Home Crystal structure of bis{(2-pyridinyl)-1-phenyl-1-isopropylmethanolato-κ2N,O}nickel, C30H32N2NiO2
Article Open Access

Crystal structure of bis{(2-pyridinyl)-1-phenyl-1-isopropylmethanolato-κ2N,O}nickel, C30H32N2NiO2

  • Nijal K. Singh , Lynette Soobramoney , Mzamo L. Shozi , Holger B. Friedrich and Sizwe J. Zamisa ORCID logo EMAIL logo
Published/Copyright: March 31, 2021

Abstract

C30H32N2NiO2, monoclinic, P21/c (no. 14), a = 12.1250(4) Å, b = 13.6413(4) Å, c = 8.1152(3) Å, β = 108.348(2)°, V = 1274.02(7) Å3, Z = 2, Rgt(F) = 0.0285, wRref(F2) = 0.0711, T = 100 K.

CCDC no.: 2069602

The molecular structure is shown in the figure (hydrogen atoms are omitted for clarity). Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Yellow shard
Size:0.20 × 0.15 × 0.12 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.79 mm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω
θmax, completeness:27.5°, >99%
N(hkl)measured, N(hkl)unique, Rint:13,107, 2840, 0.023
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 2470
N(param)refined:162
Programs:Bruker [1], SHELX [2, 3], Mercury [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Ni10.5000000.5000000.5000000.00988 (8)
O10.36466 (8)0.43818 (7)0.37793 (13)0.0125 (2)
N10.45774 (10)0.59457 (9)0.32408 (15)0.0114 (2)
C10.52525 (13)0.66854 (11)0.30139 (18)0.0132 (3)
H10.6027010.6736770.3773920.016*
C20.48517 (13)0.73704 (12)0.17095 (19)0.0161 (3)
H20.5340860.7885760.1567240.019*
C30.37156 (14)0.72888 (12)0.06090 (19)0.0180 (3)
H30.3414460.775261−0.0294230.022*
C40.30288 (13)0.65268 (12)0.08414 (19)0.0165 (3)
H40.2251610.6463310.0096090.020*
C50.34769 (12)0.58551 (11)0.21648 (18)0.0121 (3)
C60.28322 (12)0.49902 (11)0.26290 (18)0.0118 (3)
C70.19749 (13)0.54271 (11)0.34968 (19)0.0132 (3)
C80.21814 (14)0.52917 (12)0.5265 (2)0.0178 (3)
H80.2824010.4906250.5914260.021*
C90.14559 (15)0.57153 (13)0.6093 (2)0.0235 (4)
H90.1605980.5612550.7301620.028*
C100.05241 (15)0.62808 (13)0.5187 (2)0.0239 (4)
H100.0041160.6577920.5767460.029*
C110.02966 (15)0.64130 (14)0.3417 (2)0.0267 (4)
H11−0.0351640.6794300.2774030.032*
C120.10179 (14)0.59872 (13)0.2585 (2)0.0220 (4)
H120.0854890.6079950.1371420.026*
C130.15891 (15)0.35066 (12)0.1486 (2)0.0217 (4)
H13A0.1185670.3127810.0444490.033*
H13B0.1026930.3729330.2047870.033*
H13C0.2176550.3093200.2292870.033*
C140.21786 (13)0.43943 (11)0.09763 (18)0.0140 (3)
H140.1562720.4823200.0201000.017*
C150.29924 (14)0.40709 (12)−0.0025 (2)0.0195 (3)
H15A0.3629620.3681930.0737450.029*
H15B0.3310030.465013−0.0430030.029*
H15C0.2559590.367304−0.1025160.029*

Source of material

The synthesis was adapted from Butsch et al. [5]. A MeOH solution (5 ml) of the 2-pyridinyl-1-phenyl-1-isopropylmethanol ligand (100 mg, 0.439 mmol) was added to 6 ml of nickel chloride hexahydrate (105 mg, 0.44 mmol) in MeOH (3 ml) and acetone (3 ml). The resultant green solution was stirred overnight at room temperature. The solution was concentrated and Et2O (20 ml) was added. The solution was cooled until a green solid formed. The solid was collected by filtration and washed with Et2O. Single crystals were grown from slow evaporation of a mixed solvent system of MeOH and (CH3)2CO. Yield: 60%. Decomposes at >279 °C. IR: selected max (cm−1): 2961, 1605, 1568, 1469, 1024, 993, 778.

Experimental details

The structure was solved by direct methods using the SHELXS [2] program and refined. The visual crystal structure information was performed using Mercury [4] system software.

