Startseite The crystal structure of hexakis(1-propylimidazole-κ1N)copper(II) dichloride, C36H60Cl2CuN12
Artikel Open Access

The crystal structure of hexakis(1-propylimidazole-κ1N)copper(II) dichloride, C36H60Cl2CuN12

  • Qingpeng He ORCID logo , Gang Liu und Zechun Xue
Veröffentlicht/Copyright: 12. April 2021

Abstract

C36H60Cl2CuN12, monoclinic, P21/c (no. 14), a = 8.3112(2) Å, b = 15.9513(4) Å, c = 17.1068(4) Å, β = 99.671(2)° V = 2235.69(9) Å3, Z = 2, Rgt(F) = 0.0523, wRref(F2) = 0.1606, T = 298(2) K.

CCDC no.: 2074202

The asymmetric unit of the title crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Blue block
Size:0.19 × 0.18 × 0.16 mm
Wavelength:Cu Kα radiation (1.54178 Å)
μ:2.09 mm−1
Diffractometer, scan mode:Bruker SMART APEX II, φ and ω
θmax, completeness:66.0°, >99%
N(hkl)measured, N(hkl)unique, Rint:8002, 3880, 0.031
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3310
N(param)refined:263
Programs:Bruker [1], SHELX [2]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Cu11.0000000.5000000.5000000.0424 (3)
Cl10.34311 (8)0.23789 (5)0.18672 (5)0.0611 (3)
N10.7656 (3)0.47176 (16)0.38734 (15)0.0571 (6)
N20.5683 (4)0.4642 (2)0.2853 (2)0.0857 (10)
N31.1108 (2)0.58182 (13)0.43467 (12)0.0431 (5)
N41.1638 (3)0.68223 (15)0.35540 (14)0.0550 (6)
N51.1232 (2)0.40701 (13)0.45399 (12)0.0435 (5)
N61.2850 (3)0.30316 (15)0.43430 (15)0.0563 (6)
C10.6735 (4)0.5141 (2)0.3341 (2)0.0686 (9)
H10.6779970.5721440.3293980.082*
C20.7166 (4)0.3898 (2)0.3731 (2)0.0655 (8)
H20.7612070.3440170.4027160.079*
C30.5970 (4)0.3853 (2)0.3111 (2)0.0687 (9)
H30.5436940.3371200.2898330.082*
C4a0.4812 (11)0.4961 (8)0.2043 (6)0.117 (3)
H4Aa0.5222190.5509710.1929840.140*
H4Ba0.4986000.4578330.1624700.140*
C5a0.3009 (13)0.5010 (10)0.2099 (9)0.179 (5)
H5Aa0.2878690.5227770.2613810.215*
H5Ba0.2532290.4454060.2041790.215*
C6a0.214 (2)0.5579 (15)0.1451 (10)0.192 (7)
H6Aa0.0998010.5607690.1489300.288*
H6Ba0.2601830.6131040.1512360.288*
H6Ca0.2256220.5359110.0941660.288*
C71.2756 (3)0.58484 (19)0.43375 (18)0.0548 (7)
H71.3527910.5493370.4622200.066*
C81.3086 (3)0.6467 (2)0.38562 (19)0.0576 (7)
H81.4107830.6620380.3751370.069*
C91.0478 (3)0.64154 (18)0.38679 (16)0.0504 (6)
H90.9370580.6542760.3758120.060*
C10b1.1326 (16)0.7546 (3)0.3014 (5)0.084 (2)
H10Ab1.0178230.7561620.2782710.101*
H10Bb1.1950800.7484280.2586730.101*
C11b1.1789 (12)0.8352 (3)0.3445 (5)0.130 (3)
H11Ab1.2971040.8384270.3542270.156*
H11Bb1.1398250.8806490.3085530.156*
C12b1.1248 (17)0.8517 (5)0.4179 (5)0.194 (5)
H12Ab1.1644680.9054400.4376230.291*
H12Bb1.0076320.8515240.4097120.291*
H12Cb1.1658140.8090600.4556480.291*
C131.1163 (4)0.3951 (2)0.37366 (16)0.0554 (7)
H131.0535040.4266490.3341010.066*
C141.2137 (4)0.3311 (2)0.36114 (18)0.0600 (8)
H141.2294180.3099260.3123350.072*
C151.2274 (3)0.35043 (17)0.48787 (16)0.0514 (6)
H151.2571940.3441090.5424210.062*
C16c1.4024 (8)0.2337 (4)0.4495 (8)0.084 (2)
H16Ac1.4864490.2485190.4938910.101*
H16Bc1.4546460.2260890.4034190.101*
C17c1.3268 (11)0.1542 (4)0.4673 (7)0.143 (3)
H17Ac1.4025370.1100370.4591020.172*
H17Bc1.3222560.1547440.5235960.172*
C18c1.1680 (12)0.1279 (5)0.4275 (9)0.214 (6)
H18Ac1.1416950.0744450.4478330.320*
H18Bc1.0878160.1684670.4366580.320*
H18Cc1.1687470.1233990.3716420.320*
C4′d0.4037 (12)0.4818 (9)0.2431 (7)0.117 (3)
H4′1d0.3377980.5066820.2787200.140*
H4′2d0.3513380.4305120.2215870.140*
C5′d0.4211 (19)0.5410 (11)0.1781 (9)0.179 (5)
H5′1d0.5171910.5257660.1560580.215*
H5′2d0.4383190.5969900.2000860.215*
C6′d0.275 (2)0.5424 (17)0.1120 (10)0.192 (7)
H6′1d0.2937940.5817780.0720740.288*
H6′2d0.2583720.4875580.0889670.288*
H6′3d0.1794360.5588400.1330300.288*
C10′e1.155 (8)0.7605 (13)0.309 (2)0.084 (2)
H10Ce1.0917420.7506210.2564660.101*
H10De1.2643470.7768440.3018620.101*
C11′e1.077 (5)0.8314 (12)0.349 (3)0.130 (3)
H11Ce1.1041280.8238110.4057770.156*
H11De0.9598540.8272990.3341460.156*
C12′e1.130 (6)0.9192 (12)0.329 (2)0.194 (5)
H12De1.0756630.9599020.3561880.291*
H12Ee1.2459300.9247010.3441880.291*
H12Fe1.1013970.9281960.2724280.291*
C16′f1.378 (4)0.2276 (12)0.457 (4)0.084 (2)
H16Cf1.4105870.2269460.5143400.101*
H16Df1.4755420.2277690.4333790.101*
C17′f1.278 (6)0.1485 (11)0.431 (4)0.143 (3)
H17Cf1.1706140.1529560.4456940.172*
H17Df1.2656150.1420220.3742130.172*
C18′f1.368 (5)0.0725 (14)0.472 (4)0.214 (6)
H18Df1.3069570.0225280.4566310.320*
H18Ef1.4742570.0682550.4576460.320*
H18Ff1.3795620.0791530.5288970.320*
  1. a Occupancy: 0.524(7), b Occupancy: 0.817(8), c Occupancy: 0.824(10), d Occupancy: 0.476(7), e Occupancy: 0.183(8), f Occupancy: 0.176(10).

