Home Crystal structure of (E)-2-((3-fluoropyridin-4-yl)methylene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
Article Open Access

Crystal structure of (E)-2-((3-fluoropyridin-4-yl)methylene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2

  • Chen Wang , Lei Wang ORCID logo , Qing-Guo Meng , Zhi-Xin Huang , Nuan-Nuan Ma and Chun-Hua Wang EMAIL logo
Published/Copyright: July 14, 2021

Abstract

C17H14FNO2, monoclinic, P21/n (no. 14), a = 8.0937(8) Å, b = 7.1326(6) Å, c = 22.367(2) Å, β = 90.863(9)°, V = 1291.1(2) Å3, Z = 4, R gt (F) = 0.0404, wR ref (F2) = 0.0974, T = 99.97(16) K.

CCDC no.: 2093002

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.15 × 0.13 × 0.12 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.11 mm−1
Diffractometer, scan mode: SuperNova,
θmax, completeness: 25.5°, >99%
N(hkl)measured, N(hkl)unique, Rint: 5014, 2397, 0.028
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 2042
N(param)refined: 192
Programs: CrysAlisPRO [1], SHELX [2, 3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 0.69427 (18) 0.0157 (2) 0.92053 (7) 0.0196 (4)
C2 0.76224 (18) 0.2018 (2) 0.90201 (7) 0.0203 (4)
C3 0.79283 (19) 0.3431 (2) 0.95076 (7) 0.0221 (4)
H3A 0.688203 0.397014 0.962515 0.027*
H3B 0.861035 0.443536 0.935453 0.027*
C4 0.87811 (19) 0.2571 (2) 1.00559 (7) 0.0221 (4)
H4A 0.992980 0.233051 0.996489 0.026*
H4B 0.875548 0.346523 1.038225 0.026*
C5 0.81557 (19) 0.0132 (2) 1.08382 (7) 0.0233 (4)
H5 0.870872 0.087974 1.111700 0.028*
C6 0.75292 (19) −0.1577 (2) 1.10211 (7) 0.0232 (4)
H6 0.766726 −0.196803 1.141535 0.028*
C7 0.66910 (18) −0.2705 (2) 1.06092 (7) 0.0195 (4)
C8 0.64734 (18) −0.2087 (2) 1.00270 (7) 0.0187 (4)
H8 0.588971 −0.282454 0.975362 0.022*
C9 0.71196 (18) −0.0374 (2) 0.98463 (7) 0.0180 (3)
C10 0.79889 (18) 0.0772 (2) 1.02539 (7) 0.0196 (4)
C11 0.79571 (19) 0.2204 (2) 0.84386 (7) 0.0212 (4)
H11 0.763562 0.120936 0.819433 0.025*
C12 0.87676 (19) 0.3778 (2) 0.81373 (7) 0.0217 (4)
C13 0.9930 (2) 0.3404 (2) 0.77042 (7) 0.0236 (4)
C14 1.0772 (2) 0.4790 (3) 0.74124 (7) 0.0296 (4)
H14 1.155374 0.445150 0.713161 0.036*
C15 0.9359 (2) 0.7008 (2) 0.79215 (7) 0.0287 (4)
H15 0.913909 0.826469 0.799674 0.034*
C16 0.8477 (2) 0.5681 (2) 0.82344 (7) 0.0261 (4)
H16 0.769167 0.605597 0.850914 0.031*
C17 0.6258 (2) −0.5127 (2) 1.13331 (7) 0.0288 (4)
H17A 0.741671 −0.524486 1.142403 0.043*
H17B 0.573892 −0.633239 1.136535 0.043*
H17C 0.576493 −0.427248 1.160973 0.043*
F1 1.02908 (12) 0.15933 (13) 0.75778 (4) 0.0322 (3)
N1 1.05085 (18) 0.6602 (2) 0.75170 (6) 0.0306 (4)
O1 0.60413 (13) −0.44294 (15) 1.07363 (4) 0.0228 (3)
O2 0.63303 (14) −0.09245 (15) 0.88405 (5) 0.0273 (3)

Source of material

The title compound was prepared according to a literature protocol [4]. 7-Methoxy-3,4-dihydronaphthalen-1(2H)-one (0.52 g, 3.0 mmol) and 3-fluoro-4-pyridinecarbaldehyde (0.38 g, 3.0 mmol) were dissolved in 10 mL of methanol. Then NaOH solution (5 M, 3 mL) was added to the above solution. The reaction mixture was stirred for 5 h at room temperature (monitored by thin-layer chromatography). The solvent was removed by filtration and the residues were purified by silica gel column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) to afford light yellow powders. Crystals suitable for X-ray diffraction were obtained by slow evaporation from the solution of dichloromethane and methanol (1:1, v/v) at room temperature.