Comment

Pyridinyl alcoholato ligands are bidentate chelating ligands. In most cases the ligand is deprotonated when coordinated to a metal centre. The alkoxide functional group of pyridinyl alcoholato ligands allows proton-coupled electron transfer (PCET) [6, 7]. Their strong σ and π-donor properties favour the attainment of high oxidation states of coordinated transition metals. The pyridine ring provides strong binding to metal centres, which in turn increases the resistance towards degradation during catalytic runs [8]. Another advantage of these ligands is that upon coordination to a metal centre they form five-membered rings. Five-membered rings are thermodynamically stable [6]. These ligands have been coordinated to various metals and have been applied as catalysts in metathesis and oxidation reactions [6, 915].

The asymmetric unit consists of half a molecule of the title compound with the Ni(II) atom situated on an inversion centre. Two pyridinyl alcoholato ligands coordinate to the metal in a bidentate manner via the nitrogen and oxygen donor atoms. This results in a square planar geometry with bond angles around the metal centre ranging from 85.49(5)° to 180° [16]. Furthermore, the Ni–N and Ni–O bond distances are 1.872(1) and 1.834(1) Å, respectively. These bond lengths are comparable with that of a closely related 3-hydroxy-3-phenyl-(3-pyridyl-2-yl) propanenitrile derivative (Ni–N = 1.873(1) Å, Ni–O = 1.833(1) Å) [16]. Non-classical intermolecular C–H⋯O interactions exist between the H2 atom of the pyridinyl moiety and the O1 atom of a neighbouring molecule (C2–H2 = 0.95 Å, H2⋯O1 = 2.443 Å, C2⋯O1 = 3.385(2) Å, C2–H2⋯O1 = 171°, Symmetry code: 1−x, 1/2+y, 1/2−z.)


Corresponding author: Sizwe J. Zamisa, School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Westville Campus, Westville, 4000Durban, South Africa E-mail:

Funding source: NRF

Funding source: DST National Research Foundation Centre of Excellence in Catalysis C* change

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: NRF and the DST National Research Foundation Centre of Excellence in Catalysis, c*change.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEXII; Bruker AXS Inc: Madison, Wisconsin, USA, 2009.Search in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P. A. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470; https://doi.org/10.1107/s0021889807067908.Search in Google Scholar

5. Butsch, K., Klein, A., Bauer, M. Highly flexible O,O′,N ligands and their Fe, Ni, Cu and Zn complexes. Inorg. Chim. Acta 2001, 374, 350–358.10.1016/j.ica.2011.02.072Search in Google Scholar

6. Herrmann, W. A., Lobmaier, G. M., Priermeier, T., Mattner, M. R., Scharbert, B. New dioxomolybdenum(VI) catalysts for the selective oxidation of terminal n-alkenes with molecular oxygen. J. Mol. Catal. Chem. 1997, 117, 455–469; https://doi.org/10.1016/s1381-1169(96)00381-0.Search in Google Scholar

7. Shopov, D. Y., Rudshteyn, B., Campos, J., Batista, V. S., Crabtree, R. H., Brudvig, G. W. Stable iridium(IV) complexes of an oxidation-resistant pyridine-alkoxide ligand: highly divergent redox properties depending on the isomeric form adopted. J. Am. Chem. Soc. 2015, 137, 7243–7250; https://doi.org/10.1021/jacs.5b04185.Search in Google Scholar

8. Shopov, D. Y., Rudshteyn, B., Campos, J., Vinyard, D. J., Batista, V. S., Brudvig, G. W., Crabtree, R. H. A full set of iridium(IV) pyridine-alkoxide stereoisomers: highly geometry-dependent redox properties. Chem. Sci. 2017, 8, 1642–1652; https://doi.org/10.1039/c6sc03758e.Search in Google Scholar

9. Shopov, D. Y., Sharninghausen, L. S., Sinha, S. B., Borowski, J. E., Mercado, B. Q., Brudvig, G. W., Crabtree, R. H. Synthesis of pyridine-alkoxide ligands for formation of polynuclear complexes. New J. Chem. 2017, 41, 6709–6719; https://doi.org/10.1039/c7nj01845b.Search in Google Scholar

10. Sackville, E. V., Kociok-Köhn, G., Hintermair, U. Ligand tuning in pyridine-alkoxide ligated Cp*Ir(III) oxidation catalysts. Organometallics 2017, 36, 3578–3588; https://doi.org/10.1021/acs.organomet.7b00492.Search in Google Scholar

