Home Crystal structure of poly[(μ2-aqua-tetraaqua-(μ3-glutarato-κ4O,O′:O′:O′′)-(μ5-glutarato-κ6O:O,O′:O′:O′′:O′′′)distrontium(II)], C10H22O13Sr2
Article Open Access

Crystal structure of poly[(μ2-aqua-tetraaqua-(μ3-glutarato-κ4O,O′:O′:O′′)-(μ5-glutarato-κ6O:O,O′:O′:O′′:O′′′)distrontium(II)], C10H22O13Sr2

  • Amira Bouhali ORCID logo EMAIL logo , Rawiya Dridi , Chaouki Boudaren , Mhamed Boudraa and Hocine Merazig
Published/Copyright: March 5, 2021

Abstract

C10H22O13Sr2, monoclinic, P21/c (no. 14), a = 13.9371(13) Å, b = 14.3873(14) Å, c = 9.1536(8) Å, β = 104.958(4)°, V = 1773.3(3) Å3, Z = 4, Rgt(F) = 0.0294, wRref(F2) = 0.0785, T = 273(2) K.

CCDC no.: 2060552

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless block
Size:0.13 × 0.10 × 0.06 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:6.08 mm−1
Diffractometer, scan mode:Bruker APEX-II,
θmax, completeness:27.5°, 99%
N(hkl)measured, N(hkl)unique, Rint:23,735, 4032, 0.069
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3720
N(param)refined:226
Programs:Bruker [1], SHELX [2], WinGX/ORTEP [3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
C10.51616 (17)0.19246 (16)0.6658 (3)0.0159 (4)
C20.42909 (17)0.19170 (18)0.5253 (3)0.0180 (5)
H2A0.41980.25380.48290.022*
H2B0.36920.17460.5540.022*
C30.44446 (19)0.1242 (2)0.4047 (3)0.0230 (5)
H3A0.50520.13990.37730.028*
H3B0.45130.06150.44520.028*
C40.35708 (18)0.12804 (19)0.2644 (3)0.0202 (5)
H4A0.29620.11630.29410.024*
H4B0.35280.19020.2220.024*
C50.36496 (17)0.05896 (16)0.1441 (3)0.0159 (5)
C6−0.06624 (18)−0.12153 (17)0.1609 (3)0.0176 (5)
C7−0.16274 (18)−0.1385 (2)0.2035 (3)0.0243 (5)
H7A−0.2056−0.17610.12530.029*
H7B−0.1956−0.07930.20570.029*
C8−0.1512 (2)−0.18666 (19)0.3554 (3)0.0245 (5)
H8A−0.2165−0.19370.3730.029*
H8B−0.1248−0.24850.34920.029*
C9−0.0848 (2)−0.1375 (2)0.4901 (3)0.0317 (7)
H9A−0.0297−0.11010.45860.038*
H9B−0.0573−0.18370.56650.038*
C10−0.13254 (18)−0.06194 (18)0.5629 (3)0.0195 (5)
O10.59173 (13)0.23877 (13)0.6605 (2)0.0235 (4)
O20.50993 (14)0.14622 (14)0.7787 (2)0.0277 (4)
O1W0.05383 (13)−0.16005 (13)−0.1429 (2)0.0240 (4)
H11W0.0156−0.1311−0.18810.036*
H12W0.0372−0.2114−0.17140.036*
O30.29968 (13)−0.00266 (13)0.1063 (2)0.0242 (4)
O2W0.37484 (15)0.00523 (16)−0.2703 (2)0.0382 (5)
H21W0.32670.0183−0.34270.057*
H22W0.41190.049−0.25760.057*
O40.43685 (13)0.06463 (13)0.0838 (2)0.0215 (4)
O3W0.21968 (14)−0.11833 (16)−0.2416 (2)0.0348 (5)
H31W0.206−0.0829−0.29320.052*
H32W0.1653−0.1289−0.22130.052*
O5−0.06442 (14)−0.05736 (14)0.0690 (2)0.0259 (4)
O4W0.26228 (13)−0.20336 (12)0.0631 (2)0.0222 (4)
H41W0.2893−0.22330.13050.033*
H42W0.2454−0.24370.01140.033*
O60.00898 (13)−0.17032 (13)0.2169 (2)0.0250 (4)
O5W0.23792 (14)−0.13547 (14)0.3716 (2)0.0288 (4)
H51W0.2915−0.14550.37750.043*
H52W0.2364−0.09310.4190.043*
O7−0.19957 (15)−0.01268 (15)0.4795 (2)0.0331 (5)
O8−0.10218 (15)−0.05047 (14)0.7027 (2)0.0282 (4)
Sr10.13186 (2)−0.07267 (2)0.10847 (2)0.01443 (8)
Sr20.39088 (2)−0.10281 (2)−0.05032 (2)0.01555 (8)