Experimental details

The H atoms were placed in idealized positions and treated as riding on their parent atoms, with d(C–H) = 0.96 Å (methyl) and Uiso(H) = 1.5Ueq(C); d(C–H) = 0.97 Å (methylene) and Uiso(H) = 1.2Ueq(C); d(C–H) = 0.93 Å (aromatic) and Uiso(H) = 1.2Ueq(C).

Comment

Arylidene-1-tetralone and its derivatives have been investigated for their antitumor, antifungal and antimicrobial properties [5], [6], [7]. As one kind of chalcone analogs, arylidene-1-tetralones belong to bicyclic benzofused ring systems, which contain the 3,4-dihydronaphthalen-1(2H)-one and the α,β-unsaturated keto group. The pharmacophore of α,β-unsaturated keto moiety can establish the primary binding interaction with bio-thiols from susceptible neoplasms with lower toxicity [8]. Thus, arylidene-1-tetralones demonstrate greater antiproliferative activities against tumor cell lines [9, 10]. Simultaneously, the two aryl rings presented in the arylidene-1-tetralones were easily modified to obtain novel drugs by suitable substituents and functional groups. 2-Benzylidene-1-tetralones with the appropriate substituent (OH, F, Cl, Br, CH3, N(CH3)2, OCH3) were found to show good inhibitory activity for monoamine oxidase enzymes [11]. Recent results showed that 2-arylidene-1-tetralones containing pyridine groups demonstrated modest biological activity against cancer, bacteria and fungi [12, 13]. In addition, a fluorine substitution was found to play an important role in bioactivities. As a part of our continuing research on the inhibition of neurogenic inflammation, one new 2-arylidene-1-tetralone that combines a fluorinated aryl moiety and the pyridine group was synthesized by the Claisen–Schmidt condensation reaction.

The title compound crystallizes in the triclinic space group P21/n with one molecule in the asymmetric unit. All bond lengths and angles are normal and comparable with those previously reported for the related structure [1416]. As shown in the figure, the benzofused rings and the pyridine ring are arranged around the olefinic double bond. The arrangement is in favor for an E stereochemical structure. No classic hydrogen bonds are found in the crystal structure, but weak C-H⋯F hydrogen bonds link molecules to form a chain along the crystallographic c axis. Because of the high electronegativity, the fluorine atom in the title compound will have higher molecular lipophilicity, which can enhance the membrane permeability of drug, increase binding affinity of target protein and improve metabolic stability [17], [18], [19].


Corresponding author: Chun-Hua Wang, School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, P. R. China, E-mail:

Award Identifier / Grant number: J18KA092

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by Project of the Shandong Province Higher Educational Science and Technology Program (No. J18KA092).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku OD. CrysAlisPRO; Rigaku Oxford Diffraction Ltd: Yarnton, Oxfordshire, England, 2017.Search in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Katila, P., Shrestha, A., Shrestha, A., Shrestha, R., Park, P. H., Lee, E. S. Introduction of amino moiety enhances the inhibitory potency of 1-tetralone chalcone derivatives against LPS-stimulated reactive oxygen species production in RAW 264.7 macrophages. Bioorg. Chem. 2019, 87, 495–505; https://doi.org/10.1016/j.bioorg.2019.03.055.Search in Google Scholar PubMed

5. Drutovic, D., Chripkova, M., Pilatova, M., Kruzliak, P., Perjesi, P., Sarissky, M., Lupi, M., Damia, G., Broggini, M., Mojzis, J. Benzylidenetetralones, cyclic chalcone analogues, induce cell cycle arrest and apoptosis in HCT116 colorectal cancer cells. Tumor Biol. 2014, 35, 9967–9975; https://doi.org/10.1007/s13277-014-2289-y.Search in Google Scholar PubMed