11. Denk, K., Fridgen, J., Herrmann, W. A. N-heterocyclic carbenes, part 33. combining stable NHC (N-heterocyclic carbene) and chelating pyridinyl-alcoholato ligands: a ruthenium catalyst for applications at elevated temperatures. Adv. Synth. Catal. 2002, 344, 666–670; https://doi.org/10.1002/1615-4169(200208)344:6/7<666::aid-adsc666>3.0.co;2-0.10.1002/1615-4169(200208)344:6/7<666::AID-ADSC666>3.0.CO;2-0Search in Google Scholar

12. du Toit, J. I., Jordaan, M., Huijsmans, C. A. A., Jordaan, J. H. L., van Sittert, C. G. C. E., Vosloo, H. C. M. Improved metathesis lifetime: chelating pyridinyl-alcoholato ligands in the second generation Grubbs precatalyst. Molecules 2014, 19, 5522–5537; https://doi.org/10.3390/molecules19055522.Search in Google Scholar

13. du Toit, J. I., van der Gryp, P., Loock, M. M., Tole, T. T., Marx, S., Jordaan, J. H. L., Vosloo, H. C. M. Industrial viability of homogeneous olefin metathesis: beneficiation of linear alpha olefins with the diphenyl-substituted pyridinyl alcoholato ruthenium carbene precatalyst. Catal. Today 2016, 275, 191–200; https://doi.org/10.1016/j.cattod.2015.12.004.Search in Google Scholar

14. Jordaan, M., Vosloo, H. C. M. Ruthenium catalyst with a chelating pyridinyl-alcoholato ligand for application in linear alkene metathesis. Adv. Synth. Catal. 2007, 349, 184–192; https://doi.org/10.1002/adsc.200600474.Search in Google Scholar

15. Tole, T. T., du Toit, J. I., van Sittert, C. G. C. E., Jordaan, J. H. L., Vosloo, H. C. M. Synthesis and application of novel ruthenium catalysts for high temperature alkene metathesis. Catalysts 2017, 7, 22; https://doi.org/10.3390/catal7010022.Search in Google Scholar

16. Kitos, A. A., Giannopoulos, D. P., Papatriantafyllopoulou, C., Cunha–Silva, L., Perlepes, S. P. A square planar nickel(II) complex derived from a unique metal ion-promoted transformation of 2-benzoylpyridine. Inorg. Chem. Commun. 2016, 64, 53–55; https://doi.org/10.1016/j.inoche.2015.12.015.Search in Google Scholar

Received: 2021-02-18
Accepted: 2021-03-11
Published Online: 2021-03-31
Published in Print: 2021-07-27

