Home Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C18H17NO3
Article Open Access

Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C18H17NO3

  • Lei Wang ORCID logo , Qing-Guo Meng , Nan Jiang , Lin Wei and Chun-Hua Wang EMAIL logo
Published/Copyright: July 13, 2021

Abstract

C18H17NO3, monoclinic, P21/n (no. 14), a = 14.702(3) Å, b = 7.0421(11) Å, c = 15.303(3) Å, β = 113.32(2)°, V = 1454.9(5) Å3, Z = 4, R gt (F) = 0.0522, wR ref (F2) = 0.1274, T = 100.03(18) K.

CCDC no.: 2092813

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.15 × 0.13 × 0.12 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.09 mm−1
Diffractometer, scan mode: SuperNova,
θmax, completeness: 25.5°, >99%
N(hkl)measured, N(hkl)unique, Rint: 5780, 2706, 0.037
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 2210
N(param)refined: 201
Programs: CrysAlisPRO [1], SHELX [2], [3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 0.60522 (13) 0.1959 (3) 0.74043 (13) 0.0209 (4)
C2 0.58280 (13) 0.0543 (3) 0.80206 (13) 0.0203 (4)
C3 0.48628 (13) 0.0807 (3) 0.81337 (14) 0.0246 (5)
H3A 0.493063 0.182582 0.858191 0.029*
H3B 0.470026 −0.034743 0.838653 0.029*
C4 0.40264 (14) 0.1283 (3) 0.71743 (15) 0.0271 (5)
H4A 0.391924 0.021682 0.674354 0.033*
H4B 0.341807 0.150548 0.726427 0.033*
C5 0.35718 (14) 0.4364 (3) 0.62377 (13) 0.0243 (4)
H5 0.291225 0.416245 0.613545 0.029*
C6 0.38296 (14) 0.5988 (3) 0.58844 (14) 0.0264 (5)
H6 0.334722 0.687687 0.555707 0.032*
C7 0.48127 (14) 0.6295 (3) 0.60179 (13) 0.0238 (4)
C8 0.55255 (13) 0.4971 (3) 0.64931 (13) 0.0223 (4)
H8 0.617785 0.515581 0.656541 0.027*
C9 0.52652 (13) 0.3344 (3) 0.68674 (13) 0.0203 (4)
C10 0.42824 (13) 0.3020 (3) 0.67457 (13) 0.0216 (4)
C11 0.64810 (13) −0.0856 (3) 0.83997 (13) 0.0213 (4)
H11 0.701958 −0.088119 0.822580 0.026*
C12 0.64561 (13) −0.2361 (3) 0.90567 (13) 0.0207 (4)
C13 0.61552 (14) −0.2073 (3) 0.97986 (14) 0.0232 (4)
H13 0.593660 −0.086562 0.986845 0.028*
C14 0.64567 (13) −0.5127 (3) 1.03041 (13) 0.0227 (4)
C15 0.67955 (13) −0.5589 (3) 0.95984 (14) 0.0238 (4)
H15 0.700922 −0.681162 0.954833 0.029*
C16 0.68035 (13) −0.4186 (3) 0.89816 (13) 0.0220 (4)
H16 0.703933 −0.444214 0.851255 0.026*
C17 0.62767 (15) −0.5983 (3) 1.17267 (15) 0.0311 (5)
H17A 0.669149 −0.492383 1.203339 0.047*
H17B 0.641718 −0.702547 1.216473 0.047*
H17C 0.559400 −0.562400 1.152595 0.047*
C18 0.59711 (14) 0.8274 (3) 0.57214 (15) 0.0292 (5)
H18A 0.642524 0.824837 0.637674 0.044*
H18B 0.600831 0.948658 0.545038 0.044*
H18C 0.614129 0.729117 0.537841 0.044*
N1 0.61569 (11) −0.3415 (2) 1.04243 (11) 0.0240 (4)
O1 0.49892 (10) 0.79735 (18) 0.56603 (10) 0.0313 (4)
O2 0.68674 (9) 0.20122 (18) 0.73600 (10) 0.0281 (4)
O3 0.64672 (10) −0.65428 (18) 1.09140 (9) 0.0271 (3)

Source of material

The title compound was synthesized via a one-pot Claisen–Schmidt condensation reaction [4]. To a stirred solution of 7–methoxy-3,4-dihydronaphthalen-1(2H)-one (0.52 g, 3.0 mmol) and 6-methoxy-3-pyridinecarbaldehyde (0.41 g, 3.0 mmol) in methanol (10 mL), 20% NaOH solution (3 mL) was added. The mixture was stirred at room temperature for 5 h. The process of the reaction was monitored by thin layer chromatography (TLC). The yellow precipitated solids were collected by filtration, washed with 5 mL of cold methanol and dried in vacuum. The crude product was purified by column chromatography using petroleum ether and ethyl acetate (2:1, v/v). Crystals were prepared by slow evaporation of methanol solution under ambient temperature.