6. Gupta, D., Jain, D. K. Chalcone derivatives as potential antifungal agents: synthesis, and antifungal activity. J. Adv. Pharm. Technol. Research 2015, 6, 114–117; https://doi.org/10.4103/2231-4040.161507.Search in Google Scholar PubMed PubMed Central

7. Shih, H., Deng, L., Carrera, C. J., Adachi, S., Cottam, H. B., Carson, D. A. Rational design, synthesis and structure-activity relationships of antitumor (E)-2-benzylidene-1-tetralones and (E)-2-benzylidene-1-indanones. Bioorg. Med. Chem. Lett 2000, 10, 487–490; https://doi.org/10.1016/s0960-894x(00)00032-9.Search in Google Scholar PubMed

8. Wang, F., Zhang, R., Cui, Y., Sheng, L., Sun, Y., Tian, W., Liu, X., Liang, S. Design, synthesis and biological evaluation of 3,4-dihydronaphthalen-1(2H)-one derivatives as Bcl-2 inhibitors. Res. Chem. Intermed. 2017, 43, 5933–5942; https://doi.org/10.1007/s11164-017-2972-x.Search in Google Scholar

9. Gibson, M. Z., Nguyen, M. A., Zingales, S. K. Design, synthesis, and evaluation of (2-(pyridinyl)methylene)-1-tetralone chalcones for anticancer and antimicrobial activity. Med. Chem. 2018, 14, 333–343; https://doi.org/10.2174/1573406413666171020121244.Search in Google Scholar PubMed

10. Hallgas, B., Dobos, Z., Ösz, E., Hollósy, F., Schwab, R. E., Szabó, E. Z., Erös, D., Idei, M., Kéri, G., Lóránd, T. Characterization of lipophilicity and antiproliferative activity of E-2-arylmethylene-1-tetralones and their heteroanalogues. J. Chromatogr. B 2005, 819, 283–291; https://doi.org/10.1016/j.jchromb.2005.02.014.Search in Google Scholar PubMed

11. Amakali, K. T., Legoabe, L. J., Petzer, A., Petzer, J. P. Synthesis and evaluation of 2-benzylidene-1-tetralone derivatives for monoamine oxidase inhibitory activity. Cent. Nerv. Syst. Agents Med. Chem. 2018, 18, 136–149; https://doi.org/10.2174/1871524918666180501121638.Search in Google Scholar PubMed

12. Janse van Rensburg, H. D., Terre’Blanche, G., van der Walt, M. M., Legoabe, L. J. 5–Substituted 2-benzylidene-1-tetralone analogues as A1 and/or A2A antagonists for the potential treatment of neurological conditions. Bioorg. Chem. 2017, 74, 251–259; https://doi.org/10.1016/j.bioorg.2017.08.013.Search in Google Scholar PubMed

13. Sun, Y., Gao, Z., Wang, C., Hou, G. Synthesis, crystal structures and anti-inflammatory activity of fluorine-substituted 1,4,5,6-tetrahydrobenzo[h]quinazolin-2-amine derivatives. Acta Crystallogr. 2019, C75, 1157–1165; https://doi.org/10.1107/s2053229619010118.Search in Google Scholar

14. El-Sayed, N. N. E., Almaneai, N. M., Ghabbour, H. A., Alafeefy, A. M. Crystal structure of (E)-2-(4-hydroxy-3-methoxybenzylidene)-6- methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H18O4. Z. Kristallogr. N. Cryst. Struct. 2017, 232, 203–205; https://doi.org/10.1515/ncrs-2016-0195.Search in Google Scholar

15. Luan, M.-Z., Meng, Q.-G. Crystal structure of (E)-7-methoxy-2-((5- methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C18H17NO3. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 387–389; https://doi.org/10.1515/ncrs-2020-0602.Search in Google Scholar