Source of material

In a typical experiment, copper chloride (1 mmol) and 1-propylimidazole (10 mmol) were dissolved in H2O (25 mL), and then maintained for 6 h at 80 °C with stirring. After the reaction was completed, the filtrate was left to slowly evaporate at room temperature for about four days, and then the blue rod crystals were filtered off. Yield: 54.5%. Anal. Calcd. for C36H60Cl2CuN12: C, 54.36; H, 7.60; N, 21.13; found: C, 54.39; H 7.52; N 21.18.

Experimental details

Hydrogen atoms were assigned with common isotropic displacement factors Uiso(H) = 1.2 times Ueq (C, imidazole ring and methylene) and Uiso(H) = 1.5 times Ueq(C, methyl carbon). All the H atoms were refined as riding on their parent atom.

Comment

Over the last decades, transition metal complexes have received much attention in the fields of catalysis, magnetism, medicine and material because their bio-compatibility, various coordination modes, and catalytic properties [3], [4], [5]. Among these transition metal complexes, copper complexes with their versatile structures, redox behavior and physicochemical properties have been found to be useful as active agents in chemotherapeutic, catalytic applications. So far, some thrilling work about inorganic-organic hybrid copper complexes have been reported [6], [7], [8]. In addition, imidazoles as multifunctional organic reagents could be used not only as organic base, solvent, but also as N-ligands in the synthesis of transition metal complexes, and some imidazole-based compounds, including some transition metal clusters have been reported [9], [10], [11]. However, despite the progress achieved, newly designed imidazole-based crystalline copper materials are long-sought-after yet still unmet.