Source of material

Block colourless single crystals of the title compound were obtained by a hydrothermal reaction of an equimolar ratio (0.5 mmol) of strontium chloride and glutaric acid (2 mmol) of imidazole and 6 ml of water in a 23 ml Teflon-lined acid digestion bomb (Parr), which was heated for three days at 180 °C under autogeneous pressure and then cooled down to room temperature. The product obtained were collected by filtration, thoroughly washed with distilled water and ethanol, and finally dried at room temperature.

Experimental details

The H atoms of water molecules were refined freely. All other hydrogen atoms bonded to C atoms were placed in idealized positions using the standard riding models of the SHELX System (with C—H = 0.97 Å) [2].

Comment

The synthesis of coordination polymers requires polyfunctional organic ligands (linkers), which bind metal atoms together to form structures of different dimensionalities. Rational design and synthesis of metal-organic coordination polymers has become one of the most active areas of chemical research and materials science [5]. The anions of polycarboxylic acids, and dicarboxylic acid in particular, are used quite often as linkers [6], [7], [8], [9], [10]. Over the past decades glutaric acid which is an aliphatic dicarboxylic acid was used to obtain coordination polymers [11], [12], [13]. It is not only balancing the charge of the metal organic hybrid species, but it also plays a crucial role in deriving structural diversity.

The asymmetric unit of the title compound contains two Sr2+ ions, two glutarate ligands and five H2O molecules, connected together to form a three-dimensional framework. Each Sr polyhedron shares two edges through either two O5 atoms, two O4 atoms or O3 and O4W atoms to form zig-zag chains running along the a axis with Sr1 ⃛ Sr1, Sr2 ⃛ Sr2 and Sr1 ⃛ Sr2 distances of 4.2494(3), 4.1719(3) and 4.2475(3) Å, respectively. The connexion between adjacent chains is ensured by the organic ligands. The coordination geometry of each Sr2+ ion can be described as a dodecahedral fashion comprised of five O atoms from glutarate anions involved in a mono- and bidentate mode, and water molecules.

In the Sr1 bisdisphenoid, the standard mean deviation from planarity of the first face [O3, O6, O8II, O4W] is 0.1147 Å (for symmetry operation (II) −x, −y, 1−z). Also, the distances from the central Sr1 atom to the centre of each face differ from each other [0.6547 Å against 1.8548 Å for the second plane [O5, O5I, O1W] (for symmetry operation (I) −x, −y, −z)]. The Sr1–O distances fall in the range 2.4966(1) − 2.7205(1) Å (av. = 2.61 Å), in good accordance with the value calculated with the bond valence program VALENCE [14] for an eightfold-coordinated Sr2+ cation, i.e., 2.62 Å. Then, the sum of the bond valences around the strontium atom, i.e., 2.1 v.u. must be compared with the +2 oxidation state of Sr. In the Sr2 bisdisphenoid, the standard mean deviation from planarity of the first face [O1III, O2IV, O3, O3W] is 0.039 Å (for symmetry operation (III) 1−x, −1/2 + y, 1/2−z and (IV) 1−x, −y, 1−z). Also, the distances from the central Sr2 atom to the centre of each face differ from each other (0.7669 Å against 1.8571 Å for the second plane [O4, O4V, O2W] [for symmetry operation (V) 1−x, −y, −z]). The Sr-O distances fall in the range 2.5078(1) − 2.7100(1) Å (av. = 2.60 Å), in good accordance with the value calculated with the bond valence program VALENCE [14] for eightfold-coordinated Sr2+ cation, i.e., 2.62 Å. Then, the sum of the bond valences around the strontium atom, i.e., 2.2 v.u. must be compared with the +2 oxidation state of Sr.