Experimental details

The C–H atoms were then constrained to ideal geometries with C–H distances of 0.93–0.97 Å. The Uiso values of the hydrogen atoms of methyl groups were set to 1.5Ueq(C) and the Uiso values of all other hydrogen atoms were set to 1.2Ueq(C).

Comment

Chalcone and its various derivatives have attracted intense interest not only due to the widespread distribution in plants, but also because of their potential biological properties including antimicrobial, antifungal, anti-inflammatory, antioxidant and anti-mutagenic activities [5], [6], [7], [8]. Generally, each chalcone is composed of two aromatic rings and a three-carbon α,β-unsaturated carbonyl system. The pharmacophore of α,β-unsaturated keto possesses a characteristic functionality, which can bind bio-thiols from susceptible neoplasms with lower toxicity toward normal cell [9]. In order to synthesize novel pharmaceutical agents, the aryl rings of chalcones may be modified by functional groups to improve their biological activities [10], [11], [12]. As an important class of compounds, 3,4-dihydronaphthalen-1(2H)-ones were used to synthesize chalcone derivatives and the corresponding compounds possess important biological activities [13], [14]. As one chalcone analogue, (2E)-2-(3,4-dichlorobenzylidene)-7-hydroxy-3,4-dihydronaphthalen-1(2H)-one was shown to act as a potent inhibitor of the monoamine oxidase enzymes [15]. It was reported that some chalcone-like derivatives containing 6-methoxy-3,4-dihydronaphthalenone possessed potential antioxidant properties [16]. Additionally, chalcones with methoxy groups and pyridine groups demonstrated antibiotic-resistant bacteria [17]. However, it is rarely reported that 3,4-dihydronaphthalenone-based chalcones can be used to treat neuroinflammatory diseases [18]. As a part of our continuing study on anti-neuroinflammatory agents for the treatment of inflammatory diseases in the central nervous system, a new chalcone with 3,4-dihydronapthalen-1(2H)-one and functional groups of methoxy was designed and synthesized.

X-ray crystallographic analysis shows that the title compound contains one independent molecule in the asymmetric unit (cf. the figure). All bond lengths and bond angles are all in the normal ranges []. Due to the arrangement of the pyridine ring and carbonyl group around the C2=C11 olefinic bonds, the title compound adopts the E stereochemistry. In the molecule, the cyclohexenonyl ring of the 3,4-dihydronaphthalen-1(2H)-one shows a half-chair conformation, which may be attributed to the conjugated relationship of the carbonyl group with the adjacent benzo moiety. The pyridyl and the benzo moety enclose a dihedral angle of 59.56(7)°. There are no classical hydrogen bonds found in the crystal, but molecules are connected to form layer structures through weak C18–H18B···O1 and C18–H18A···O2 hydrogen bonds. It is remarkable that the dihydronaphthalenone and methoxy group of the title compound can increase molecular lipophilicy and may effectively establish hydrophobic interactions with certain proteins. The unique structure will enable the title compound to possess a potential property in bioactivities.


Corresponding author: Chun-Hua Wang, School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, P. R. China, E-mail:

Funding source: Shandong Province Higher Educational Science and Technology Program http://dx.doi.org/10.13039/501100015642

Award Identifier / Grant number: J18KA092

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by Project of the Shandong Province Higher Educational Science and Technology Program (No. J18KA092).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku, O. D. CrysAlisPRO; Rigaku Oxford Diffraction Ltd: Yarnton, Oxfordshire, England, 2017.Search in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Wang, F., Zhang, R., Cui, Y., Sheng, L., Sun, Y., Tian, W., Liu, X., Liang, S. Design, synthesis and biological evaluation of 3,4-dihydronaphthalen-1(2H)-one derivatives as Bcl-2 inhibitors. Res. Chem. Intermed. 2017, 43, 5933–5942; https://doi.org/10.1007/s11164-017-2972-x.Search in Google Scholar

