Startseite Crystal structure of ethyl-2-(3-benzoylthioureido)propanoate, C13H16N2O3S
Artikel Open Access

Crystal structure of ethyl-2-(3-benzoylthioureido)propanoate, C13H16N2O3S

  • Yan Yi Chong ORCID logo , Wun Fui Mark-Lee ORCID logo , Mohamed Ibrahim Mohamed Tahir ORCID logo und Mohammad B. Kassim ORCID logo EMAIL logo
Veröffentlicht/Copyright: 17. Februar 2021

Abstract

C13H16N2O3S, triclinic, P1 (no. 2), a = 8.1998(4) Å, b = 9.1320(4) Å, c = 10.7062(6) Å, α = 106.183(5)°, β = 111.506(5)°, γ = 97.589(4)°, V = 691.27(7) Å3, Z = 2, Rgt(F) = 0.0346, wRref(F2) = 0.0957, T = 293(2) K.

CCDC no.: 2057970

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless plate
Size:0.22 × 0.14 × 0.03 mm
Wavelength:Cu Kα radiation (1.54178 Å)
μ:2.14 mm−1
Diffractometer, scan mode:Oxford Diffraction Gemini, ω
θmax, completeness:71.3°, >99%
N(hkl)measured, N(hkl)unique, Rint:13964, 2644, 0.026
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 2445
N(param)refined:182
Programs:CrysAlisPRO [1], SHELX [2], [, 3], PLATON [4], Olex2 [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
S10.42897 (5)0.74998 (4)0.95514 (4)0.02776 (13)
O10.58278 (15)0.84892 (12)0.61333 (11)0.0312 (3)
O20.24347 (17)0.45286 (13)0.42096 (12)0.0384 (3)
O30.09157 (14)0.28051 (12)0.48094 (11)0.0313 (3)
N10.58871 (16)0.90186 (14)0.83662 (13)0.0241 (3)
N20.43456 (17)0.64057 (14)0.69922 (13)0.0259 (3)
C10.78337 (19)1.08993 (16)0.79635 (16)0.0240 (3)
C20.9107 (2)1.15302 (17)0.93946 (17)0.0274 (3)
H20.9025101.1049221.0036900.033*
C31.0495 (2)1.28723 (18)0.98609 (19)0.0341 (4)
H31.1356361.3281951.0811100.041*
C41.0596 (2)1.36000 (18)0.8910 (2)0.0369 (4)
H41.1530611.4497580.9221110.044*
C50.9312 (2)1.29990 (19)0.7497 (2)0.0371 (4)
H50.9371261.3509500.6868570.045*
C60.7936 (2)1.16379 (18)0.70121 (17)0.0301 (3)
H60.7089611.1223550.6057220.036*
C70.64214 (19)0.93740 (16)0.73796 (16)0.0240 (3)
C80.48330 (18)0.75989 (16)0.82029 (15)0.0231 (3)
C90.3328 (2)0.48246 (16)0.67026 (16)0.0267 (3)
H90.2514690.4910040.7184850.032*
C100.21925 (19)0.40686 (16)0.50950 (16)0.0268 (3)
C11−0.0242 (2)0.19127 (19)0.32983 (17)0.0341 (4)
H11A0.0488760.1570550.2793430.041*
H11B−0.0930190.2561780.2858520.041*
C12−0.1500 (2)0.0509 (2)0.3227 (2)0.0421 (4)
H12A−0.229608−0.0104630.2241720.063*
H12B−0.2206760.0863640.3736890.063*
H12C−0.080314−0.0128340.3655840.063*
C130.4585 (2)0.38273 (18)0.72445 (18)0.0373 (4)
H13A0.3874710.2783420.7005610.056*
H13B0.5257390.4306000.8267690.056*
H13C0.5413150.3765810.6800900.056*
H1A0.607 (2)0.9762 (19)0.9107 (17)0.031 (5)*
H2A0.463 (3)0.657 (2)0.6367 (19)0.046 (6)*

Source of material

Benzoyl chloride, ammonium thiocyanate, l-alanine, lanthanum(III) chloride and solvents were purchased and used without further purification.