There are two crystallographically distinct glutarate ligands, which exhibit two different conformations, namely anti–anti and gauche–gauche. One adopts anti–anti conformation, illustrated by the C1—C2—C3—C4 [178.205(5)°] and C2—C3—C4—C5 [176.774(5)°] torsion angles, the other adopt gauche–gauche conformation demonstrated by the C6—C7—C8—C9 [57.498 (8)°] and C7—C8—C9—C10 [84.859(7)°] torsion angles, respectively. The first carboxylate group binds five metal cations through bidentate and monodentate chelation, the three Csp3–Csp3–Csp3 angles of the glutarate anion C1–C2–C3, C2–C3–C4 and C3–C4–C5 are 112.664(5), 110.804(5) and 113.460(5)°. While the second carboxylate group binds three metal cations through bidentate and monodentate chelation, the three Csp3–Csp3–Csp3 angles of the glutarate anion C6–C7–C8, C7–C8–C9 and C8–C9–C10 are 114.597(5), 115.425(5) and 116.646(5)°. But they are considerably greater than the tetrahedral angle 109°.


Corresponding author: Amira Bouhali, Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale, CHEMS, Université des frères Mentouri Constantine 1, Constantine, 25000, Algeria, E-mail:

Acknowledgements

Thanks are also due to MESRS (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work is supported by the Unité de recherche de Chimie de l’Environnement et Moléculaire Structurale, CHEMS, Université des Frères Mentouri Constantine 1, Algeria.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2; Bruker AXS Inc.: Madison, Wisconsin, USA, 2011.Search in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

3. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

4. Brandenburg, K., Berndt, M. DIAMOND. Visual crystal structure information system; Crystal Impact GbR: Bonn, Germany, 2001.Search in Google Scholar

5. Zheng, Y.-Q., Lin, J.-L., Xu, W., Xie, H.-Z., Sun, J., Wang, X.-W. A family of new glutarate compounds: synthesis, crystal structures of: Co(H2O)5L(1), Na2[CoL2] (2), Na2[L(H2L)4/2] (3), {[Co3(H2O)6L2](HL)2}⋅H2O (4), {[Co3(H2O)6L2](HL)2}.10H2O (5), {[Co3(H2O)6L2]L2/2}⋅4H2O (6), and Na{2[Co3(H2O)2]]L8/2]⋅6H2O (7), and magnetic properties of 1 and 2 with H2L = HOOC-(CH2)3–COOH. Inorg. Chem. 2008, 47, 10280–10287; https://doi.org/10.1021/ic801053p.Search in Google Scholar

6. Kitagawa, S., Kitaura, R., Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375; https://doi.org/10.1002/anie.200300610.Search in Google Scholar

7. Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 2007, 37, 191–214.10.1039/B618320BSearch in Google Scholar PubMed

8. Grzesiak-Nowak, M., Nitek, W., Rafalska-Lasocha, A., Lasocha, W. Synthesis and investigations of new strontium dicarboxylates. Z. für Kristallogr.-Cryst. Mater. 2013, 228, 590–597; https://doi.org/10.1524/zkri.2013.1665.Search in Google Scholar

9. Bataille, T., Bouhali, A., Kouvatas, C., Trifa, C., Audebrand, N., Boudaren, C. Hydrates and polymorphs of lead squarate Pb(C4O4): structural transformations studied by in situ X-ray powder diffraction and solid state NMR. Polyhedron 2019, 164, 123–131; https://doi.org/10.1016/j.poly.2019.02.047.Search in Google Scholar

10. Bouhali, A., Trifa, C., Bouacida, S., Boudaren, C., Bataille, T. Poly [[μ-aqua-tetraaquabis (μ-2-hydroxy-4-oxocyclobut-1-ene-1,3-diolato)strontium] hemihydrate]. Acta Crystallogr. 2011, E67, m1130–m1131; https://doi.org/10.1107/s1600536811028704.Search in Google Scholar