© 2021 Nijal K. Singh et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of poly[(μ2-aqua-tetraaqua-(μ3-glutarato-κ4O,O′:O′:O′′)-(μ5-glutarato-κ6O:O,O′:O′:O′′:O′′′)distrontium(II)], C10H22O13Sr2
  4. The crystal structure of acetato-κ1O-{(2-(2-(2-aminophenoxy)ethoxy)phenyl)(4-oxo-4-phenylbut-2-en-2-yl)amido-κ2N,N′,O}copper(II), C26H26CuN2O5
  5. Crystal structure of dimethanolato-k2O:O-bis(1-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κN)-bis(thiocyanato-κN)dicopper(II), C34H32Cu2N12O2S2
  6. Crystal structure of poly[diaqua-bis(μ2-3-(pyrimidin-5-yl)benzoato-κ2N:O)cobalt(II)] dihydrate, [Co(C11H11O2N2)2(H2O)2]
  7. Crystal structure of bis(3,3-dimethyl-1-phenylbut-1-en-2-yl)(trimethylsilyl)amido-k1N)zinc(II), Zn(C15H24NSi)2
  8. Crystal structure of catena-poly[(μ2-methanolato-κ2O:O)-(μ2-1-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κ2N:N′)-(thiocyanato-κ1N)copper(II)] 0.25 hydrate, C17H16CuN6OS ⋅ 0.5H2O
  9. The crystal structure of 2-amino-5-nitroanilinium iodide monohydrate, C6H8IN3O2
  10. The crystal structure of 3-amino-5-carboxypyridin-1-ium perchlorate monohydrate, C6H9ClN2O7
  11. Crystal structure of 7-hydroxy-2,4-dimethoxy-9,10-dihydrophenanthrene from Arundina graminifolia, C16H16O3
  12. Crystal structure of 6,6′-((1E, 1′E)-(((1R, 2R)-1,2-diphenylethane-1,2-diyl) bis(azanylylidene))bis(methanylylidene))bis(2-ethylphenol), C32H32N2O2
  13. The crystal structure of 2-amino-5-carboxypyridin-1-ium iodide monohydrate, C6H9IN2O3
  14. The crystal structure of 2-(3,5-difluorophenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C16H11BF2N2
  15. Crystal structure of bis{(2-pyridinyl)-1-phenyl-1-isopropylmethanolato-κ2N,O}nickel, C30H32N2NiO2
  16. Crystal structure of poly[(m3-3-carboxyadamantane-1-carboxylato-κ3O:O′:O″)-(phenanthroline-κ2N,N′)sodium(II)], C24H23N2NaO4
  17. Crystal structure of 2-phenylethynyl-1,3,6,8-tetramethylBOPHY (BOPHY = bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine), C22H20B2F4N4
  18. Crystal structure of 4-tert-butyl-2-N-(2-pyridylmethyl)aminophenol, C16H20N2O
  19. The crystal structure of (3Z,3′Z)-4,4′-((1,4-phenylenebis(methylene))bis(azanediyl))bis(pent-3-en-2-one), C18H24N2O2
  20. Crystal structure of (morpholine-1-carbodithioato-κ2-S,S′)bis(triphenylphosphine-κ-P)gold(I), C41H38AuNOP2S2
  21. Crystal structure of 1,4-bis(4-bromobenzyl)-4-(4-chlorophenyl)-1,4-dihydropyridine-3-carbonitrile, C26H19Br2ClN2
  22. The crystal structure of fac-tricarbonyl (N′-benzoyl-N,N-diphenylcarbamimidothioato-κ2S,O)-(pyrazole-κN)rhenium(I) — methanol (1/1) C26H23O4N4SRe
  23. The crystal structure of Ba2Mn(SeO3)2Cl2 containing 1[Mn(SeO3)2Cl2]4− chains
  24. Crystal structure of 3,3′,3″-((1E,1′E,1″E)-((nitrilotris(ethane-2,1-diyl))tris(azaneylylidene)) tris(methaneylylidene))tris(4-hydroxy-1-naphthaldehyde) monohydrate, C42H36N4O6·H2O
  25. The crystal structure of 4-(6-acetyl-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrimidin-7-yl)benzonitrile, C14H12N6O
  26. Crystal structure of benzo[d][1,3]dioxol-5-yl-2-(6-methoxynaphthalen-2-yl)propanoate, C21H18O5
  27. The crystal structure of ethyl 5-methyl-7-(4-(phenylthio)phenyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate, C20H19N5O2S
  28. Crystal structure of N′,N‴-((propane-2,2-diylbis(1H-pyrrole-5,2-diyl))bis(methaneylylidene))-di(isonicotinohydrazide)– water – dimethylformamide (1/4/2), C25H24N8O2·4H2O·2C3H7NO
  29. Synthesis and crystal structure of 4-(2,4-dinitrophenoxy)benzaldehyde, C13H8N2O6
  30. The crystal structure of 1-dodecylpyridin-1-ium bromide monohydrate, C17H32BrNO
  31. Crystal structure of (E)-amino(2-(4-(dimethylamino)benzylidene)hydrazineyl)methaniminium nitrate, C10H16N6O3
  32. Crystal structure of (E)-(2-((1H-pyrrol-2-yl)methylene)hydrazineyl)(amino)methaniminium nitrate monohydrate, C6H12N6O4
  33. The crystal structure of hexakis(1-propylimidazole-κ1N)copper(II) dichloride, C36H60Cl2CuN12