5. Gupta, D., Jain, D. K. Chalcone derivatives as potential antifungal agents: synthesis, and antifungal activity. J. Adv. Pharm. Technol. Res. 2015, 6, 114–117; https://doi.org/10.4103/2231-4040.161507.Search in Google Scholar PubMed PubMed Central

6. Katila, P., Shrestha, A., Shrestha, A., Shrestha, R., Park, P. H., Lee, E. S. Introduction of amino moiety enhances the inhibitory potency of 1-tetralone chalcone derivatives against LPS-stimulated reactive oxygen species production in RAW 264.7 macrophages. Bioorg. Chem. 2019, 87, 495–505; https://doi.org/10.1016/j.bioorg.2019.03.055.Search in Google Scholar PubMed

7. Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C., Miao, Z. Chalcone: a privileged structure in medicinal chemistry. Chem. Rev. 2017, 117, 7762–7810; https://doi.org/10.1021/acs.chemrev.7b00020.Search in Google Scholar PubMed PubMed Central

8. Rashid, H., Xu, Y., Ahmad, N., Muhammad, Y., Wang, L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg. Chem. 2019, 87, 335–365; https://doi.org/10.1016/j.bioorg.2019.03.033.Search in Google Scholar PubMed

9. Sun, Y., Gao, Z., Wang, C., Hou, G. Synthesis, crystal structures and anti-inflammatory activity of fluorine-substituted 1,4,5,6-tetrahydrobenzo[h]quinazolin-2-amine derivatives. Acta Crystallogr. 2019, C75, 1157–1165; https://doi.org/10.1107/s2053229619010118.Search in Google Scholar

10. Elamathi, P., Chandrasekar, G., Balamurali, M. M. Nanoporous AlSBA-15 catalysed Claisen–Schmidt condensation for the synthesis of novel and biologically active chalcones. J. Porous Mater. 2020, 27, 817–829; https://doi.org/10.1007/s10934-019-00854-3.Search in Google Scholar

11. Park, S., Kim, E. H., Kim, J., Kim, S. H., Kim, I. Biological evaluation of indolizine-chalcone hybrids as new anticancer agents. Eur. J. Med. Chem. 2018, 144, 435–443; https://doi.org/10.1016/j.ejmech.2017.12.056.Search in Google Scholar PubMed

12. Gil, H. N., Koh, D., Lim, Y., Lee, Y. H., Shin, S. Y. The synthetic chalcone derivative 2-hydroxy-,5,-trimethoxychalcone induces unfolded protein response-mediated apoptosis in A549 lung cancer cells. Bioorg. Med. Chem. Lett 2018, 28, 2969–2975; https://doi.org/10.1016/j.bmcl.2018.07.003.Search in Google Scholar PubMed

13. Leng, J., Qin, H. L., Zhu, K., Jantan, I., Hussain, M. A., Sher, M., Amjad, M. W., Naeem-ul–Hassan, M., Ahmad, W., Bukhari, S. N. A. Evaluation of multifunctional synthetic tetralone derivatives for treatment of Alzheimer’s disease. Chem. Biol. Drug Des. 2016, 88, 889–898; https://doi.org/10.1111/cbdd.12822.Search in Google Scholar PubMed

14. Amakali, K. T., Legoabe, L. J., Petzer, A., Petzer, J. P. Synthesis and in vitro evaluation of 2-heteroarylidene-1-tetralone derivatives as monoamine oxidase inhibitors. Drug Res. 2018, 68, 687–695; https://doi.org/10.1055/a-0620-8309.Search in Google Scholar PubMed

15. Amakali, K. T., Legoabe, L. J., Petzer, A., Petzer, J. P. Synthesis and evaluation of 2-benzylidene-1-tetralone derivatives for monoamine oxidase inhibitory activity. Cent. Nerv. Syst. Agents Med. Chem. 2018, 18, 136–149; https://doi.org/10.2174/1871524918666180501121638.Search in Google Scholar PubMed

16. Ranjbar, S., Akbari, A., Edraki, N., Khoshneviszadeh, M., Hemmatian, H., Firuzi, O., Khoshneviszadeh, M. 6–Methoxy-3,4-dihydronaphthalenone chalcone-like derivatives as potent tyrosinase inhibitors and radical scavengers. Lett. Drug Des. Discov. 2018, 15, 1170–1179; https://doi.org/10.2174/1570180815666180219155027.Search in Google Scholar