16. Luan, M.-Z., Wang, H.-Y., Zhang, M., Song, J., Xu, Y.-R., Zhao, F.-L., Meng, Q.-G. Crystal structure of (E)-2-(4-fluoro-2-(trifluoromethyl) benzylidene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 245–247; https://doi.org/10.1515/ncrs-2020-0484.Search in Google Scholar

17. Li, L., Chen, Q. Y., Guo, Y. Synthesis of α-trifluoromethyl ketones via the Cu-catalyzed trifluoromethylation of silyl enol ethers using an electrophilic trifluoromethylating agent. J. Org. Chem. 2014, 79, 5145–5152; https://doi.org/10.1021/jo500713f.Search in Google Scholar PubMed

18. Pettersson, M., Hou, X., Kuhn, M., Wager, T. T., Kauffman, G. W., Verhoest, P. R. Quantitative assessment of the impact of fluorine substitution on P–Glycoprotein (P-gp) mediated efflux, permeability, lipophilicity, and metabolic stability. J. Med. Chem. 2016, 59, 5284–5296; https://doi.org/10.1021/acs.jmedchem.6b00027.Search in Google Scholar PubMed

19. Johnson, B. M., Shu, Y. Z., Zhuo, X., Meanwell, N. A. Metabolic and pharmaceutical aspects of fluorinated compounds. J. Med. Chem. 2020, 63, 6315–6386; https://doi.org/10.1021/acs.jmedchem.9b01877.Search in Google Scholar PubMed

Received: 2021-06-02
Accepted: 2021-06-29
Published Online: 2021-07-14
Published in Print: 2021-09-27