The title compound (I) is an ester analogue of 2-(3-benzoylthioureido)propionic acid (II) [6]. In the first step, II was prepared as described by Ngah et al. [6]. Next, II was refluxed with LaCl3 in ethanol for 17 h to yield the title compound. After cooling to room temperature, the solvent was reduced under atmospheric pressure. The crude product was extracted with water and dichloromethane to remove the catalyst (LaCl3). The organic layer was dried over anhydrous MgSO4, filtered and the solvent was removed in vacuo. It was recrystallised from an ethanol solution at room temperature to give colourless crystals suitable for single crystal X-ray diffraction. Elem. Anal.: Calc. for C13H16N2O3S: C = 55.70; H = 5.75; N = 9.99; S = 11.44%. Found: C = 55.54; H = 5.05; N = 9.52; S = 12.36%. IR (KBr, cm−1): 3234 [ν(N–H)], 1732 [ν(C=Ocarboxylate)], 1672 [ν(C=Oamide)], 913 [ν(C=S)]. 1H NMR (CDCl3, 400 MHz) δ (ppm): 11.20 (s, 1H), 9.05 (s, 1H), 7.86 (d, J = 7.3 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.3 Hz, 2H), 5.00–5.06 (m, 1H), 4.27 (q, J = 7.1 Hz, 2H), 1.62 (d, J = 7.1 Hz, 3H), 1.32 (t, J = 7.1 Hz, 3H). 13C NMR (CDCl3, 400 MHz) δ (ppm): 179.6, 171.7, 166.8, 133.7, 131.8, 129.2, 127.6, 61.9, 54.2, 17.6, 14.2.

Experimental details

All H atoms, except amine H atoms, were positioned geometrically and refined in a riding model approximation (C–H = 0.93–0.98 Å) with Uiso(H) = 1.2–1.5Ueq(C). The hydrogen atoms on N1 and N2, namely H1A and H2A, respectively, were located in a difference Fourier map and refined with a distance restraint of N–H = 0.86 ± 0.02 Å.

Comment

Benzoylthiourea derivatives represent a well-known category of organic compounds due to the diverse biological applications including insecticidal [7], antibacterial [8], anticancer [9], [, 10] and antifungal [11]. In view of the interesting properties of this class of compounds, we synthesised a derivative linked with an amino acid congener. The adjunct amino acid derivative on the benzoylthiourea core is a significant chemical constituent found in biological systems. These class of compounds were reported to exhibit enhanced biological properties [12], [, 13]. Herein, the synthesis and crystal structure determination of the title compound (I) is described.

The compound adopts a cis-trans conformation with respect to the ethyl propanoate and benzoyl moieties, relative to the S atom across the C8–N2 and C8–N1 bonds, respectively. This conformation is commonly observed in other benzoylthiourea derivatives [14], [15], [16]. The C8–S1, N1–C8 and N2–C8 bond lengths of the thiourea core are almost equivalent to the corresponding bond lengths of related structures [17], [, 18]. The aforementioned benzoyl and ethyl propanoate fragments are inclined to the thiourea least-square plane (S1/N1/N2/C8) with dihedral angles of 33.61(5) and 45.70(5)°, respectively. Additionally, the benzoyl moiety and ethyl propanoate fragment subtend a dihedral angle of 12.11(6)°.

The crystal structure features an intramolecular N–H···O [N(2)–H(2A)···O(1): H(2A)···O(1) = 0.83(2) Å, N(2)···O(1) = 2.6696(18) Å at an angle of 135.2(17)°] hydrogen bond generating a S(6) ring according to graph-set notation [19]. This characteristic is also featured in the solid-state structure of archetypal benzoylthiourea compounds [11], [20], [21]. In the molecular packing, the only directional interaction observed is the N–H···S [N(1)–H(1A)···S(1): H(1A)···S(1) = 0.836(17) Å, N(1)···S(1) = 3.3923(14) Å at an angle of 152.7(15)°; symmetry operation of (i) 1 − x, 2 − y, 2 − z] contact, which leads to the formation of dimeric aggregates. The dimers form a stacking column along the a-axis which is stabilised by C‒H⋯π interactions but no other significant directional interactions.