Single crystal X-ray diffraction analysis reveals that the asymmetric unit of the title structure consist of half a copper(II) cation, three 1-propylimidazole N-ligands and one free chloride anion. The Cu(II) cation adopted a six-coordinated mode with a twisted octahedral geometry conformation. The bond distances of Cu–N are in the range of 2.034(2) to 2.540(2) Å, which are similar with those of the reported tetrakis (N–methylimidazole–N′)-copper(I) perchlorate complex [12]. Meanwhile, the bond angles of N(5)–Cu(1)–N(3), N(5)–Cu(1)–N(1), and N(3)–Cu(1)–N(1) are 87.22(9), 87.07(8) and 93.27(8)°, respectively. Moreover, the disordered atom sets were (C4, C4′), (C5, C5′), (C6, C6′), (C10, C10′), (C11, C11′), (C12, C12′), (C16, C16′), (C17, C17′), and (C18, C18′), respectively.


Corresponding author: Qingpeng He, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, Shandong, China, E-mail:

Funding source: Liaocheng University

Award Identifier / Grant number: 263222017215 and 263222017214

Funding source: Entrepreneurship Training Program for College Students

Award Identifier / Grant number: CXCY2020Y021, S202010447012X and X202010447012X

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We gratefully acknowledge support by the Research on Experimental Technology of Liaocheng University (263222017215 and 263222017214) and Entrepreneurship Training Program for College Students (CXCY2020Y021, S202010447012X and X202010447012X).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2, SAINT and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2004.Suche in Google Scholar

2. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org./10.1107/s2053229614024218.10.1107/S2053229614024218Suche in Google Scholar

3. Yadav, S., Kumar, R., Raj, K. V., Yadav, P., Vanka, K., Sen, S. S. Amidinato germylene-zinc complexes: synthesis, bonding, and reactivity. Chem. Asian J. 2020, 15, 3116–3121; https://doi.org./10.1002/asia.202000807.10.1002/asia.202000807Suche in Google Scholar PubMed

4. Wu, L., Liu, X., Zhang, K., Gao, J., Chen, Y., Tung, C. Monochromophore-based phosphorescence and fluorescence from pure organic assemblies for ratiometric hypoxia detection. Angew. Chem. Int. Ed. 2020, 59, 23456–23460; https://doi.org./10.1002/anie.202007035.10.1002/anie.202007039Suche in Google Scholar PubMed

5. Li, Y., Li, C., Wu, F., Fu, M., Zhang, J., Huang, X. A new Schiff base Ni(II) complex based on 2-hydroxy-1-naphthaldehyde and glycine: synthesis and highly effective construction of C=C bonds. J. Liaocheng Univ. (Nat. Sci. Ed.) 2019, 32, 81–87.Suche in Google Scholar

6. Ohashi, M., Adachi, T., Ishida, N., Kikushima, K., Ogoshi, S. Synthesis and reactivity of fluoroalkyl copper complexes by the oxycupration of tetrafluoroethylene. Angew. Chem. Int. Ed. 2017, 56, 11911–11915; https://doi.org./10.1002/anie.201703923.10.1002/anie.201703923Suche in Google Scholar PubMed

7. Huang, X., Qi, Y., Gu, Y., Gong, S., Shen, G., Li, Q., Li, J. Imidazole-directed fabrication of three polyoxovanadates-based copper frameworks as efficient catalysts for constructing of C–N bonds. Dalton Trans. 2020, 49, 10970–10976; https://doi.org./10.1039/d0dt02162h.10.1039/D0DT02162HSuche in Google Scholar

8. Hayashi, N., Machida, K., Otawara, K., Hasegawa, A., Kosaka, N. Polymer-soluble thermostable phosphate-ester copper complexes for near-infrared absorbing dyes with weak absorbance in the visible region. Opt. Mater. 2018, 77, 111–116; https://doi.org./10.1016/j.optmat.2018.01.020.10.1016/j.optmat.2018.01.020Suche in Google Scholar