© 2021 Chen Wang et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of [aqua-(4-iodopyridine-2,6-dicarboxylato-κ3 O,N,O′)-(1,10-phenanothroline-κ2 N,N′)copper(II)] dihydrate, C19H16O7N3CuI
  4. The crystal structure of tetrakis(1-isopropyl-1H-imidazolium) octamolybdate, C24H44Mo8N8O26
  5. Crystal structure of catena-poly[bis(µ2-3,5-bis(1-imidazolyl)pyridine-κ2 N:N′)-(µ2-3-nitrophthalato-k3 O,O′:O″)cadmium(II)] dihydrate, C30H25N11O8Cd
  6. The crystal structure of diaqua-bis(2-(3-(1H-pyrazol-4-yl)-1H-1,2,4-triazol-5-yl)pyridine-κ2 N:N′)-bis(3,5-dicarboxybenzoato-κ1 O)cobalt(II), C38H30CoN12O14
  7. Crystal structure of the nickel(II) complex aqua-(2,6-di(pyrazin-2-yl)-4,4′-bipyridine-κ3 N,N′,N′′)-(phthalato-κ2 O,O′)nickel(II) tetrahydrate, C26H26N6O9Ni
  8. The crystal structure of 1-[5-(2-fluorophenyl)-1-(pyridine-3-sulfonyl)-1H-pyrrol-3-yl]-N-methylmethanaminium 3-carboxyprop-2-enoate, C21H20FN3O6S
  9. The crystal structure of 1,2-bis(4-pyridyl)ethane - 4,4-dihydroxydiphenylmethane (1/1), C25H21N2O2
  10. Crystal structure of bis(2-((E)-5-chloro-2-hydroxybenzylidene)hydrazineyl)methaniminium trifluoroacetate dihydrate, C34H36Cl4N10O12
  11. Crystal structure of 1-cyclopropyl-7-ethoxy-6,8-difluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid, C15H13F2NO4
  12. Crystal structure of methyl 3-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)benzoate, C18H15BN2O2
  13. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-2-hydroxybenzohydrazide, C14H11ClN2O3
  14. Crystal structure of Al-rich fluorophlogopite, K1.0(Mg2.8Al0.2)(Si2.8Al1.2)O10F2
  15. The crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium hexafluoridoantimonate(V), C20H22F6I2N3Sb
  16. Crystal structure of tris(3-iodopyridin-1-ium) catena-poly[(hexachlorido-κ1 Cl)-(μ2-trichlorido-κ2 Cl:Cl)diantimony(III)], C15H15Cl9I3N3Sb2
  17. Crystal structure of methyl 2-(1H-naphtho[1,8-de][1.3.2]diazaborinin-2(3H-yl)benzoate C18H15BN2O2
  18. The crystal structure of 1,8-bis(4-methoxybenzoyl)naphthalene-2,7-diyl dibenzoate, C40H28O8
  19. Crystal structure of 2-bromo-1,3,6,8-tetramethylBOPHY (BOPHY = bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine), C14H15B2BrF4N4
  20. The crystal structure of (E)-3-chloro-2-(2-(2-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  21. Crystal structure of bis(µ2- 4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(µ2-1-(4-pyridyl)piperazine-κ2N:N′)-hexa-aqua-tetra-copper(II), C46H46Cu4I4N10O22
  22. Crystal structure of poly[diaqua-(μ2-2,5-dihydroxyterephthalato-κ2O:O′)(μ2-bis(4-pyridylformyl)piperazine-κ2N:N′)cadmium(II)] dihydrate, C24H28CdN4O12
  23. Crystal structure of poly[aqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-(μ3-2,3,5,6-tetrafluoroterephthalato-κ3O:O′:O′′)cadmium(II)], C17H14N4O5F4Cd
  24. Crystal structure of 6-(quinolin-8-yl)benzo[a]phenanthridin-5(6H)-one, C26H16N2O
  25. The crystal structure of aqua-bis(6-chloropicolinato-κ2N,O)copper(II), C12H8Cl2N2O5Cu
  26. Crystal structure of catena-poly[diaqua-bis(μ2-4,4′-bipyridyl-κ2N:N′) disilver(I)] 4-oxidopyridine-3-sulfonate trihydrate, C25H29Ag2N5O9S
  27. The crystal structure of 4-(3-bromophenyl)pyrimidin-2-amine, C10H8BrN3
  28. Crystal structure of 6-oxo-4-phenyl-1-propyl-1,6-dihydropyridine-3-carbonitrile, C15H14N2O
  29. Crystal structure of 4-(2,2-difluoroethyl)-2,4-dimethyl-6-(trifluoromethyl)isoquinoline-1,3(2H,4H)-dione, C14H12F5NO2
  30. Crystal structure of dibromido-(1-methyl-1H-imidazole-κ1N)-(3-(3-methyl-1H-imidazol-3-ium-1-yl)propanoato-κ1O)zinc(II), C11H16Br2N4O2Zn
  31. The crystal structure of 1,1′-(((2 (dimethylamino)ethyl)azanediyl)bis(methylene)) bis(naphthalen-2-olato-κ4 N,N′,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)- titanium(IV) ─ dichloromethane (2/1), C33H29N3O6Ti
  32. The layered crystal structure of bis(theophyllinium) hexachloridostannate (IV), C14H18N8O8SnCl6
  33. The crystal structre of 3-(1-ethenyl-1H-imidazol-3-ium-3-yl)propane-1-sulfonate, C8H12N2O3S
  34. Synthesis and crystal structure of di-tert-butyl 1″-acetyl-2,2″,9′-trioxo-4a′,9a′-dihydro-1′H,3′H,9′H-dispiro[indoline-3,2′-xanthene-4′,3″-indoline]-1,3′-dicarboxylate, C39H38N2O9