11. Martin, D. P., Montney, M. R., Supkowski, R. M., LaDuca, R. L. Cadmium glutarate coordination polymers containing hydrogen-bonding capable tethering organodiimines: from double interpenetration to supramolecular cavities containing an unprecedented water tape morphology. Cryst. Growth Des. 2008, 8, 3091–3097; https://doi.org/10.1021/cg8003118.Search in Google Scholar

12. Wen, G. L., Wang, Y. Y., Zhang, W. H., Ren, C., Liu, R. T., Shi, Q. Z. Self-assembled coordination polymers of V-shaped bis(pyridyl)thiadiazole dependent upon the spacer length and flexibility of aliphatic dicarboxylate ligands. CrystEngComm 2010, 12, 1238–1251; https://doi.org/10.1039/b919381m.Search in Google Scholar

13. Ghosh, A. K., Ghoshal, D., Zangrando, E., Ribas, J., Chaudhuri, N. R. Syntheses, crystal structures, and magnetic properties of metal-organic hybrid materials of Cu(II): effect of a long chain dicarboxylate backbone, and counteranion in their structural diversity. Inorg. Chem. 2007, 46, 3057–3071; https://doi.org/10.1021/ic061720v.Search in Google Scholar

14. Brown, I. D. VALENCE: a program for calculating bond valences. J. Appl. Crystallogr. 1996, 29, 479–480; https://doi.org/10.1107/s002188989600163x.Search in Google Scholar

Received: 2021-02-02
Accepted: 2021-02-18
Published Online: 2021-03-05
Published in Print: 2021-07-27

