Home Effect of post-processing treatment on 3D-printed polylactic acid parts: layer interfaces and mechanical properties
Article
Licensed
Unlicensed Requires Authentication

Effect of post-processing treatment on 3D-printed polylactic acid parts: layer interfaces and mechanical properties

  • Satthiyaraju Mani ORCID logo , Ananthakumar Kasi ORCID logo EMAIL logo , Rajeshkumar Guruswamy ORCID logo , Karthik Babu Nilagiri Balasubramanian ORCID logo and Arvinda Pandian ORCID logo
Published/Copyright: October 20, 2023
Become an author with De Gruyter Brill

Abstract

The post-processing treatment of isostatic compression with different temperatures is improved with the interlayer bonding of the polylactic acid (PLA) parts. This bonding enhanced the tensile strength, percentage of strain, and elastic modulus of post-processed PLA samples through the tensile test. Here, the tensile strength is improved by about 127 % compared to untreated PLA due to interlayer bonding and the compressive force with 140 °C. Compression and flexural tests are utilized to examine the post-processed parts’ compression and flexural strength. It significantly improves the compressive and flexural strength of the post-processed parts, increasing to about 55 % and 64.5 % compared with the untreated PLA parts. Additive manufacturing of PLA parts is significantly progressed in the 3D printing of biodegradable and eco-friendly components through a layer-by-layer deposition.


Corresponding author: Ananthakumar Kasi, Department of Mechanical Engineering, Karpagam College of Engineering, Coimbatore, 641032, India, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: S. Mani: conceptualization, data curation; A. Kasi: formal analysis, resources, editing; R. Guruswamy: investigation, methodology; K. B. Nilagiri Balasubramanian: validation, writing; and A. Pandian: writing, review, editing.

  3. Competing interests: The authors state no conflicts of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Tofail, S. A. M., Koumoulos, E. P., Bandyopadhyay, A., Bose, S., Donoghue, L. O., Charitidis, C. Mater. Today 2018, 21, 22–37. https://doi.org/10.1016/j.mattod.2017.07.001.Search in Google Scholar

2. Dickson, A. N., Abourayana, H. M., Dowling, D. P. Polymer 2020, 12, 2188. https://doi.org/10.3390/polym12102188.Search in Google Scholar PubMed PubMed Central

3. Medellin-Castillo, H. I., Zaragoza-Siqueiros, J. Chin. J. Mech. Eng. Addit. Manuf. Front. 2019, 32, 53. https://doi.org/10.1186/s10033-019-0368-0.Search in Google Scholar

4. Mohamed, O. A., Masood, S. H., Bhowmik, J. L. Measurement 2016, 81, 174–196. https://doi.org/10.1016/j.measurement.2015.12.011.Search in Google Scholar

5. Satthiyaraju, M., Ramesh, T. Mater. Res. Express 2019, 6, 105366. https://doi.org/10.1088/2053-1591/ab4037.Search in Google Scholar

6. Satthiyaraju, M., Ramesh, T., Jagatheswaran, K. Annealing and ZnO doping effects on hydrophilicity and mechanical strength of PVDF nanocomposite thin films. In:Advances in Manufacturing Technology. Lecture Notes in Mechanical Engineering; Hiremath, S., Shanmugam, N., Bapu, B., Eds. Springer: Singapore, 2019; pp. 463–471. https://doi.org/10.1007/978-981-13-6374-0_52.Search in Google Scholar

7. Yu, L., Liu, H., Xie, F., Chen, L., Li, X. Polym. Eng. Sci. 2008, 48, 634–641. https://doi.org/10.1002/pen.20970.Search in Google Scholar

8. Kishore, V., Chen, X., Hassen, A. A., Lindahl, J., Kunc, V., Duty, C. Addit. Manuf. 2020, 35, 101387. https://doi.org/10.1016/j.addma.2020.101387.Search in Google Scholar

9. Vaes, D., Puyvelde, P. V. Prog. Polym. Sci. 2021, 118, 101411. https://doi.org/10.1016/j.progpolymsci.2021.101411.Search in Google Scholar

10. Lee, S., Kim, D. H., Park, J. H., Park, M., Joh, H., Ku, B. Adv. Chem. Eng. Sci. 2013, 03, 145–149. https://doi.org/10.4236/aces.2013.32017.Search in Google Scholar

11. Szust, A., Adamski, G. Eng. Fail. Anal. 2022, 132, 105932. https://doi.org/10.1016/j.engfailanal.2021.105932.Search in Google Scholar

12. Alcock, B., Cabrera, N., Barkoula, N. M., Peijs, T. Eur. Polym. J. 2009, 45, 2878–2894. https://doi.org/10.1016/j.eurpolymj.2009.06.025.Search in Google Scholar

13. Liao, Y., Liu, C., Coppola, B., Barra, G., Maio, L. D., Incarnato, L., Lafdi, K. Polymer 2019, 11, 1487. https://doi.org/10.3390/polym11091487.Search in Google Scholar PubMed PubMed Central

14. Abeykoon, C., Sri-Amphorn, P., Fernando, A. Int. J. Lightweight Mater. Manuf. 2020, 3, 284–297. https://doi.org/10.1016/j.ijlmm.2020.03.003.Search in Google Scholar

15. Tao, Y., Kong, F., Li, Z., Zhang, J., Zhao, X., Yin, Q., Xing, D., Li, P. J. Mater. Res. Technol. 2021, 15, 4860–4879. https://doi.org/10.1016/j.jmrt.2021.10.108.Search in Google Scholar