9. Gu, X., Lin, J., Zhao, W., Cui, C., Qi, Y., Xue, Z., Huang, X. An organic imidazole functionalized polyoxomolybdenum cluster: synthesis and selectivity switch in the oxidation of sulfides. J. Liaocheng Univ. (Nat. Sci. Ed.) 2021, 34, 77–82.Suche in Google Scholar

10. Chen, B., Huang, X., Wang, B., Lin, Z., Hu, J., Chi, Y., Hu, C. Three new imidazole-functionalized hexanuclear oxidovanadium clusters with exceptional catalytic oxidation properties for alcohols. Chem. Eur J. 2013, 19, 4408–4413; https://doi.org./10.1002/chem.201203854.10.1002/chem.201203854Suche in Google Scholar PubMed

11. Zhao, H., Tao, L., Zhang, F., Zhang, Y., Liu, Y., Xu, H., Diao, G., Ni, L. Transition metal substituted sandwich-type polyoxometalates with a strong metal–C (imidazole) bond as anticancer agents. Chem. Commun. 2019, 55, 1096–1099; https://doi.org./10.1039/c8cc07884j.10.1039/C8CC07884JSuche in Google Scholar PubMed

12. Clegg, W., Acott, S. R., Garner, C. D. Structure of tetrakis(N- methylimidazole-N′) copper(I) perchlorate, [Cu(C4H6N2)4][ClO4]. Acta Crystallogr. 1984, C40, 768–769; https://doi.org./10.1107/s0108270184005667.10.1107/S0108270184005667Suche in Google Scholar

Received: 2021-03-10
Accepted: 2021-03-30
Published Online: 2021-04-12
Published in Print: 2021-07-27