17. Gibson, M. Z., Nguyen, M. A., Zingales, S. K. Design, synthesis, and evaluation of (2-(pyridinyl)methylene)-1-tetralone chalcones for anticancer and antimicrobial activity. Med. Chem. 2018, 14, 333–343; https://doi.org/10.2174/1573406413666171020121244.Search in Google Scholar PubMed

18. Sun, Y., Zhou, Y. Q., Liu, Y. K., Zhang, H. Q., Hou, G. G., Meng, Q. G., Hou, Y. Potential anti-neuroinflammatory NF-κB inhibitors based on 3,4-dihydronaphthalen-1(2H)-one derivatives. J. Enzym. Inhib. Med. Chem. 2020, 35, 1631–1640; https://doi.org/10.1080/14756366.2020.1804899.Search in Google Scholar PubMed PubMed Central

19. El–Sayed, N. N. E., Almaneai, N. M., Ghabbour, H. A., Alafeefy, A. M. Crystal structure of (E)-2-(4-hydroxy-3-methoxybenzylidene)-6- methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H18O4. Z. Kristallogr. N. Cryst. Struct. 2017, 232, 203–205; https://doi.org/10.1515/ncrs-2016-0195.Search in Google Scholar

20. Luan, M.-Z., Meng, Q.-G. Crystal structure of (E)-7-methoxy-2-((5- methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C18H17NO3. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 387–389; https://doi.org/10.1515/ncrs-2020-0602.Search in Google Scholar

21. Zhang, X.-F., Meng, Q.-G. Crystal structure of (E)-2-((2-methoxy-3- pyridyl)methylene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 507–509; https://doi.org/10.1515/ncrs-2020-0603.Search in Google Scholar

Received: 2021-06-02
Accepted: 2021-06-28
Published Online: 2021-07-13
Published in Print: 2021-09-27