16. Hema, K., Ravi, A., Raju, C., Sureshan, K. M. Chem. Sci. 2021, 12, 5361–5380. https://doi.org/10.1039/D0SC07066A.Search in Google Scholar

17. Zheng, Y., Zhang, S., Tok, J. B. H., Bao, Z. J. Am. Chem. Soc. 2022, 144, 4699–4715. https://doi.org/10.1021/jacs.2c00072.Search in Google Scholar PubMed

18. Wang, Y., Jiang, Z., Fu, L., Lu, Y., Men, Y. PLoS One 2014, 9, 97234. https://doi.org/10.1371/journal.pone.0097234.Search in Google Scholar PubMed PubMed Central

19. Karacan, I., Benli, H. J. Appl. Polym. Sci. 2011, 122, 3322–3338. https://doi.org/10.1002/app.34440.Search in Google Scholar

20. Antonio, L. S., Yano, N. N. H. Compos. Sci. Technol. 2009, 69, 1187–1192. https://doi.org/10.1016/j.compscitech.2009.02.022.Search in Google Scholar

21. Lin, W., Shen, H., Xu, G., Zhang, L., Fu, J., Deng, X. Composites, Part A 2018, 115, 22–30. https://doi.org/10.1016/j.compositesa.2018.09.008.Search in Google Scholar

22. Benwood, C., Anstey, A., Andrzejewski, J., Misra, M., Mohanty, A. K. ACS Omega2018, 3, 4400–4411. https://doi.org/10.1021/acsomega.8b00129.Search in Google Scholar PubMed PubMed Central

23. Wang, J. Y., Xu, D. D., Sun, W., Du, S. M., Guo, J. J., Xu, G. J. IOP Conf. Ser.: Mater. Sci. Eng. 2019, 479, 012094. https://doi.org/10.1088/1757-899X/479/1/012094.Search in Google Scholar

24. Nachtane, M., Tarfaoui, M., Ledoux, Y., Khammassi, S., Leneveu, E., Pelleter, J. Compos. Struct. 2020, 247, 112474. https://doi.org/10.1016/j.compstruct.2020.112474.Search in Google Scholar

25. Ji, Q., Wang, Z., Yi, J., Tang, X. Polymers 2021, 13, 3605. https://doi.org/10.3390/polym13203605.Search in Google Scholar PubMed PubMed Central

26. Wickramasinghe, S., Do, T., Tran, P. Polymers 2020, 12, 1529. https://doi.org/10.3390/polym12071529.Search in Google Scholar PubMed PubMed Central

27. Syrlybayev, D., Zharylkassyn, B., Seisekulova, A., Akhmetov, M., Perveen, A., Talamona, D. Polymers 2021, 13, 1587. https://doi.org/10.3390/polym13101587.Search in Google Scholar PubMed PubMed Central

28. Vidakis, N., Petousis, M., Velidakis, E., Mountakis, N., Fischer-Griffiths, P. E., Grammatikos, S. A., Tzounis, L. Polym. Test. 2022, 109, 107545. https://doi.org/10.1016/j.polymertesting.2022.107545.Search in Google Scholar

Received: 2022-06-11
Accepted: 2022-09-26
Published Online: 2023-10-20
Published in Print: 2023-10-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Additive manufacturing and allied technologies
  4. Original Papers
  5. Influence of process parameters on ageing and free vibration characteristics of fiber-reinforced polymer composites by fusion filament fabrication process
  6. 3D biomimetic scaffold’s dimensional accuracy: a crucial geometrical response for bone tissue engineering
  7. Investigation of mechanical and microstructure properties of metal inert gas based wire arc additive manufactured Inconel 600 superalloy
  8. Study on the influence of surface roughness on tensile and low-cycle fatigue behavior of electron beam melted Ti‐6Al‐4V
  9. Effect of tool pin profile on the heat generation model of the friction stir welding of aluminium alloy
  10. Effect of clamping position on the residual stress in wire arc additive manufacturing
  11. Effect of welding speed on butt joint quality of laser powder bed fusion AlSi10Mg parts welded using Nd:YAG laser
  12. Mechanical behaviour, microstructure and texture studies of wire arc additive manufactured 304L stainless steel
  13. Evolution of microstructure and properties of CoCrFeMnNi high entropy alloy fabricated by selective laser melting
  14. Effect of laser energy density on surface morphology, microstructure and mechanical behaviour of direct metal laser melted 17-4 PH stainless steel
  15. The influence of rheology in the fabrication of ceramic-based scaffold for bone tissue engineering
  16. Behaviour of glass fiber reinforced polymer (GFRP) structural profile columns under axial compression
  17. Desirability function analysis approach for optimization of fused deposition modelling process parameters
  18. Effect of robotic weaving motion on mechanical and microstructural characteristics of wire arc additively manufactured NiTi shape memory alloy
  19. Rapid tooling of composite aluminium filled epoxy mould for injection moulding of polypropylene parts with small protruded features
  20. Investigation of microstructural evolution in a hybrid additively manufactured steel bead
  21. Fused filament fabricated PEEK based polymer composites for orthopaedic implants: a review
  22. Design of fixture for ultrasonic assisted gas tungsten arc welding using an integrated approach
  23. Effect of post-processing treatment on 3D-printed polylactic acid parts: layer interfaces and mechanical properties
  24. Investigating the effect of input parameters on tool wear in incremental sheet metal forming
  25. Microstructural evolution and improved corrosion resistance of NiCrSiFeB coatings prepared by laser cladding
  26. Microstructure and electrochemical behaviour of laser clad stainless steel 410 substrate with stainless steel 420 particles
  27. News
  28. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0280/pdf
Scroll to top button