Gitsov, I., Simonyan, A., & Vladimirov, N. G. (2007). Synthesis of novel asymmetric dendritic-linear-dendritic block copolymers via “living” anionic polymerisation of ethylene oxide initiated by dendritic macroinitiators. Journal of Polymer Science Part A: Polymer Chemistry, 45, 5136–5148. DOI: 10.1002/pola.22258. http://dx.doi.org/10.1002/pola.2225810.1002/pola.22258Search in Google Scholar
[20] Gitsov, I., Hamzik, J., Ryan, J., Simonyan, A., Nakas, J. P., Omori, S., Krastanov, A., Cohen, T., & Tannenbaum, S. W. (2008). Enzymatic nanoreactors for environmentally benign biotransformations. 1. Formation and catalytic activity of supramolecular complexes of laccase and lineardendritic block copolymers. Biomacromolecules, 9, 804–811. DOI: 10.1021/bm701081m. http://dx.doi.org/10.1021/bm701081m10.1021/bm701081mSearch in Google Scholar PubMed
[21] Gitsov, I., Simonyan, A., Wang, L., Krastanov, A., Tanenbaum, S. W., & Kiemle, D. (2012). Polymer-assisted biocatalysis: Unprecedented enzymatic oxidation of fullerene in aqueous medium. Journal of Polymer Science Part A: Polymer Chemistry, 50, 119–126. DOI: 10.1002/pola.24995. http://dx.doi.org/10.1002/pola.2499510.1002/pola.24995Search in Google Scholar
[22] Gray, J. S. S., Yang, B. Y., Hull, S. R., Venzke, D. P., & Montgomery, R. (1996). The glycans of soybean peroxidase. Glycobiology, 6, 23–32. DOI: 10.1093/glycob/6.1.23. http://dx.doi.org/10.1093/glycob/6.1.2310.1093/glycob/6.1.23Search in Google Scholar PubMed
[23] Gray, J. S. S., Yang, B. Y., & Montgomery, R. (1998). Heterogeneity of glycans at each N-glycosylation site of horseradish peroxidase. Carbohydrate Research, 311, 61–69. DOI: 10.1016/s0008-6215(98)00209-2. http://dx.doi.org/10.1016/S0008-6215(98)00209-210.1016/S0008-6215(98)00209-2Search in Google Scholar
[24] Gray, J. S. S., & Montgomery, R. (2006). Asymmetric glycosylation of soybean seed coat peroxidase. Carbohydrate Research, 341, 198–209. DOI: 10.1016/j.carres.2005.11.016. http://dx.doi.org/10.1016/j.carres.2005.11.01610.1016/j.carres.2005.11.016Search in Google Scholar
[25] Guo, Z., Rüegger, H., Kissner, R., Ishikawa, T., Willeke, M., & Walde, P. (2009). Vesicles as soft templates for the enzyamtic polymerisation of aniline. Langmuir, 25, 11390–11405. DOI: 10.1021/la901510m. http://dx.doi.org/10.1021/la901510m10.1021/la901510mSearch in Google Scholar
[26] Guo, Z., Hauser, N., Moreno, A., Ishikawa, T., & Walde, P. (2011). AOT vesicles as templates for the horseradish peroxidase-triggered polymerisation of aniline. Soft Matter, 7, 180–193. DOI: 10.1039/c0sm00599a. http://dx.doi.org/10.1039/c0sm00599a10.1039/C0SM00599ASearch in Google Scholar
[27] Henriksen, A., Mirza, O., Indiani, C., Teilum, K., Smulevich, G., Welinder, K. G., & Gajhede, M. (2001). Structure of soybean seed coat peroxidase: A plant peroxidase with unusual stability and haem-apoprotein interactions. Protein Science, 10, 108–115. DOI: 10.1110/ps.37301. http://dx.doi.org/10.1110/ps.3730110.1110/ps.37301Search in Google Scholar
[28] Hidalgo Cuadrado, N., Arellano, J. B., Calvete, J. J., Sanz, L., Zhadan, G. G., Textor, L. C., Polikarpov, I., Bursakov, S., Roig, M. R., & Shnyrov, V. L. (2011). Palm peroxidases: The most robust enzymes. Current Topics in Biochemical Research, 13(2), 67–79. Search in Google Scholar
[29] Hiner, A. N. P., Hernández-Ruíz, J., Arnao, M. B., García-Cánovas, F., & Acosta, M. (1996). A comparative study of the purity, enzyme activity, and inactivation by hydrogen peroxide of commercially available horseradish peroxidase isoenzymes A and C. Biotechnology and Bioengineering, 50, 655–662. DOI: 10.1002/(SICI)1097-0290(19960620)50:6〈655::AID-BIT6〉3.0.CO;2-J. http://dx.doi.org/10.1002/(SICI)1097-0290(19960620)50:6<655::AID-BIT6>3.0.CO;2-J10.1002/(SICI)1097-0290(19960620)50:6<655::AID-BIT6>3.0.CO;2-JSearch in Google Scholar