  34. The crystal structure of bis{(μ2-3,3-dimethyl-1-phenylbut-1-en-2-yl)((dimethylamino)dimethylsilyl)amido-κ3N,N′:N′}dilithium, C32H54Li2N4Si2
  35. The crystal structure of methyl 4-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)benzoate, C18H15BN2O2
  36. Crystal structure of (E)-N-(1-((2-chlorothiazol-5-yl)methyl)pyridin-2(1H)-ylidene)-2,2,2-trifluoroacetamide, C11H7ClF3N3OS
  37. Crystal structure of N′, N‴-((propane-2,2-diylbis(1H-pyrrole-5,2-diyl))bis (methaneylylidene))di(picolinohydrazide) – water – methanol (1/1/1), C25H24N8O2·H2O·CH3OH
  38. Crystal structure of 3-(2-chloro-benzyl)-7-[4-(2-chloro-benzyl)-piperazin-1-yl]-5,6,8-trifluoro-3H-quinazolin-4-one, C26H21Cl2F3N4O
  39. Crystal structure of N1,N2-bis(2-fluorobenzyl)benzene-1,2-diamine,C20H18F2N2
  40. The crystal structure of 2-(benzo[d][1,3]dioxol-5-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C17H13BN2O2
  41. The crystal structure of 6,6′-((1E,1′E)-hydrazine-1,2-diylidenebis(methaneylylidene)) bis(2-bromo-4-nitrophenol) — dimethylsulfoxide (1/2), C14H8Br2N4O6⋅2(C2H6OS)
  42. Selective biocatalytic synthesis and crystal structure of (2R,6R)-hydroxyketaminium chloride, C13H17Cl2NO2
  43. Crystal structure of bis{tetraaqua-[μ3-1-(4-carboxylatophenyl)-5-methyl-1H-pyrazole-3-carboxylate-κ4N,O,O′,O″] [μ2-1-methyl-1H-pyrazole-3,5-dicarboxylate-κ3N,O:O]dicobalt(II)} dihydrate, C36H44Co4N8O26
  44. Crystal structure of diethyl-2,2′-naphthalene-2,3-diylbis(oxy)diacetate, C18H20O6
  45. Synthesis and crystal structure of poly[(μ3-2-(2-carboxylatophenyl)-1H-benzo[d]imidazole-5-carboxylato-κO,O′:O′;:O″, O″′)-(μ2-1-(4-(1Himidazol-1-yl)phenyl)-1H-imidazole-κ2N:N′)cadmium(II)], C27H18CdN6O4
  46. The crystal structure of catena-poly[diaqua-bis(μ2-2-((2-(2-phenylacetyl)hydrazineylidene)methyl)benzoato-κ2O:O')zinc(II)], C32H30N4O8Zn
  47. The crystal structure of 2-(3,4-dimethoxyphenyl)-2,3-dihydro-1H-naphtho [1,8-de][1,3,2]diazaborinine, C18H17BN2O2
  48. The crystal structure of hexakis(1-ethylimidazole-κ1N)nickel(II) dichloride – 1-ethylimidazole (1/2), C40H64Cl2NiN16
  49. Crystal structure of diaqua-bis(2,4-dinitrophenolato-κ2O,O′)copper(II) 1.5 hydrate, C12H13CuN4O13.5
  50. Crystal structure of N′,N‴-((1E,1′E)-((decane-1,10-diylbis(oxy))bis(2,1-phenylene)) bis(methaneylylidene))di(isonicotinohydrazide), C36H40N6O4
  51. The crystal structure of 2-[(R)-1-(naphthalen-1-yl)ethyl]-2,3,7,7a-tetrahydro-3a,6-epoxyisoindol-1(6H)-one, C19H20NO2
  52. Synthesis and crystal structure of (1E,2E)-3-(anthracen-9-yl)-1-(4-methoxyphenyl)prop-2-en-1-one oxime, C24H19NO2
  53. Synthesis and crystal structure of (2E,2′E)-3,3′-(1,3-phenylene)bis(1-(3-bromophenyl)prop-2-en-1-one), C24H16Br2O2
  54. The crystal structure of catena-poly[bis(µ2-1,2-bis((1H-imidazol-1-yl)methyl)benzene- κ2N:N′)-bis(nitrato-κO)copper(II)], C28H28N10O6Cu
  55. Synthesis and crystal structure of the novel chiral acetyl-3-thiophene-5-(9-anthryl)-2-pyrazoline, C23H18N2OS
  56. Crystal structure of (E)-3-(dimethylamino)-1-(thiophen-3-yl)prop-2-en-1-one, C9H11NOS
  57. Crystal structure of catena-poly[aqua-(4-iodopyridine-2,6-dicarboxylato-κ3N,O,O′)-(μ2-4-amino-4H-1,2,4-triazole-κ2N:N′) copper(II)], C9H8N5O5CuI
  58. Crystal structure of cyclopropane-1,2,3-triyltris(phenylmethanone), C24H18O3
  59. Crystal structure of bis(amino(thioureido)methaniminium) terephthalate, C12H18N8O4S2
  60. A three-dimensional Eu(III) framework in the crystal structure of dimethylaminium poly[dimethylformamide-κ1N)bis(μ4-terephthalato-κ4O:O′:O′′:O′′′)europium(III)] monohydrate, C21H25EuN2O10
  61. Crystal structure of 2-methoxyphenyl 2-(6-methoxynaphthalen-2-yl)propanoate, C21H20O4
  62. The crystal structure of Hexakis(diethylamido)dimolybdenum, Mo2(NEt2)6
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0064/html
Scroll to top button