© 2021 Qingpeng He et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of poly[(μ2-aqua-tetraaqua-(μ3-glutarato-κ4O,O′:O′:O′′)-(μ5-glutarato-κ6O:O,O′:O′:O′′:O′′′)distrontium(II)], C10H22O13Sr2
  4. The crystal structure of acetato-κ1O-{(2-(2-(2-aminophenoxy)ethoxy)phenyl)(4-oxo-4-phenylbut-2-en-2-yl)amido-κ2N,N′,O}copper(II), C26H26CuN2O5
  5. Crystal structure of dimethanolato-k2O:O-bis(1-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κN)-bis(thiocyanato-κN)dicopper(II), C34H32Cu2N12O2S2
  6. Crystal structure of poly[diaqua-bis(μ2-3-(pyrimidin-5-yl)benzoato-κ2N:O)cobalt(II)] dihydrate, [Co(C11H11O2N2)2(H2O)2]
  7. Crystal structure of bis(3,3-dimethyl-1-phenylbut-1-en-2-yl)(trimethylsilyl)amido-k1N)zinc(II), Zn(C15H24NSi)2
  8. Crystal structure of catena-poly[(μ2-methanolato-κ2O:O)-(μ2-1-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κ2N:N′)-(thiocyanato-κ1N)copper(II)] 0.25 hydrate, C17H16CuN6OS ⋅ 0.5H2O
  9. The crystal structure of 2-amino-5-nitroanilinium iodide monohydrate, C6H8IN3O2
  10. The crystal structure of 3-amino-5-carboxypyridin-1-ium perchlorate monohydrate, C6H9ClN2O7
  11. Crystal structure of 7-hydroxy-2,4-dimethoxy-9,10-dihydrophenanthrene from Arundina graminifolia, C16H16O3
  12. Crystal structure of 6,6′-((1E, 1′E)-(((1R, 2R)-1,2-diphenylethane-1,2-diyl) bis(azanylylidene))bis(methanylylidene))bis(2-ethylphenol), C32H32N2O2
  13. The crystal structure of 2-amino-5-carboxypyridin-1-ium iodide monohydrate, C6H9IN2O3
  14. The crystal structure of 2-(3,5-difluorophenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C16H11BF2N2
  15. Crystal structure of bis{(2-pyridinyl)-1-phenyl-1-isopropylmethanolato-κ2N,O}nickel, C30H32N2NiO2
  16. Crystal structure of poly[(m3-3-carboxyadamantane-1-carboxylato-κ3O:O′:O″)-(phenanthroline-κ2N,N′)sodium(II)], C24H23N2NaO4
  17. Crystal structure of 2-phenylethynyl-1,3,6,8-tetramethylBOPHY (BOPHY = bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine), C22H20B2F4N4
  18. Crystal structure of 4-tert-butyl-2-N-(2-pyridylmethyl)aminophenol, C16H20N2O
  19. The crystal structure of (3Z,3′Z)-4,4′-((1,4-phenylenebis(methylene))bis(azanediyl))bis(pent-3-en-2-one), C18H24N2O2
  20. Crystal structure of (morpholine-1-carbodithioato-κ2-S,S′)bis(triphenylphosphine-κ-P)gold(I), C41H38AuNOP2S2
  21. Crystal structure of 1,4-bis(4-bromobenzyl)-4-(4-chlorophenyl)-1,4-dihydropyridine-3-carbonitrile, C26H19Br2ClN2
  22. The crystal structure of fac-tricarbonyl (N′-benzoyl-N,N-diphenylcarbamimidothioato-κ2S,O)-(pyrazole-κN)rhenium(I) — methanol (1/1) C26H23O4N4SRe
  23. The crystal structure of Ba2Mn(SeO3)2Cl2 containing 1[Mn(SeO3)2Cl2]4− chains
  24. Crystal structure of 3,3′,3″-((1E,1′E,1″E)-((nitrilotris(ethane-2,1-diyl))tris(azaneylylidene)) tris(methaneylylidene))tris(4-hydroxy-1-naphthaldehyde) monohydrate, C42H36N4O6·H2O
  25. The crystal structure of 4-(6-acetyl-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrimidin-7-yl)benzonitrile, C14H12N6O
  26. Crystal structure of benzo[d][1,3]dioxol-5-yl-2-(6-methoxynaphthalen-2-yl)propanoate, C21H18O5
  27. The crystal structure of ethyl 5-methyl-7-(4-(phenylthio)phenyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate, C20H19N5O2S
  28. Crystal structure of N′,N‴-((propane-2,2-diylbis(1H-pyrrole-5,2-diyl))bis(methaneylylidene))-di(isonicotinohydrazide)– water – dimethylformamide (1/4/2), C25H24N8O2·4H2O·2C3H7NO
  29. Synthesis and crystal structure of 4-(2,4-dinitrophenoxy)benzaldehyde, C13H8N2O6
  30. The crystal structure of 1-dodecylpyridin-1-ium bromide monohydrate, C17H32BrNO
  31. Crystal structure of (E)-amino(2-(4-(dimethylamino)benzylidene)hydrazineyl)methaniminium nitrate, C10H16N6O3
  32. Crystal structure of (E)-(2-((1H-pyrrol-2-yl)methylene)hydrazineyl)(amino)methaniminium nitrate monohydrate, C6H12N6O4
  33. The crystal structure of hexakis(1-propylimidazole-κ1N)copper(II) dichloride, C36H60Cl2CuN12