[30] Hollmann, F., & Arends, I. W. C. E. (2012). Enzyme initiated radical polymerisations. Polymers, 4, 759–793. DOI: 10.3390/polym4010759. http://dx.doi.org/10.3390/polym401075910.3390/polym4010759Search in Google Scholar
[31] Huang, W. S., & MacDiarmid, A. G. (1993). Optical properties of polyaniline. Polymer, 34, 1833–1845. DOI: 10.1016/0032-3861(93)90424-9. http://dx.doi.org/10.1016/0032-3861(93)90424-910.1016/0032-3861(93)90424-9Search in Google Scholar
[32] Junker, K., Zandomeneghi, G., Guo, Z., Kissner, R., Ishikawa, T., Kohlbrecher, J., & Walde, P. (2012). Mechanistic aspects of the horseradish peroxidase-catalysed polymerisation of aniline in the presence of AOT vesicles as templates. RSC Advances, 2, 6478–6495. DOI: 10.1039/c2ra20566a. http://dx.doi.org/10.1039/c2ra20566a10.1039/c2ra20566aSearch in Google Scholar
[33] Kamal, J. K. A., & Behere, D. V. (2002). Thermal and conformational stability of seed coat soybean peroxidase. Biochemistry, 41, 9034–9042. DOI: 10.1021/bi025621e. http://dx.doi.org/10.1021/bi025621e10.1021/bi025621eSearch in Google Scholar
[34] Kamal, J. K. A., & Behere, D. V. (2003). Activity, stability and conformational flexibility of seed coat soybean peroxidase. Journal of Inorganic Biochemistry, 94, 236–242. DOI: 10.1016/s0162-0134(03)00004-7. http://dx.doi.org/10.1016/S0162-0134(03)00004-710.1016/S0162-0134(03)00004-7Search in Google Scholar
[35] Kamal, J. K. A., & Behere, D. V. (2008). Kinetic stabilities of soybean and horseradish peroxidases. Biochemical Engineering Journal, 38, 110–114. DOI: 10.1016/j.bej.2007.07.019. http://dx.doi.org/10.1016/j.bej.2007.07.01910.1016/j.bej.2007.07.019Search in Google Scholar
[36] Karamyshev, A. V., Shleev, S. V., Koroleva, O. V., Yaropolov, A. I., & Sakharov, I. Yu. (2003). Laccase-catalyzed synthesis of conducting polyaniline. Enzyme and Microbial Technology, 33, 556–564. DOI: 10.1016/s0141-0229(03)00163-7. http://dx.doi.org/10.1016/S0141-0229(03)00163-710.1016/S0141-0229(03)00163-7Search in Google Scholar
[37] Kausaite, A., Ramanaviciene, A., & Ramanavicius, A. (2009). Polyaniline synthesis catalysed by glucose oxidase. Polymer, 50, 1864–1851. DOI: 10.1016/j.polymer.2009.02.013. http://dx.doi.org/10.1016/j.polymer.2009.02.01310.1016/j.polymer.2009.02.013Search in Google Scholar
[38] Lavery, C. B., MacInnis, M. C., MacDonald, M. J., Williams, J. B., Spencer, C. A., Burke, A.A., Irwin, D. J. G., & D’Cunha, G. B. (2010). Purification of peroxidase from horseradish (Armoracia rusticana) roots. Journal of Agricultural and Food Chemistry, 58, 8471–8476. DOI: 10.1021/jf100786h. http://dx.doi.org/10.1021/jf100786h10.1021/jf100786hSearch in Google Scholar
[39] Lehmann Nielsen, K., Indiani, C., Henriksen, A., Feis, A., Becucci, M., Gajhede, M., Smulevich, G., & Welinder, K. G. (2001). Differential activity and structure of highly similar peroxidases. Spectroscopic, crystallographic, and enzymatic analyses of lignifying Arabidopsis thaliana peroxidase A2 and horseradish peroxidase A2. Biochemistry, 40, 11013–11021. DOI: 10.1021/bi010661o. http://dx.doi.org/10.1021/bi010661o10.1021/bi010661oSearch in Google Scholar
[40] Liu, W., Cholli, A. L., Nagarajan, R., Kumar, J., Tripathy, S., Bruno, F. F., & Samuelson, L. (1999a). The role of template in the enzymatic synthesis of conducting polyaniline. Journal of the American Chemical Society, 121, 11345–11355. DOI: 10.1021/ja9926156. http://dx.doi.org/10.1021/ja992615610.1021/ja9926156Search in Google Scholar
