Startseite Crystal structure of 1H-imidazol-3-ium poly[aqua-(μ4-glutarato-κ6O,O′:O′:O′′,O′′′:O′′′)-(nitrato-κ2O,O′)strontium(II)], C8H13N3O8Sr
Artikel Open Access

Crystal structure of 1H-imidazol-3-ium poly[aqua-(μ4-glutarato-κ6O,O′:O′:O′′,O′′′:O′′′)-(nitrato-κ2O,O′)strontium(II)], C8H13N3O8Sr

  • Rawiya Dridi , Amira Bouhali ORCID logo EMAIL logo , Chaouki Boudaren , Abdelmalek Bouraiou und Hocine Merazig
Veröffentlicht/Copyright: 5. März 2021

Abstract

C8H13N3O8Sr, monoclinic, C2/c (no. 15), a = 8.0945(2) Å, b = 15.7091(5) Å, c = 20.6169(6) Å, β = 96.807(2)°, V = 2603.11(13) Å3, Z = 8, Rgt(F) = 0.021, wRref(F2) = 0.0494, T = 273(2) K.

CCDC no.: 1983535

A part of the molecular structure is shown in the Figure. Table 1 contains crystallographic data, and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless block
Size:0.12 × 0.10 × 0.08 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:4.19 mm−1
Diffractometer, scan mode:Bruker APEXII
θmax, completeness:27.5°, 99%
N(hkl)measured, N(hkl)unique, Rint:15,520, 2983, 0.021
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 2823
N(param)refined:189
Programs:Bruker [1], SHELX [2], WinGX/ORTEP [3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
C10.1018 (2)0.38255 (10)0.43721 (8)0.0151 (3)
C20.1449 (2)0.47344 (12)0.42628 (10)0.0221 (4)
H210.26210.47690.42090.027*
H220.12750.5060.46490.027*
N20.1885 (2)0.32133 (14)0.20577 (9)0.0346 (4)
H20.13630.32160.16690.042*
C30.0431 (2)0.51473 (11)0.36632 (10)0.0230 (4)
H31−0.07210.51960.37450.028*
H320.04660.4780.32870.028*
C40.1091 (2)0.60442 (12)0.35033 (9)0.0223 (4)
H410.22710.60060.34620.027*
H420.05270.62340.30870.027*
N30.2905 (2)0.27889 (12)0.30059 (9)0.0287 (4)
H40.31560.24660.3340.034*
C50.0827 (2)0.66847 (10)0.40181 (8)0.0147 (3)
C70.3358 (3)0.36130 (16)0.29630 (12)0.0368 (5)
H70.39890.3930.32830.044*
N10.06789 (19)0.10379 (10)0.37074 (8)0.0245 (3)
C80.2711 (3)0.38874 (17)0.23611 (13)0.0419 (6)
H90.28110.4430.21890.05*
C60.2020 (3)0.25568 (15)0.24578 (11)0.0316 (4)
H100.15660.2020.23680.038*
O10.21403 (14)0.33205 (8)0.45999 (7)0.0199 (3)
O2−0.04789 (14)0.35761 (8)0.42307 (7)0.0202 (3)
O1W−0.11563 (17)0.10539 (9)0.56795 (7)0.0215 (3)
O3−0.06482 (15)0.69278 (8)0.40604 (7)0.0213 (3)
O40.20262 (15)0.69467 (8)0.44076 (7)0.0216 (3)
O50.1037 (3)0.06317 (12)0.32359 (9)0.0540 (5)
O60.03955 (16)0.18226 (8)0.36632 (7)0.0242 (3)
O70.05833 (18)0.06854 (8)0.42545 (7)0.0278 (3)
Sr10.00025 (2)0.21191 (2)0.49004 (2)0.01294 (6)
H1W−0.094 (3)0.0520 (18)0.5708 (13)0.037 (7)*
H2W−0.215 (4)0.1113 (19)0.5702 (15)0.053 (9)*

Source of material

Glutaric acid (0.13 g, 1 mmol) was added to NaOH (0.04 g, 1 mmol) dissolved in 5 ml distilled water. Strontium nitrate (0.26 g, 1 mmol) was mixed with the stirred aqueous solution and finally 0.06 g of imidazole (1 mmol) was added to the incolor solution by continuous stirring at room temperature overnight. After a few days, several colorless block crystals were obtained and filtered, washed with cold distilled water and dried in a vacuum desiccator containing calcium chloride to a constant weight (yield 33.6%).