To probe the supramolecular aggregation further, Hirshfeld surface analysis in conjunction with two-dimensional fingerprint (FP) plots were obtained by utilizing Crystal Explorer 17 [22] with reference to previous methods [23], [, 24]. The FP plot delineated H···S/S···H contacts into distinct complementary long sharp spikes corresponding to the intermolecular N–H···S hydrogen bonds. H···S/S···H contacts contribute 11.9% of all contacts to the Hirshfeld surface. Noteworthy, the H···H contacts contribute 45.8% of all contacts to the surface. Other significant contributions to the surface are from H···C/C···H [18.1%] and H···O/O···H [18.0%] contacts.


Corresponding author: Mohammad B. Kassim, Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600Bangi, Selangor, Malaysia, E-mail:

Funding source: Centre for Research and Instrumentation Management (UKM)

Funding source: Ministry of Higher Education (MOHE) Malaysia

Award Identifier / Grant number: FRGS/1/2018/STG01/UKM/01/3

Acknowledgements

The authors thank the Department of Chemical Sciences, Faculty of Science and Technology (UKM) for the provision of experimental facilities and the Department of Chemistry, Faculty of Science (UPM) for the X-ray analysis.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors thank the Centre for Research and Instrumentation Management (UKM) for a postdoctoral fellowship to YYC and the Ministry of Higher Education (MOHE) Malaysia for FRGS/1/2018/STG01/UKM/01/3 research grant.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Agilent Technologies. CrysAlisPRO; Agilent Technologies: Santa Clara, CA, USA, 2012.Suche in Google Scholar

2. Sheldrick, G. M. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. 2009, D65, 148–155; https://doi.org/10.1107/s090744490804362x.Suche in Google Scholar

5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

6. Ngah, N., Kassim, M. B., Yamin, B. M. 2-(3-Benzoylthioureido)propionic acid. Acta Crystallogr. 2006, E62, o381–o382; https://doi.org/10.1107/s1600536805039607.Suche in Google Scholar

7. Xu, X., Qian, X., Li, Z., Huang, Q., Chen, G. Synthesis and insecticidal activity of new substituted N-aryl-N′-benzoylthiourea compounds. J. Fluor. Chem. 2003, 121, 51–54; https://doi.org/10.1016/s0022-1139(02)00330-5.Suche in Google Scholar

8. Marzi, M., Pourshamsian, K., Hatamjafari, F., Shiroudi, A., Oliaey, A. R. Synthesis of new N-benzoyl-N′-triazine thiourea derivatives and their antibacterial activity. Russ. J. Bioorg. Chem. 2019, 45, 391–397; https://doi.org/10.1134/s106816201905008x.Suche in Google Scholar

9. Ruswanto, Miftaha, A. M., Tjahjono, D. H., Siswandono Synthesis and in vitro cytotoxicity of 1-benzoyl-3-methylthiourea derivatives. Procedia Chem. 2015, 17, 157–161; https://doi.org/10.1016/j.proche.2015.12.105.Suche in Google Scholar

10. Kesuma, D., Siswandono, Purwanto, B. T., Rudyanto, M. Synthesis and anticancer evaluation of N-benzoyl-N′-phenyltiourea derivatives against human breast cancer cells (T47D). J. Chin. Pharmaceut. Sci. 2020, 29, 123–129.10.5246/jcps.2020.02.010Suche in Google Scholar

11. Limban, C., Chifiriuc, M. C., Caproiu, M. T., Dumitrascu, F., Ferbinteanu, M., Pintilie, L., Stefaniu, A., Vlad, I. M., Bleotu, C., Marutescu, L. G., Nuta, D. C. New substituted benzoylthiourea derivatives: from design to antimicrobial applications. Molecules 2020, 25, 1478–1497; https://doi.org/10.3390/molecules25071478.Suche in Google Scholar PubMed PubMed Central