[41] Liu, W., Kumar, J., Tripathy, S., Senecal, K. J., & Samuelson, L. (1999b). Enzymatically synthesized conducting polyaniline. Journal of the American Chemical Society, 121, 71–78. DOI: 10.1021/ja982270b. http://dx.doi.org/10.1021/ja982270b10.1021/ja982270bSearch in Google Scholar
[42] Liu, W., Kumar, J., Tripathy, S., & Samuelson, L. A. (2002). Enzymatic synthesis of conducting polyaniline in micelle solution. Langmuir, 18, 9696–9704. DOI: 10.1021/la0206357. http://dx.doi.org/10.1021/la020635710.1021/la0206357Search in Google Scholar
[43] McEldoon, J. P., Pokora, A. R., & Dordick, J. S. (1995). Lignin peroxidase-type activity of soybean peroxidase. Enzyme and Microbial Technology, 17, 359–365. DOI: 10.1016/0141-0229(94)00060-3. http://dx.doi.org/10.1016/0141-0229(94)00060-310.1016/0141-0229(94)00060-3Search in Google Scholar
[44] McEldoon, J. P., & Dordick, J. S. (1996). Unusual thermal stability of soybean peroxidase. Biotechnology Progress, 12, 555–558. DOI: 10.1021/bp960010x. http://dx.doi.org/10.1021/bp960010x10.1021/bp960010xSearch in Google Scholar
[45] Nagarajan, R., Tripathy, S., Kumar, J., Bruno, F. F., & Samuelson, L. (2000). An enzymatically synthesized conducting molecular complex of polyaniline and poly(vinylphosphonic acid). Macromolecules, 33, 9542–9547. DOI: 10.1021/ma000954+. http://dx.doi.org/10.1021/ma000954+10.1021/ma000954+Search in Google Scholar
[46] Namani, T., & Walde, P. (2005). From decanoate micelles to decanoic acid/dodecylbenzensulfonate vesicles. Langmuir, 21, 6210–6219. DOI: 10.1021/la047028z. http://dx.doi.org/10.1021/la047028z10.1021/la047028zSearch in Google Scholar
[47] Nissum, M., Schiødt, C. B., & Welinder, K. G. (2001). Reactions of soybean peroxidase and hydrogen peroxide pH 2.4–12.0, and veratryl alcohol at pH 2.4. Biochimica et Biophysica Acta, 1545, 339–348. DOI: 10.1016/s0167-4838(00)00295-8. http://dx.doi.org/10.1016/S0167-4838(00)00295-810.1016/S0167-4838(00)00295-8Search in Google Scholar
[48] Ortiz de Montellano, P. R. (2010). Catalytic mechanisms of heme peroxidases. In E. Torres, & M. Ayala (Eds.), Biocatalysis based on heme peroxidases: Peroxidases as potential industrial biocatalysts (chapter 5, pp. 79–107). Heidelberg, Germany: Springer. DOI: 10.1007/978-3-642-12627-7. http://dx.doi.org/10.1007/978-3-642-12627-7_510.1007/978-3-642-12627-7Search in Google Scholar
[49] Rumbau, V., Pomposo, J. A., Alduncin, J. A., Grande, H., Mecerreyes, D., & Ochoteco, E. (2007). A new bifunctional template for the enzymatic synthesis of conducting polyaniline. Enzyme and Microbial Technology, 40, 1412–1421. DOI: 10.1016/j.enzmictec.2006.10.024. http://dx.doi.org/10.1016/j.enzmictec.2006.10.02410.1016/j.enzmictec.2006.10.024Search in Google Scholar
[50] Ryan, B. J., Carolan, N., & Ó’Fágáin, C. (2006). Horseradish and soybean peroxidases: comparable tools for alternative niches? Trends in Biotechnology, 24, 355–363. DOI: 10.1016/j.tibtech.2006.06.007. http://dx.doi.org/10.1016/j.tibtech.2006.06.00710.1016/j.tibtech.2006.06.007Search in Google Scholar
[51] Sahoo, S. K., Nagarajan, R., Chakraborty, S., Samuelson, L. A., Kumar, J., & Cholli, A. L. (2002). Variation in the structure of conducting polyaniline with and without the presence of template during enzymatic polymerisation: A solid-state NMR study. Journal of Macromolecular Science Part A. Pure and Applied Chemistry, 39, 1223–1240. DOI: 10.1081/ma-120014848. http://dx.doi.org/10.1081/MA-12001484810.1081/MA-120014848Search in Google Scholar
[52] Sakharov, I. Yu., Vesgac, B. M. K., Galaev, I. Yu., Sakharova, I. V., & Pletjushkina, O. Yu. (2001). Peroxidase from leaves of royal palm tree Roystonea regia: purification and some properties. Plant Science, 161, 853–860. DOI: 10.1016/s0168-9452(01)00466-6. http://dx.doi.org/10.1016/S0168-9452(01)00466-610.1016/S0168-9452(01)00466-6Search in Google Scholar