Experimental details

All H atoms were placed in idealized positions using the standard riding models of the SHELX System [2]. The position and Uiso of H atoms were freely refined. Reflections, whose intensities were obstructed or shadowed by the beamstop, were omitted during refinement.

Comment

Coordination polymers and in particular metal–organic frameworks (MOFs) [5], [6] are a relatively new classes of compounds showing promising properties for the chemical industry [7], [8]. Synthesis and study of new salts of dicarboxylic acids with metals reveal new types of structures, which are interesting from the viewpoint of crystal engineering and practical applications [9], [10], [11], [12], [13]. The glutarate anion contains four potential donor atoms, coming from two carboxylate groups. For this anion, the aliphatic carbon backbone may show in three conformations: anti–anti, anti–gauche and gauchegauche.

The asymmetric unit of the title compound contains one Sr2+ ion, one coordinated nitrate anion, a (C5H6O4)2− anion, one aqua ligand and one protonated imidazole molecule. The crystal structure is linked into a polymeric chain running parallel to the (010) by a bridging glutarate ligand (μ4, −k6, η1:η2:η1, η2). Pairs of these bridging adjacent strontium atoms form [Sr2(glu)2] dimeric units with a Sr…Sr distance of 9.0606 (3) Å. The layers are stacked into a three-dimensional structure and linked via a weak π–π interaction between imidazole rings in neighboring layers. The strontium atom is coordinated by the O atoms from four glutarate anions involved in a mono- and bidentate mode, one bidentate nitrate anion and a water molecule. The nine-fold coordination polyhedron of Sr can be described as a distorted monocapped square antiprism where the cap position is occupied by O7, which is separated from Sr by 2.6881 Å and from the first square face by 1.7368 Å. First, the mean standard deviation from planarity of the face capped by O7 [O1I, O4III, O6, O1w] is 0.3394 Å versus 0.1024 Å for the second face [O1, O2, O3II, O4II] (for symmetry operation (I) 1/2 − x, 1/2 − y, 1 − z (II) −x, 1 − y, 1 − z and (III) −1/2 + x, −1/2 + y, z). The deformation of two squares is also perceptible from the angles around the oxygen atoms. In particular, the comparison between the two sets of torsion angles confirms a twist more marked for the square face capped by O7 (±22 against ±9.0° for the other plane). Also, the distances from the central Sr atom to the center of each square face differ from each other [0.8004 Å against 1.8271 Å for the second plane]. The dihedral angle between the two planes is equal to 3.536°. Nevertheless, such a distortion into the SrO7(H2O) antiprism can be related with the constraints induced by both the capping position and the two opposite pyramidal O7–O6 and O7–O1w edges [2.1607 and 3.4624 Å, respectively]. The Sr–O distances fall in the range 2.5142(1)–2.7258(1) Å (av. = 2.628 Å), in good accordance with the value calculated with the bond valence program VALENCE [13], [14] for ninefold-coordinated Sr2+ cation, i.e., 2.672 Å. The bond valences are close to 0.340, 0.214, 0.218, 0.259 and 0.336 valence units (v.u.) for Sr–O1, Sr– O1I, Sr–O2, Sr–O3II and Sr–O4III, respectively. The bond valences are 0.192, 0.234, 0.212 and 0.289 v.u. for Sr–O4II, Sr–O6, Sr–O7 and Sr–O1w, respectively. Then, the sum of the bond valences around the strontium atom, i.e., 2.2 v.u. must be compared with the +2 oxidation state of Sr. The glutarate ligands adopt the anti-gauche conformation, illustrated by the C1–C2–C3–C4 [171.408(2)°] and C2–C3–C4–C5 [67.666(2)°] torsion angles. The dihedral angle between the C1/O1/O2 and C5/O3/O4 carboxylate group at each end of the ion is 62.281°. The carboxylate group binds four metal cations through bidentate and monodentate chelation. The three Csp3–Csp3–Csp3 angles of the glutarate anion C1–C2–C3, C2–C3–C4 and C3–C4–C5 are 114.144(2)°, 112.823(2)° and 112.189(1)° but they are considerably greater than the tetrahedral angle 109.28° (mainly due to the presence of intermolecular hydrogen bonding).