© 2021 Amira Bouhali et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of poly[(μ2-aqua-tetraaqua-(μ3-glutarato-κ4O,O′:O′:O′′)-(μ5-glutarato-κ6O:O,O′:O′:O′′:O′′′)distrontium(II)], C10H22O13Sr2
  4. The crystal structure of acetato-κ1O-{(2-(2-(2-aminophenoxy)ethoxy)phenyl)(4-oxo-4-phenylbut-2-en-2-yl)amido-κ2N,N′,O}copper(II), C26H26CuN2O5
  5. Crystal structure of dimethanolato-k2O:O-bis(1-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κN)-bis(thiocyanato-κN)dicopper(II), C34H32Cu2N12O2S2
  6. Crystal structure of poly[diaqua-bis(μ2-3-(pyrimidin-5-yl)benzoato-κ2N:O)cobalt(II)] dihydrate, [Co(C11H11O2N2)2(H2O)2]
  7. Crystal structure of bis(3,3-dimethyl-1-phenylbut-1-en-2-yl)(trimethylsilyl)amido-k1N)zinc(II), Zn(C15H24NSi)2
  8. Crystal structure of catena-poly[(μ2-methanolato-κ2O:O)-(μ2-1-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κ2N:N′)-(thiocyanato-κ1N)copper(II)] 0.25 hydrate, C17H16CuN6OS ⋅ 0.5H2O
  9. The crystal structure of 2-amino-5-nitroanilinium iodide monohydrate, C6H8IN3O2
  10. The crystal structure of 3-amino-5-carboxypyridin-1-ium perchlorate monohydrate, C6H9ClN2O7
  11. Crystal structure of 7-hydroxy-2,4-dimethoxy-9,10-dihydrophenanthrene from Arundina graminifolia, C16H16O3
  12. Crystal structure of 6,6′-((1E, 1′E)-(((1R, 2R)-1,2-diphenylethane-1,2-diyl) bis(azanylylidene))bis(methanylylidene))bis(2-ethylphenol), C32H32N2O2
  13. The crystal structure of 2-amino-5-carboxypyridin-1-ium iodide monohydrate, C6H9IN2O3
  14. The crystal structure of 2-(3,5-difluorophenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C16H11BF2N2
  15. Crystal structure of bis{(2-pyridinyl)-1-phenyl-1-isopropylmethanolato-κ2N,O}nickel, C30H32N2NiO2
  16. Crystal structure of poly[(m3-3-carboxyadamantane-1-carboxylato-κ3O:O′:O″)-(phenanthroline-κ2N,N′)sodium(II)], C24H23N2NaO4
  17. Crystal structure of 2-phenylethynyl-1,3,6,8-tetramethylBOPHY (BOPHY = bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine), C22H20B2F4N4
  18. Crystal structure of 4-tert-butyl-2-N-(2-pyridylmethyl)aminophenol, C16H20N2O
  19. The crystal structure of (3Z,3′Z)-4,4′-((1,4-phenylenebis(methylene))bis(azanediyl))bis(pent-3-en-2-one), C18H24N2O2
  20. Crystal structure of (morpholine-1-carbodithioato-κ2-S,S′)bis(triphenylphosphine-κ-P)gold(I), C41H38AuNOP2S2
  21. Crystal structure of 1,4-bis(4-bromobenzyl)-4-(4-chlorophenyl)-1,4-dihydropyridine-3-carbonitrile, C26H19Br2ClN2
  22. The crystal structure of fac-tricarbonyl (N′-benzoyl-N,N-diphenylcarbamimidothioato-κ2S,O)-(pyrazole-κN)rhenium(I) — methanol (1/1) C26H23O4N4SRe
  23. The crystal structure of Ba2Mn(SeO3)2Cl2 containing 1[Mn(SeO3)2Cl2]4− chains
  24. Crystal structure of 3,3′,3″-((1E,1′E,1″E)-((nitrilotris(ethane-2,1-diyl))tris(azaneylylidene)) tris(methaneylylidene))tris(4-hydroxy-1-naphthaldehyde) monohydrate, C42H36N4O6·H2O
  25. The crystal structure of 4-(6-acetyl-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrimidin-7-yl)benzonitrile, C14H12N6O
  26. Crystal structure of benzo[d][1,3]dioxol-5-yl-2-(6-methoxynaphthalen-2-yl)propanoate, C21H18O5
  27. The crystal structure of ethyl 5-methyl-7-(4-(phenylthio)phenyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate, C20H19N5O2S
  28. Crystal structure of N′,N‴-((propane-2,2-diylbis(1H-pyrrole-5,2-diyl))bis(methaneylylidene))-di(isonicotinohydrazide)– water – dimethylformamide (1/4/2), C25H24N8O2·4H2O·2C3H7NO
  29. Synthesis and crystal structure of 4-(2,4-dinitrophenoxy)benzaldehyde, C13H8N2O6
  30. The crystal structure of 1-dodecylpyridin-1-ium bromide monohydrate, C17H32BrNO
  31. Crystal structure of (E)-amino(2-(4-(dimethylamino)benzylidene)hydrazineyl)methaniminium nitrate, C10H16N6O3
  32. Crystal structure of (E)-(2-((1H-pyrrol-2-yl)methylene)hydrazineyl)(amino)methaniminium nitrate monohydrate, C6H12N6O4
  33. The crystal structure of hexakis(1-propylimidazole-κ1N)copper(II) dichloride, C36H60Cl2CuN12