[53] Sakharov, I. Yu., Vorobiev, A. Ch., & Castillo Leon, J. J. (2003). Synthesis of polyelectrolyte complexes of polyaniline and sulfonated polystyrene by palm tree peroxidase. Enzyme and Microbial Technology, 33, 661–667. DOI: 10.1016/s0141-0229(03)00188-1. http://dx.doi.org/10.1016/S0141-0229(03)00188-110.1016/S0141-0229(03)00188-1Search in Google Scholar
[54] Samuelson, L. A., Anagnostopoulos, A., Alva, K. S., Kumar, J., & Tripathy, S. K. (1998). Biologically derived conducting and water soluble polyaniline. Macromolecules, 31, 4376–4378. DOI: 10.1021/ma980258y. http://dx.doi.org/10.1021/ma980258y10.1021/ma980258ySearch in Google Scholar
[55] Schmitz, N., Gijzen, M., & van Huystee, R. (1997). Characterization of anionic soybean (Glycine max) seed coat peroxidase. Canadian Journal of Botany, 75, 1336–1341. DOI: 10.1139/b97-845. http://dx.doi.org/10.1139/b97-84510.1139/b97-845Search in Google Scholar
[56] Shannon, L. M., Kay, E., & Lew, J. Y. (1966). Peroxidase isoenzymes from horseradish roots. I. Isolation and physical properties. The Journal of Biological Chemistry, 241, 2166–2172. 10.1016/S0021-9258(18)96680-9Search in Google Scholar
[57] Shen, Y. P., Sun, J. Z., Wu, J. G., & Zhou, Q. Y. (2005). Synthesis and characterization of water-soluble conducting polyaniline by enzyme catalysis. Journal of Applied Polymer Science, 96, 814–817. DOI: 10.1002/app.21574. http://dx.doi.org/10.1002/app.2157410.1002/app.21574Search in Google Scholar
[58] Stejskal, J., Kratochvíl, P., & Radhakrishnan, N. (1993) Polyaniline dispersions. 2. UV-Vis absorption spectra. Synthetic Metals, 61, 225–231. DOI: 10.1016/0379-6779(93)91266-5. http://dx.doi.org/10.1016/0379-6779(93)91266-510.1016/0379-6779(93)91266-5Search in Google Scholar
[59] Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conductive polymer (IUPAC technical report). Pure and Applied Chemistry, 74, 857–867. DOI: 10.1351/pac200274050857. http://dx.doi.org/10.1351/pac20027405085710.1351/pac200274050857Search in Google Scholar
[60] Stejskal, J., Omastová, M., Fedorova, S., Prokeš, J., & Trchová, M. (2003). Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study. Polymer, 44, 1353–1358. DOI: 10.1016/s0032-3861(02)00906-0. http://dx.doi.org/10.1016/S0032-3861(02)00906-010.1016/S0032-3861(02)00906-0Search in Google Scholar
[61] Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI: 10.1016/s0162-0134(03)00004-7. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.00610.1016/j.progpolymsci.2010.07.006Search in Google Scholar
[62] Stejskal, J., & Trchová, M. (2012). Aniline oligomers versus polyaniline. Polymer International, 61, 240–251. DOI: 10.1002/pi.3179. http://dx.doi.org/10.1002/pi.317910.1002/pi.3179Search in Google Scholar
[63] Strickland, E. H., Kay, E., Shannon, L. M., & Horwitz, J. (1968). Peroxidase isoenzymes from horseradish roots. III. Circular dichroism of isoenzymes and apoisoenzymes. The Journal of Biological Chemistry, 243, 3560–3565. 10.1016/S0021-9258(19)34177-8Search in Google Scholar
[64] Torres, E., Bustos-Jaimes, I., & Le Borgne, S. (2003). Potential use of oxidative enzymes for the detoxification of organic pollutants. Applied Catalysis B: Environmental, 46, 1–15. DOI: 10.1016/s0926-3373(03)00228-5. http://dx.doi.org/10.1016/S0926-3373(03)00228-510.1016/S0926-3373(03)00228-5Search in Google Scholar
[65] Veitch, N. C., & Smith, A. T. (2000). Horseradish peroxidase. Advances in Inorganic Chemistry, 51, 107–162. DOI: 10.1016/s0898-8838(00)51002-2. http://dx.doi.org/10.1016/S0898-8838(00)51002-210.1016/S0898-8838(00)51002-2Search in Google Scholar