Corresponding author: Amira Bouhali, Unité de recherche de Chimie de l’Environnement et Moléculaire Structurale, CHEMS, Université des frére Mentouri Constantine 1, 25000, Constantine, Algeria, E-mail:

Funding source: Unité de recherche de Chimie de l’Environnement et Moléculaire Structurale, CHEMS, Université des Frères Mentouri Constantine 1

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors thank the Unité de recherche de Chimie de l’Environnement et Moléculaire Structurale, CHEMS, Université des Frères Mentouri Constantine 1, Algeria and MESRS (Ministère de l'En-seignement Supérieur et de la Recherche Scientifique) for funding and support.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2; Bruker AXS Inc.: Madison, Wisconsin, USA, 2011.Suche in Google Scholar

2. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8.10.1107/S2053229614024218Suche in Google Scholar

3. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Suche in Google Scholar

4. Brandenburg, K., Berndt, M. DIAMOND. Visual Crystal Structure Information System; Crystal Impact GbR: Bonn, Germany, 2001.Suche in Google Scholar

5. Kitagawa, S., Kitaura, R., Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375; https://doi.org/10.1002/anie.200300610.Suche in Google Scholar

6. Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 2008, 37, 191–214; https://doi.org/10.1039/b618320b.Suche in Google Scholar

7. Zhou, H.-C., Long, J. R., Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674; https://doi.org/10.1021/cr300014x.Suche in Google Scholar

8. Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., Verpoort, F. Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev. 2015, 44, 6804–6849; https://doi.org/10.1039/c4cs00395k.Suche in Google Scholar

9. Bataille, T., Bouhali, A., Kouvatas, C., Trifa, C., Audebrand, N., Boudaren, C. Hydrates and polymorphs of lead squarate Pb(C4O4): structural transformations studied by in situ X-ray powder diffraction and solid state NMR. Polyhedron 2019, 164, 123–131; https://doi.org/10.1016/j.poly.2019.02.047.Suche in Google Scholar

10. Bouhali, A., Trifa, C., Bouacida, S., Boudaren, C., Bataille, T. Poly [[μ-aqua-tetraaquabis (μ-2-hydroxy-4-oxocyclobut-1-ene-1,3-diolato)strontium] hemihydrate]. Acta Crystallogr. 2011, E67, m1130–m1131; https://doi.org/10.1107/s1600536811028704.Suche in Google Scholar

11. Boudaren, C., Auffrédic, J. P., Bénard-Rocherullé, P., Louër, D. Structure determination from powder diffraction data and thermal behaviour of layered lead nitrate oxalate hydrate, Pb2(NO3)2(C2O4)⋅2H2O. Solid State Sci. 2001, 3, 847–858; https://doi.org/10.1016/s1293-2558(01)01188-8.Suche in Google Scholar

12. Boudaren, C., Bataille, T., Auffrédic, J. P., Louër, D. Synthesis, structure determination from powder diffraction data and thermal behaviour of titanium(IV) oxalate [Ti2O3(H2O)2](C2O4)⋅H2O. Solid State Sci. 2003, 5, 175–182; https://doi.org/10.1016/s1293-2558(02)00091-2.Suche in Google Scholar