  34. The crystal structure of bis{(μ2-3,3-dimethyl-1-phenylbut-1-en-2-yl)((dimethylamino)dimethylsilyl)amido-κ3N,N′:N′}dilithium, C32H54Li2N4Si2
  35. The crystal structure of methyl 4-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)benzoate, C18H15BN2O2
  36. Crystal structure of (E)-N-(1-((2-chlorothiazol-5-yl)methyl)pyridin-2(1H)-ylidene)-2,2,2-trifluoroacetamide, C11H7ClF3N3OS
  37. Crystal structure of N′, N‴-((propane-2,2-diylbis(1H-pyrrole-5,2-diyl))bis (methaneylylidene))di(picolinohydrazide) – water – methanol (1/1/1), C25H24N8O2·H2O·CH3OH
  38. Crystal structure of 3-(2-chloro-benzyl)-7-[4-(2-chloro-benzyl)-piperazin-1-yl]-5,6,8-trifluoro-3H-quinazolin-4-one, C26H21Cl2F3N4O
  39. Crystal structure of N1,N2-bis(2-fluorobenzyl)benzene-1,2-diamine,C20H18F2N2
  40. The crystal structure of 2-(benzo[d][1,3]dioxol-5-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C17H13BN2O2
  41. The crystal structure of 6,6′-((1E,1′E)-hydrazine-1,2-diylidenebis(methaneylylidene)) bis(2-bromo-4-nitrophenol) — dimethylsulfoxide (1/2), C14H8Br2N4O6⋅2(C2H6OS)
  42. Selective biocatalytic synthesis and crystal structure of (2R,6R)-hydroxyketaminium chloride, C13H17Cl2NO2
  43. Crystal structure of bis{tetraaqua-[μ3-1-(4-carboxylatophenyl)-5-methyl-1H-pyrazole-3-carboxylate-κ4N,O,O′,O″] [μ2-1-methyl-1H-pyrazole-3,5-dicarboxylate-κ3N,O:O]dicobalt(II)} dihydrate, C36H44Co4N8O26
  44. Crystal structure of diethyl-2,2′-naphthalene-2,3-diylbis(oxy)diacetate, C18H20O6
  45. Synthesis and crystal structure of poly[(μ3-2-(2-carboxylatophenyl)-1H-benzo[d]imidazole-5-carboxylato-κO,O′:O′;:O″, O″′)-(μ2-1-(4-(1Himidazol-1-yl)phenyl)-1H-imidazole-κ2N:N′)cadmium(II)], C27H18CdN6O4
  46. The crystal structure of catena-poly[diaqua-bis(μ2-2-((2-(2-phenylacetyl)hydrazineylidene)methyl)benzoato-κ2O:O')zinc(II)], C32H30N4O8Zn
  47. The crystal structure of 2-(3,4-dimethoxyphenyl)-2,3-dihydro-1H-naphtho [1,8-de][1,3,2]diazaborinine, C18H17BN2O2
  48. The crystal structure of hexakis(1-ethylimidazole-κ1N)nickel(II) dichloride – 1-ethylimidazole (1/2), C40H64Cl2NiN16
  49. Crystal structure of diaqua-bis(2,4-dinitrophenolato-κ2O,O′)copper(II) 1.5 hydrate, C12H13CuN4O13.5
  50. Crystal structure of N′,N‴-((1E,1′E)-((decane-1,10-diylbis(oxy))bis(2,1-phenylene)) bis(methaneylylidene))di(isonicotinohydrazide), C36H40N6O4
  51. The crystal structure of 2-[(R)-1-(naphthalen-1-yl)ethyl]-2,3,7,7a-tetrahydro-3a,6-epoxyisoindol-1(6H)-one, C19H20NO2
  52. Synthesis and crystal structure of (1E,2E)-3-(anthracen-9-yl)-1-(4-methoxyphenyl)prop-2-en-1-one oxime, C24H19NO2
  53. Synthesis and crystal structure of (2E,2′E)-3,3′-(1,3-phenylene)bis(1-(3-bromophenyl)prop-2-en-1-one), C24H16Br2O2
  54. The crystal structure of catena-poly[bis(µ2-1,2-bis((1H-imidazol-1-yl)methyl)benzene- κ2N:N′)-bis(nitrato-κO)copper(II)], C28H28N10O6Cu
  55. Synthesis and crystal structure of the novel chiral acetyl-3-thiophene-5-(9-anthryl)-2-pyrazoline, C23H18N2OS
  56. Crystal structure of (E)-3-(dimethylamino)-1-(thiophen-3-yl)prop-2-en-1-one, C9H11NOS
  57. Crystal structure of catena-poly[aqua-(4-iodopyridine-2,6-dicarboxylato-κ3N,O,O′)-(μ2-4-amino-4H-1,2,4-triazole-κ2N:N′) copper(II)], C9H8N5O5CuI
  58. Crystal structure of cyclopropane-1,2,3-triyltris(phenylmethanone), C24H18O3
  59. Crystal structure of bis(amino(thioureido)methaniminium) terephthalate, C12H18N8O4S2
  60. A three-dimensional Eu(III) framework in the crystal structure of dimethylaminium poly[dimethylformamide-κ1N)bis(μ4-terephthalato-κ4O:O′:O′′:O′′′)europium(III)] monohydrate, C21H25EuN2O10
  61. Crystal structure of 2-methoxyphenyl 2-(6-methoxynaphthalen-2-yl)propanoate, C21H20O4
  62. The crystal structure of Hexakis(diethylamido)dimolybdenum, Mo2(NEt2)6
Heruntergeladen am 9.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0087/html
Button zum nach oben scrollen