[66] Veitch, N. C. (2004). Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry, 65, 249–259. DOI: 10.1016/j.phytochem.2003.10.022. http://dx.doi.org/10.1016/j.phytochem.2003.10.02210.1016/j.phytochem.2003.10.022Search in Google Scholar
[67] Walde, P., & Guo, Z. (2011). Enzyme-catalyzed chemical structure-controlling template polymerisation. Soft Matter, 7, 316–331. DOI: 10.1039/c0sm00259c. http://dx.doi.org/10.1039/c0sm00259c10.1039/C0SM00259CSearch in Google Scholar
[68] Wallace, G. D., Spinks, G. M., Kane-Maguire, L. A. P., & Teasdale, P. R. (2009). Synthesis of polyanilines. In Conductive electroactive polymers: Intelligent polymer systems (3rd ed., chapter 4, pp. 137–178). Boca Raton, FL, USA: CRC Press. Search in Google Scholar
[69] Watanabe, L., Ribeiro de Moura, P., Bleicher, L., Nascimento, A. S., Zamorano, L. S., Calvete, J. J., Sanz, L., Pérez, A., Bursakov, S., Roig, M. G., Shnyrov, V. L., & Polikarpov, I. (2010). Crystal structure and statistical coupling analysis of highly glycosylated peroxidase from royal palm tree (Roystonea regia). Journal of Structural Biology, 169, 226–242. DOI: 10.1016/j.jsb.2009.10.009. http://dx.doi.org/10.1016/j.jsb.2009.10.00910.1016/j.jsb.2009.10.009Search in Google Scholar
[70] Welinder, K. G. (1976). Covalent structure of glycoprotein horseradish peroxidase (EC 1.11.1.7). FEBS Letters, 72, 19–23. DOI: 10.1016/0014-5793(76)80804-6. http://dx.doi.org/10.1016/0014-5793(76)80804-610.1016/0014-5793(76)80804-6Search in Google Scholar
[71] Welinder, K. G., & Larsen, Y. B. (2004). Covalent structure of soybean seed coat peroxidase. Biochimica et Biophysica Acta — Proteins and Proteomics, 1698, 121–126. DOI: 10.1016/j.bbapap.2003.11.005. http://dx.doi.org/10.1016/j.bbapap.2003.11.00510.1016/j.bbapap.2003.11.005Search in Google Scholar
[72] Wright, H., & Nicell, J. A. (1999). Characterization of soybean peroxidase for the treatment of aqueous phenols. Bioresource Technology, 70, 69–79. DOI: 10.1016/s0960-8524(99)00007-3. http://dx.doi.org/10.1016/S0960-8524(99)00007-310.1016/S0960-8524(99)00007-3Search in Google Scholar
[73] Wudl, F., Angus, R. O., Jr., Lu, F. L., Allemand, P. M., Vachon, D. J., Nowak, M., Liu, Z. X., Schaffer, H., & Heeger, A. J. (1987). Poly(p-phenyleneamineimine): Synthesis and comparison to polyaniline. Journal of the American Chemical Society, 109, 3677–3684. DOI: 10.1021/ja00246a026. http://dx.doi.org/10.1021/ja00246a02610.1021/ja00246a026Search in Google Scholar
[74] Xia, Y. N., Wiesinger, J. M., MacDiarmid, A. G., & Epstein, A. J. (1995). Camphorsulfonic acid fully doped polyaniline emeraldine salt: Conformations in different solvents studied by an ultraviolet/visible/near-infrared spectroscopic method. Chemistry of Materials, 7, 443–445. DOI: 10.1021/cm00051a002. http://dx.doi.org/10.1021/cm00051a00210.1021/cm00051a002Search in Google Scholar
[75] Xu, P., Singh, A., & Kaplan, D. L. (2006). Enzymatic catalysis in the synthesis of polyanilines and derivatives of polyanilines. Advances in Polymer Science, 194, 69–94. DOI: 10.1007/12 036. http://dx.doi.org/10.1007/12_036Search in Google Scholar
[76] Yang, B. Y., Gray, J. S. S., & Montgomery, R. (1996). The glycans of horseradish peroxidase. Carbohydrate Research, 287, 203–212. DOI: 10.1016/0008-6215(96)00073-0. http://dx.doi.org/10.1016/0008-6215(96)00073-010.1016/0008-6215(96)00073-0Search in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
- Printing polyaniline for sensor applications
- Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
- Conducting polymer-silver composites
- Electrorheological response of polyaniline and its hybrids
- Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
- Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
- Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
- Self-organization of polyaniline during oxidative polymerization: formation of granular structure
- Influence of ethanol on the chain-ordering of carbonised polyaniline
- X-ray absorption spectroscopy of nanostructured polyanilines
- Effect of cations on polyaniline morphology
- Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
- Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
- Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
- Polyamide grafted with polypyrrole: formation, properties, and stability
- Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
- Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
- Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
- Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
- Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
- Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
- Multi-wall carbon nanotubes with nitrogen-containing carbon coating
- Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
- Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
- Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
- Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
- Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
- Antibacterial properties of polyaniline-silver films
- Effect of compression pressure on mechanical and electrical properties of polyaniline pellets
Articles in the same Issue
- Recent trends and progress in research into structure and properties of polyaniline and polypyrrole — Topical Issue
- Printing polyaniline for sensor applications
- Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials
- Conducting polymer-silver composites
- Electrorheological response of polyaniline and its hybrids
- Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries
- Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration
- Self-assembly of aniline oligomers and their induced polyaniline supra-molecular structures
- Self-organization of polyaniline during oxidative polymerization: formation of granular structure
- Influence of ethanol on the chain-ordering of carbonised polyaniline
- X-ray absorption spectroscopy of nanostructured polyanilines
- Effect of cations on polyaniline morphology
- Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids
- Chemical degradation of polyaniline by reaction with Fenton’s reagent — a spectroelectrochemical study
- Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect
- Polyamide grafted with polypyrrole: formation, properties, and stability
- Effect of ionic liquid on polyaniline chemically synthesised under falling-pH conditions
- Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions
- Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles
- Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix
- Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase
- Preparation, characterisation, and dielectric properties of polypyrrole-clay composites
- Multi-wall carbon nanotubes with nitrogen-containing carbon coating
- Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors
- Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations
- Preparation of a miniaturised iodide ion selective sensor using polypyrrole and pencil lead: effect of double-coating, electropolymerisation time, and current density
- Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts
- Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
- Antibacterial properties of polyaniline-silver films
- Effect of compression pressure on mechanical and electrical properties of polyaniline pellets