13. Grzesiak-Nowak, M., Nitek, W., Rafalska-Lasocha, A., Lasocha, W. Synthesis and investigations of new strontium dicarboxylates. Z. Kristallogr. Cryst. Mater. 2013, 228, 590–597; https://doi.org/10.1524/zkri.2013.1665.Suche in Google Scholar

14. Brown, I. D. VALENCE: a program for calculating bond valences. J. Appl. Crystallogr. 1996, 29, 479–480; https://doi.org/10.1107/s002188989600163x.Suche in Google Scholar

Received: 2020-12-19
Accepted: 2021-02-18
Published Online: 2021-03-05
Published in Print: 2021-05-26

© 2021 Rawiya Dridi et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxidoethylidene)benzohydrazonato-κ5N,O,O′:N′,O′′)hexkis(pyridine-κ1N)trinickel(II) - pyridine (1/1), C63H57Cl2N13Ni3O6
  4. Crystal structure of [(μ2-succinato κ3O,O′:O′′)-bis-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)]dinickel(II)] diperchlorate, dihydrate C36H82Cl2N8Ni2O15
  5. Crystal structure of catena-poly[aquabis(3-nitrobenzoato-κ2O:O′)-(μ2-pyrazine-N: N′)cadmium(II)], C18H14N4O9Cd
  6. Crystal structure of 4-(2,2-difluoroethyl)-2,4,6-trimethylisoquinoline-1,3(2H,4H)-dione, C14H15F2NO2
  7. The crystal structure of thioxanthen-9-one-10,10-dioxide, C13H8O3S – a second polymorph
  8. Crystal structure of (E)-2-((2-methoxy-3-pyridyl)methylene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  9. The crystal structure of diaquahydrogen 2,5-dimethylbenzenesulphonate, C8H14O5S
  10. The crystal structure of N-(4-(cyclohexylimino)pent-2-en-2-yl)cyclohexanamine, C17H30N2
  11. The twinned crystal structure of 1,3-phenylenedimethanaminium dibromide, C8H14Br2N2
  12. Crystal structure of 2,4,7,9-tetranitro-10H-benzofuro[3,2-b]indole – dimethyl sulfoxide (1/1), C16H11N5O10S
  13. Crystal structure of 2,6-bis(2-(pyridin-3-yl)ethyl)pyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-tetraone, C24H18N4O4
  14. The crystal structure of 3,4-dichlorobenzoic acid chloride, C7H3Cl3O
  15. Crystal structure of 1,1′-(1,4-phenylenebis(methylene))bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-k2S:S)zinc(II), C26H18N6ZnS4
  16. Crystal structure of tetrakis(μ-naphthalene-1-carboxylato-κ2O,O′)bis(methanol)copper(II), C46H36Cu2O10
  17. Crystal structure of 9-methyl-3-methylene-1,2,3,9-tetrahydro-4H-carbazol-4-one, C14H13NO
  18. Crystal structure of bis(amino(carbamothioylamino)methaniminium) 3-nitrophthalate monohydrate, C12H19N9O7S2
  19. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-ethyl-1H-imidazol-3-ium) bis(hexafluorophosphate), C18H24F12N4P2
  20. The crystal structure of 5-hydroxy-6,8-dimethoxy-2-methyl-4H-benzo[g]chromen-4-one– rubrofusarin B, C16H14O5
  21. The crystal structure of bis(ethanol-kO)- bis(6-aminopicolinato-k2N,O)manganese(II), C16H22O6N4Mn