  35. The crystal structure of 4-chloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H9ClN2O2
  36. The crystal structure of 1-fluoro-4-(p-tolylethynyl)benzene, C15H11F
  37. The crystal structure of bis[4-bromo-2-(1H-pyrazol-3-yl) phenolato-κ2N,O] copper(II), C18H12Br2CuN4O2
  38. The crystal structure of poly[(μ 3-imidazolato-κ 3 N:N:N′)(tetrahydrofuran- κ 1 O)lithium(I)], C7H11LiN2O
  39. Crystal structure of N′,N′′′-((1E,1′E)-(propane-2,2-diylbis(1H-pyrrole-5,2diyl))bis(methaneylylidene))di(nicotinohydrazide) pentahydrate, C25H24N8O2·5H2O
  40. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-ethyl-1H-imidazol-3-ium hexafluoridophos-phate(V), C9H15F6N2O2P
  41. Crystal structure of (1,10-phenanthroline-κ2N,N′)-bis(3-thiophenecarboxylato-κ2O,O′)copper(II), C22H14N2O4S2Cu
  42. The crystal structure of 2-amino-3-carboxypyridin-1-ium iodide hemihydrate, C6H8IN2O2.5
  43. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-2-yl)methylene)-tetralone, C18H17NO3
  44. The crystal structure of [μ-hydroxido-bis[(5,5′-dimethyl-2,2′-bipyridine-κ2N,N′)-tricarbonylrhenium(I)] bromide hemihydrate, C30H26N4O9Re2Br
  45. The crystal structure of 2,5-bis(3,5-dimethylphenyl)thiazolo[5,4-d]thiazole, C20H18N2S2
  46. The crystal structure of 5-benzoyl-1-[(E)-(4-fluorobenzylidene)amino]-4-phenylpyrimidin-2(1H)-one, C24H16FN3O2
  47. Crystal structure of monocarbonyl(N-nitroso-N-oxido-phenylamine-κ 2 O,O′)(tricyclohexylphosphine-κP)rhodium(I), C25H39N2O3PRh
  48. Crystal structure of poly[bis[μ3-1,3,5-tris[(1H-imidazol-1-yl)methyl]benzene-κ3N:N′:N″]nickel(II)] hexafluorosilicate, C36H36N12NiSiF6
  49. The crystal structure of 13-(pyrazole-1-yl-4-carbonitrile)-matrine, C19H25N5O
  50. Crystal structure of 3,5-bis((E)-4-methoxy-2-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C24H21F6NO3
  51. The crystal structure of N,N′-(Disulfanediyldi-2,1-phenylene)di(6′-methylpyridine)-2-carboxamide, C26H22N4O2S2
  52. Crystal structure of (E)-7-fluoro-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  53. Crystal structure of ethyl 1-(4-fluorophenyl)-4-phenyl-1H-pyrrole-3-carboxylate, C19H16FNO2
  54. The crystal structure of cis-diaqua-bis (N-butyl-N-(pyridin-2-yl)pyridin-2-amine-κ2N,N′)cobalt(II)] dichloride trihydrate, C28H44Cl2N6O5Co
  55. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C18H17NO3
  56. Crystal structure of (E)-2-((3-fluoropyridin-4-yl)methylene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  57. The crystal structure of 6-bromohexanoic acid, C6H11BrO2
  58. The crystal structure of 4-chloro-thiophenol, C6H5ClS
  59. The crystal structure of 4-bromobenzyl chloride, C7H6BrCl
  60. The crystal structure of di-tert-butyl dicarbonate, C10H18O5
  61. The crystal structure of (2-(4-chlorophenyl)-5-methyl-1,3-dioxan-5-yl)methanol, C12H15ClO3
  62. The crystal structure of the co-crystal: 2-hydroxybenzoic acid – N′-(butan-2-ylidene)pyridine-4-carbohydrazide, C10H13N3O·C7H6O3
  63. Crystal structure and anti-inflammatory activity of (E)-7-fluoro-2-((5-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  64. Crystal structure of (E)-7-fluoro-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  65. Crystal structure of 1,1′-(butane-1,4-diyl)bis(3-propyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C32H56F24N8P4
  66. The crystal structure of dichlorido-bis(3-methyl-3-imidazolium-1-ylpropionato-κ2)-cadmium(II), C14H20CdCl2N4O4
  67. Crystal structure of 1-(2-cyanobenzyl)-3-cyano-4-phenyl-4-(2-cyanobenzyl)-1,4-dihydropyridine monohydrate, C56H42N8O
  68. The crystal structure of 3-(carboxymethyl)-1-ethenyl-1H-imidazol-3-ium chloride, C7H9N2O2Cl
  69. The crystal structure of adamantylmethoxydiphenylsilane, C23H28OSi
  70. Redetermination of the crystal structure of (2E,4Z,13E,15Z)-3,5,14,16-tetramethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosa-1(22),2,4,7,9,11,13,15,18,20-decaene, C22H24N4
  71. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H15NO3
  72. Crystal structure of catena-poly[diaqua-bis(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2 N:N′)cobalt(II)] dinitrate, C18H28N10O8Co
Downloaded on 4.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0223/html
Scroll to top button