  34. The crystal structure of bis{(μ2-3,3-dimethyl-1-phenylbut-1-en-2-yl)((dimethylamino)dimethylsilyl)amido-κ3N,N′:N′}dilithium, C32H54Li2N4Si2
  35. The crystal structure of methyl 4-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)benzoate, C18H15BN2O2
  36. Crystal structure of (E)-N-(1-((2-chlorothiazol-5-yl)methyl)pyridin-2(1H)-ylidene)-2,2,2-trifluoroacetamide, C11H7ClF3N3OS
  37. Crystal structure of N′, N‴-((propane-2,2-diylbis(1H-pyrrole-5,2-diyl))bis (methaneylylidene))di(picolinohydrazide) – water – methanol (1/1/1), C25H24N8O2·H2O·CH3OH
  38. Crystal structure of 3-(2-chloro-benzyl)-7-[4-(2-chloro-benzyl)-piperazin-1-yl]-5,6,8-trifluoro-3H-quinazolin-4-one, C26H21Cl2F3N4O
  39. Crystal structure of N1,N2-bis(2-fluorobenzyl)benzene-1,2-diamine,C20H18F2N2
  40. The crystal structure of 2-(benzo[d][1,3]dioxol-5-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C17H13BN2O2
  41. The crystal structure of 6,6′-((1E,1′E)-hydrazine-1,2-diylidenebis(methaneylylidene)) bis(2-bromo-4-nitrophenol) — dimethylsulfoxide (1/2), C14H8Br2N4O6⋅2(C2H6OS)
  42. Selective biocatalytic synthesis and crystal structure of (2R,6R)-hydroxyketaminium chloride, C13H17Cl2NO2
  43. Crystal structure of bis{tetraaqua-[μ3-1-(4-carboxylatophenyl)-5-methyl-1H-pyrazole-3-carboxylate-κ4N,O,O′,O″] [μ2-1-methyl-1H-pyrazole-3,5-dicarboxylate-κ3N,O:O]dicobalt(II)} dihydrate, C36H44Co4N8O26
  44. Crystal structure of diethyl-2,2′-naphthalene-2,3-diylbis(oxy)diacetate, C18H20O6
  45. Synthesis and crystal structure of poly[(μ3-2-(2-carboxylatophenyl)-1H-benzo[d]imidazole-5-carboxylato-κO,O′:O′;:O″, O″′)-(μ2-1-(4-(1Himidazol-1-yl)phenyl)-1H-imidazole-κ2N:N′)cadmium(II)], C27H18CdN6O4
  46. The crystal structure of catena-poly[diaqua-bis(μ2-2-((2-(2-phenylacetyl)hydrazineylidene)methyl)benzoato-κ2O:O')zinc(II)], C32H30N4O8Zn
  47. The crystal structure of 2-(3,4-dimethoxyphenyl)-2,3-dihydro-1H-naphtho [1,8-de][1,3,2]diazaborinine, C18H17BN2O2
  48. The crystal structure of hexakis(1-ethylimidazole-κ1N)nickel(II) dichloride – 1-ethylimidazole (1/2), C40H64Cl2NiN16
  49. Crystal structure of diaqua-bis(2,4-dinitrophenolato-κ2O,O′)copper(II) 1.5 hydrate, C12H13CuN4O13.5
  50. Crystal structure of N′,N‴-((1E,1′E)-((decane-1,10-diylbis(oxy))bis(2,1-phenylene)) bis(methaneylylidene))di(isonicotinohydrazide), C36H40N6O4
  51. The crystal structure of 2-[(R)-1-(naphthalen-1-yl)ethyl]-2,3,7,7a-tetrahydro-3a,6-epoxyisoindol-1(6H)-one, C19H20NO2
  52. Synthesis and crystal structure of (1E,2E)-3-(anthracen-9-yl)-1-(4-methoxyphenyl)prop-2-en-1-one oxime, C24H19NO2
  53. Synthesis and crystal structure of (2E,2′E)-3,3′-(1,3-phenylene)bis(1-(3-bromophenyl)prop-2-en-1-one), C24H16Br2O2
  54. The crystal structure of catena-poly[bis(µ2-1,2-bis((1H-imidazol-1-yl)methyl)benzene- κ2N:N′)-bis(nitrato-κO)copper(II)], C28H28N10O6Cu
  55. Synthesis and crystal structure of the novel chiral acetyl-3-thiophene-5-(9-anthryl)-2-pyrazoline, C23H18N2OS
  56. Crystal structure of (E)-3-(dimethylamino)-1-(thiophen-3-yl)prop-2-en-1-one, C9H11NOS
  57. Crystal structure of catena-poly[aqua-(4-iodopyridine-2,6-dicarboxylato-κ3N,O,O′)-(μ2-4-amino-4H-1,2,4-triazole-κ2N:N′) copper(II)], C9H8N5O5CuI
  58. Crystal structure of cyclopropane-1,2,3-triyltris(phenylmethanone), C24H18O3
  59. Crystal structure of bis(amino(thioureido)methaniminium) terephthalate, C12H18N8O4S2
  60. A three-dimensional Eu(III) framework in the crystal structure of dimethylaminium poly[dimethylformamide-κ1N)bis(μ4-terephthalato-κ4O:O′:O′′:O′′′)europium(III)] monohydrate, C21H25EuN2O10
  61. Crystal structure of 2-methoxyphenyl 2-(6-methoxynaphthalen-2-yl)propanoate, C21H20O4
  62. The crystal structure of Hexakis(diethylamido)dimolybdenum, Mo2(NEt2)6
Downloaded on 15.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0050/html
Scroll to top button