© 2021 Lei Wang et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of [aqua-(4-iodopyridine-2,6-dicarboxylato-κ3 O,N,O′)-(1,10-phenanothroline-κ2 N,N′)copper(II)] dihydrate, C19H16O7N3CuI
  4. The crystal structure of tetrakis(1-isopropyl-1H-imidazolium) octamolybdate, C24H44Mo8N8O26
  5. Crystal structure of catena-poly[bis(µ2-3,5-bis(1-imidazolyl)pyridine-κ2 N:N′)-(µ2-3-nitrophthalato-k3 O,O′:O″)cadmium(II)] dihydrate, C30H25N11O8Cd
  6. The crystal structure of diaqua-bis(2-(3-(1H-pyrazol-4-yl)-1H-1,2,4-triazol-5-yl)pyridine-κ2 N:N′)-bis(3,5-dicarboxybenzoato-κ1 O)cobalt(II), C38H30CoN12O14
  7. Crystal structure of the nickel(II) complex aqua-(2,6-di(pyrazin-2-yl)-4,4′-bipyridine-κ3 N,N′,N′′)-(phthalato-κ2 O,O′)nickel(II) tetrahydrate, C26H26N6O9Ni
  8. The crystal structure of 1-[5-(2-fluorophenyl)-1-(pyridine-3-sulfonyl)-1H-pyrrol-3-yl]-N-methylmethanaminium 3-carboxyprop-2-enoate, C21H20FN3O6S
  9. The crystal structure of 1,2-bis(4-pyridyl)ethane - 4,4-dihydroxydiphenylmethane (1/1), C25H21N2O2
  10. Crystal structure of bis(2-((E)-5-chloro-2-hydroxybenzylidene)hydrazineyl)methaniminium trifluoroacetate dihydrate, C34H36Cl4N10O12
  11. Crystal structure of 1-cyclopropyl-7-ethoxy-6,8-difluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid, C15H13F2NO4
  12. Crystal structure of methyl 3-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)benzoate, C18H15BN2O2
  13. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-2-hydroxybenzohydrazide, C14H11ClN2O3
  14. Crystal structure of Al-rich fluorophlogopite, K1.0(Mg2.8Al0.2)(Si2.8Al1.2)O10F2
  15. The crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium hexafluoridoantimonate(V), C20H22F6I2N3Sb
  16. Crystal structure of tris(3-iodopyridin-1-ium) catena-poly[(hexachlorido-κ1 Cl)-(μ2-trichlorido-κ2 Cl:Cl)diantimony(III)], C15H15Cl9I3N3Sb2
  17. Crystal structure of methyl 2-(1H-naphtho[1,8-de][1.3.2]diazaborinin-2(3H-yl)benzoate C18H15BN2O2
  18. The crystal structure of 1,8-bis(4-methoxybenzoyl)naphthalene-2,7-diyl dibenzoate, C40H28O8
  19. Crystal structure of 2-bromo-1,3,6,8-tetramethylBOPHY (BOPHY = bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine), C14H15B2BrF4N4
  20. The crystal structure of (E)-3-chloro-2-(2-(2-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  21. Crystal structure of bis(µ2- 4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(µ2-1-(4-pyridyl)piperazine-κ2N:N′)-hexa-aqua-tetra-copper(II), C46H46Cu4I4N10O22
  22. Crystal structure of poly[diaqua-(μ2-2,5-dihydroxyterephthalato-κ2O:O′)(μ2-bis(4-pyridylformyl)piperazine-κ2N:N′)cadmium(II)] dihydrate, C24H28CdN4O12
  23. Crystal structure of poly[aqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-(μ3-2,3,5,6-tetrafluoroterephthalato-κ3O:O′:O′′)cadmium(II)], C17H14N4O5F4Cd
  24. Crystal structure of 6-(quinolin-8-yl)benzo[a]phenanthridin-5(6H)-one, C26H16N2O
  25. The crystal structure of aqua-bis(6-chloropicolinato-κ2N,O)copper(II), C12H8Cl2N2O5Cu
  26. Crystal structure of catena-poly[diaqua-bis(μ2-4,4′-bipyridyl-κ2N:N′) disilver(I)] 4-oxidopyridine-3-sulfonate trihydrate, C25H29Ag2N5O9S
  27. The crystal structure of 4-(3-bromophenyl)pyrimidin-2-amine, C10H8BrN3
  28. Crystal structure of 6-oxo-4-phenyl-1-propyl-1,6-dihydropyridine-3-carbonitrile, C15H14N2O
  29. Crystal structure of 4-(2,2-difluoroethyl)-2,4-dimethyl-6-(trifluoromethyl)isoquinoline-1,3(2H,4H)-dione, C14H12F5NO2
  30. Crystal structure of dibromido-(1-methyl-1H-imidazole-κ1N)-(3-(3-methyl-1H-imidazol-3-ium-1-yl)propanoato-κ1O)zinc(II), C11H16Br2N4O2Zn
  31. The crystal structure of 1,1′-(((2 (dimethylamino)ethyl)azanediyl)bis(methylene)) bis(naphthalen-2-olato-κ4 N,N′,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)- titanium(IV) ─ dichloromethane (2/1), C33H29N3O6Ti
  32. The layered crystal structure of bis(theophyllinium) hexachloridostannate (IV), C14H18N8O8SnCl6
  33. The crystal structre of 3-(1-ethenyl-1H-imidazol-3-ium-3-yl)propane-1-sulfonate, C8H12N2O3S
  34. Synthesis and crystal structure of di-tert-butyl 1″-acetyl-2,2″,9′-trioxo-4a′,9a′-dihydro-1′H,3′H,9′H-dispiro[indoline-3,2′-xanthene-4′,3″-indoline]-1,3′-dicarboxylate, C39H38N2O9