  22. The crystal structure of 3,3′-((carbonylbis(azanediyl))bis(ethane-2,1-diyl)) bis(1-methyl-1H-benzo[d]imidazol-3-ium) tetrafluoroborate monohydrate, C21H28N6O3B2F8
  23. Crystal structure of dimethanol-dichlorido-bis( μ2-2-(((1,5-dimethyl-3-oxo-2- phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)phenolato- κ4O:O,O′,N)dinickel (II), C20H24ClNiN3O4
  24. The crystal structure of methyl 5-(trifluoromethyl)-1H-pyrrole-2-carboxylate, C7H6F3NO2
  25. Crystal structure of (OC‐6‐13)‐aqua‐tris (3‐bromopyridine‐κ1N)‐bis(trifluoroacetato‐κ1O)cadmium(II) C19H14Br3CdF6N3O5
  26. Crystal structure of methyl (E)-3-(4-(2-ethoxy-2-oxoethoxy)phenyl) acrylate, C14H16O5
  27. Crystal structure of methyl 4-acetoxy-3,5-dimethoxybenzoate, C12H14O6
  28. The crystal structure of 2-(1H-benzimidazol-2-yl)-3-bromo-5-chlorophenol, C13H8BrClN2O
  29. The crystal structure of bis(μ2-5-chloro-N-(2-methyl-1-oxidopropylidene)-2-oxidobenzohydrazonate-κ5N,O,O′:N′,O′′)pentakis(pyridine-κ1N)tricopper(II), C47H45Cl2N9Cu3O6
  30. Synthesis and crystal structure of catena-poly[aqua-bis(nitrato-κ2O:O′)- (μ2-((1 H-imidazol-1-yl)methyl)benzene-κ2 N,N′)-H2O-κ2O]cadmium(II), C14H16N6O7Cd
  31. The crystal structure of pentakis(carbonyl)-{μ-[2,3-bis(sulfanyl)propan-1-olato]}-(triphenylphosphane)diiron (FeFe)C26H21Fe2O6PS2
  32. Crystal structure of ethyl-2-(3-benzoylthioureido)propanoate, C13H16N2O3S
  33. Crystal structure of 2-methoxy-4b,5,14,15-tetrahydro-6H-isoquinolino[2′,1′:1,6] pyrazino[2,3-b]quinoxaline, C19H18N4O
  34. Crystal structure of 2,2′-[ethane-1,2-diylbis(azanylylidenemethylylidene)]bis(6-chlorophenol), C16H14Cl2N2O2
  35. The crystal structure of (Z)-3-((2-(2-(2-aminophenoxy)ethoxy)phenyl)amino)-1-phenylbut-2-en-1-one, C24H24N2O3
  36. The crystal structure of 10-(3,5-di(pyridin-4-yl)phenyl)-10H-phenoxazine dihydrate, C28H23N3O3
  37. Crystal structure of poly[dipoly[aqua-di(µ2-pyrazin-2-olato-κ2N:N′) zinc(II)], C8H8N4O3Zn
  38. Crystal structure of poly[tetra(μ2-cyanido-κ2N:O)-bis(N,N-dimethylformamide-κO)-manganese(II)-platinum(II)], C10H14MnN6O2Pt
  39. The crystal structure of aqua-chlorido-6,6′-((ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dichlorophenolato-κ4N,N′,O,O′)manganese(III), C16H12Cl5MnN2O3
  40. Crystal structure of [di(µ2-cyanido)-dicyanido-bis(dimethyl sulfoxide-κO)- bis(2,2′-(ethane-1,2-diylbis(azanylylidenemethanylylidene))diphenolato-κ4,N,N′,O,O′)- dimanganese(III)-platinum(II)], C40H40Mn2N8O6PtS2
  41. The crystal structure of (azido)-κ1N-6,6′-((cyclohexane-1,2-diylbis(azanylylidene)) bis(methanylylidene))bis(3-bromophenolato-κ4N,N,O,O)-(methanol)-manganese(III)–methanol(1/1), C22H26Br2MnN5O4
  42. Crystal structure of 7-chloro-N-(4-iodobenzyl)-1,2,3,4-tetrahydroacridin-9-amine, C20H18ClIN2
  43. Crystal structure of catena-poly[(1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N′′′)-bis(μ2-thiocyanato-κ2N:S)-bis(thiocyanato-κS)-nickel(II)palladium(II)], C14H24N8NiPdS4
  44. Crystal structure of 3-chloro-4-(4-ethylpiperazin-1-yl)aniline monohydrate, C12H20ClN3O
  45. Crystal structure of the 2D coordination polymer poly[diaqua-bis(μ2-3- methoxyisonicotinato-κ2N:O)cobalt(II)] — dimethylformamide (1/1), C20H30CoN4O10
  46. Crystal structure of 4-[(5-chloro-2-hydroxybenzylidene)amino]-3-propyl-1H-1,2,4-triazole-5(4H)-thione, C12H13ClN4OS
  47. Crystal structure of N-(5-(2-(benzyl(1-(4-methoxyphenyl)propan-2-yl)amino)-1-hydroxyethyl)-2-(benzyloxy)phenyl)formamide, C33H36N2O4
  48. Crystal structure of 3-(methoxycarbonyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylic acid, C9H12O5
  49. The crystal structure of 1-((dimethylamino)(3-nitrophenyl)methyl)naphthalen-2-ol, C19H18N2O3
  50. Crystal structure of catena-poly[di(μ2-cyanido-κ2C:N)-dicyanido-tetrakis(dimethyl sulfoxide-κO)-manganese(II)-platinum(II)], C12H24MnN4O4PtS4
  51. Crystal structure of 4-amino-N-(2-pyrimidinyl)benzenesulfonamide–1,4-dioxane (1/1), C14H18N4O4S
  52. Crystal structure of bis{1-[(benzotriazol-1-yl)methyl]-1H-1,3-(2-methyl-imidazol)}di-chloridomercury(II), [Hg(C11H11N5)2Cl2], C22H22N10Cl2Hg
  53. Crystal structure of 2, 3-bis((4-methylbenzoyl)oxy) succinic acid–N, N-dimethylformamide (1/1), C23H25NO9
  54. Crystal structure of catena-poly[bis(4-(4-carboxyphenoxy)benzoato-κ1O)-μ2-(1,4-bis(1-imidazolyl)benzene-κ2N:N′)cobalt(II)], C40H28N4O10Co
  55. Crystal structure of 1H-imidazol-3-ium poly[aqua-(μ4-glutarato-κ6O,O′:O′:O′′,O′′′:O′′′)-(nitrato-κ2O,O′)strontium(II)], C8H13N3O8Sr
  56. Crystal structure of (R)-6-(benzo[b]thiophen-5-yl)-2-methyl-2,6-dihydrobenzo [5,6] silino[4,3,2-cd]indole, C23H17NSSi
  57. Crystal structure of catena-poly[bis(μ2-thiocyanato-κ2N:S)-(2-(5-methyl-1H-pyrazol-3-yl)pyridine-κ2N,N′)cadmium(II)]–dioxane (1/1), C15H17CdN5O2S2
  58. Crystal structure of poly[aqua-(μ2-1,4-bis(2′-carboxylatophenoxy)benzene-κ2O:O′)-(μ2-4,4′-bipyridione-κ2N:N′)cadmium(II)] monhydrate, C30H22CdN2O7⋅H2O
  59. Crystal structure of catena-poly[tetraaqua-(μ2-4,4′-bipyridine-k2N:N′)-bis(μ2-4′-methyl-[1,1′-biphenyl]-3,5-dicarboxylato-k4O,O′:O″,O′″)dicadmium(II)] dihydrate, C20H20NO7Cd
  60. Crystal structure of 1‐tert‐butyl‐3‐(2,6‐diisopropyl‐4‐phenoxyphenyl)‐2-methylisothiourea, C24H34N2OS
  61. Crystal structure of catena-poly[triaqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-(4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ1O)cobalt(II)] — N,N′-dimethylformamide (1/1), C28H34N8O8Co
  62. Crystal structure of tetraaqua-bis(1,4-di(1H-imidazol-1-yl)benzene-κ1N)manganese(II) 2,3-dihydroxyterephthalate, C32H32MnN8O10
Heruntergeladen am 9.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0638/html
Button zum nach oben scrollen