  35. The crystal structure of 4-chloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H9ClN2O2
  36. The crystal structure of 1-fluoro-4-(p-tolylethynyl)benzene, C15H11F
  37. The crystal structure of bis[4-bromo-2-(1H-pyrazol-3-yl) phenolato-κ2N,O] copper(II), C18H12Br2CuN4O2
  38. The crystal structure of poly[(μ 3-imidazolato-κ 3 N:N:N′)(tetrahydrofuran- κ 1 O)lithium(I)], C7H11LiN2O
  39. Crystal structure of N′,N′′′-((1E,1′E)-(propane-2,2-diylbis(1H-pyrrole-5,2diyl))bis(methaneylylidene))di(nicotinohydrazide) pentahydrate, C25H24N8O2·5H2O
  40. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-ethyl-1H-imidazol-3-ium hexafluoridophos-phate(V), C9H15F6N2O2P
  41. Crystal structure of (1,10-phenanthroline-κ2N,N′)-bis(3-thiophenecarboxylato-κ2O,O′)copper(II), C22H14N2O4S2Cu
  42. The crystal structure of 2-amino-3-carboxypyridin-1-ium iodide hemihydrate, C6H8IN2O2.5
  43. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-2-yl)methylene)-tetralone, C18H17NO3
  44. The crystal structure of [μ-hydroxido-bis[(5,5′-dimethyl-2,2′-bipyridine-κ2N,N′)-tricarbonylrhenium(I)] bromide hemihydrate, C30H26N4O9Re2Br
  45. The crystal structure of 2,5-bis(3,5-dimethylphenyl)thiazolo[5,4-d]thiazole, C20H18N2S2
  46. The crystal structure of 5-benzoyl-1-[(E)-(4-fluorobenzylidene)amino]-4-phenylpyrimidin-2(1H)-one, C24H16FN3O2
  47. Crystal structure of monocarbonyl(N-nitroso-N-oxido-phenylamine-κ 2 O,O′)(tricyclohexylphosphine-κP)rhodium(I), C25H39N2O3PRh
  48. Crystal structure of poly[bis[μ3-1,3,5-tris[(1H-imidazol-1-yl)methyl]benzene-κ3N:N′:N″]nickel(II)] hexafluorosilicate, C36H36N12NiSiF6
  49. The crystal structure of 13-(pyrazole-1-yl-4-carbonitrile)-matrine, C19H25N5O
  50. Crystal structure of 3,5-bis((E)-4-methoxy-2-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C24H21F6NO3
  51. The crystal structure of N,N′-(Disulfanediyldi-2,1-phenylene)di(6′-methylpyridine)-2-carboxamide, C26H22N4O2S2
  52. Crystal structure of (E)-7-fluoro-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  53. Crystal structure of ethyl 1-(4-fluorophenyl)-4-phenyl-1H-pyrrole-3-carboxylate, C19H16FNO2
  54. The crystal structure of cis-diaqua-bis (N-butyl-N-(pyridin-2-yl)pyridin-2-amine-κ2N,N′)cobalt(II)] dichloride trihydrate, C28H44Cl2N6O5Co
  55. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C18H17NO3
  56. Crystal structure of (E)-2-((3-fluoropyridin-4-yl)methylene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  57. The crystal structure of 6-bromohexanoic acid, C6H11BrO2
  58. The crystal structure of 4-chloro-thiophenol, C6H5ClS
  59. The crystal structure of 4-bromobenzyl chloride, C7H6BrCl
  60. The crystal structure of di-tert-butyl dicarbonate, C10H18O5
  61. The crystal structure of (2-(4-chlorophenyl)-5-methyl-1,3-dioxan-5-yl)methanol, C12H15ClO3
  62. The crystal structure of the co-crystal: 2-hydroxybenzoic acid – N′-(butan-2-ylidene)pyridine-4-carbohydrazide, C10H13N3O·C7H6O3
  63. Crystal structure and anti-inflammatory activity of (E)-7-fluoro-2-((5-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  64. Crystal structure of (E)-7-fluoro-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  65. Crystal structure of 1,1′-(butane-1,4-diyl)bis(3-propyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C32H56F24N8P4
  66. The crystal structure of dichlorido-bis(3-methyl-3-imidazolium-1-ylpropionato-κ2)-cadmium(II), C14H20CdCl2N4O4
  67. Crystal structure of 1-(2-cyanobenzyl)-3-cyano-4-phenyl-4-(2-cyanobenzyl)-1,4-dihydropyridine monohydrate, C56H42N8O
  68. The crystal structure of 3-(carboxymethyl)-1-ethenyl-1H-imidazol-3-ium chloride, C7H9N2O2Cl
  69. The crystal structure of adamantylmethoxydiphenylsilane, C23H28OSi
  70. Redetermination of the crystal structure of (2E,4Z,13E,15Z)-3,5,14,16-tetramethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosa-1(22),2,4,7,9,11,13,15,18,20-decaene, C22H24N4
  71. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H15NO3
  72. Crystal structure of catena-poly[diaqua-bis(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2 N:N′)cobalt(II)] dinitrate, C18H28N10O8Co
Downloaded on 15.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0222/html
Scroll to top button