12. Chohan, Z. H., Arif, M., Akhtar, M. A., Supuran, C. T. Metal-based antibacterial and antifungal agents: synthesis, characterization, and in vitro biological evaluation of Co(II), Cu(II), Ni(II), and Zn(II) complexes with amino acid-derived compounds. Bioinorgan. Chem. Appl. 2006, 2006, 1–13; https://doi.org/10.1155/bca/2006/83131.Suche in Google Scholar PubMed PubMed Central

13. Kadir, M. A., Ramli, R., Yusof, M. S. M., Ismail, N., Ngah, N. Synthesis, spectroscopic studies and antibacterial activity of new lauroyl thiourea amino acid derivatives. Asian J. Chem. 2016, 28, 596–600; https://doi.org/10.14233/ajchem.2016.19430.Suche in Google Scholar

14. Chong, Y. Y., Tahir, M. I. M., Kassim, M. B. 2-(3-Benzoylthioureido)-3-phenylpropanoic acid. IUCrData 2016, 1, x161091; https://doi.org/10.1107/s2414314616010919.Suche in Google Scholar

15. Mark-Lee, W. F., Nasir, M. F. M., Kassim, M. B. Structural and optical properties investigation on H-bonded 1D helical self-assembly of 1,1-dibenzyl-3-(2-bromobenzoyl)thiourea molecules for nonlinear optical application. Sains Malays. 2018, 47, 741–747; https://doi.org/10.17576/jsm-2018-4704-12.Suche in Google Scholar

16. Abosadiya, H. M., Anouar, E. H., Yamin, B. M. Synthesis, X-ray, spectroscopic characterization (FT-IR, NMR, UV-Vis) and quantum chemical calculations of some substituted benzoylthiourea derivatives. J. Mol. Struct. 2019, 1194, 48–56; https://doi.org/10.1016/j.molstruc.2019.05.060.Suche in Google Scholar

17. Tan, S. L., Azizan, A. H. S., Jotani, M. M., Tiekink, E. R. T. 3,3-Bis(2-hydroxyethyl)-1-(4-methylbenzoyl)thiourea: crystal structure, Hirshfeld surface analysis and computational study. Acta Crystallogr. 2019, E75, 1472–1478; https://doi.org/10.1107/s2056989019012581.Suche in Google Scholar PubMed PubMed Central

18. Abosadiya, H. M. Synthesis, crystal structure and antioxidant evaluation of N-(4-formylpiperazine-1-carbonothioyl)benzamide. Eur. J. Chem. 2020, 11, 156–159; https://doi.org/10.5155/eurjchem.11.2.156-159.1981.Suche in Google Scholar

19. Bernstein, J., Davis, R. E., Shimoni, L., Chang, N.-L. Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555–1573; https://doi.org/10.1002/anie.199515551.Suche in Google Scholar

20. Hassan, I. N., Yamin, B. M., Kassim, M. B. Methyl 2-(3-benzoylthioureido)acetate. Acta Crystallogr. 2009, E65, o3078; https://doi.org/10.1107/s1600536809046169.Suche in Google Scholar PubMed PubMed Central

21. Hassan, I. N., Chong, Y. Y., Kassim, M. B. Methyl 3-(3-benzoylthioureido)propanoate. Acta Crystallogr. 2011, E67, o780; https://doi.org/10.1107/s160053681100568x.Suche in Google Scholar

22. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., Spackman, M. A. Crystal Explorer v17; The University of Western Australia: Australia, 2017.Suche in Google Scholar

23. Mark-Lee, W. F., Chong, Y. Y., Kassim, M. B. Supramolecular structures of rhenium(I) complexes mediated by ligand planarity via the interplay of substituents. Acta Crystallogr. 2018, C74, 997–1006; https://doi.org/10.1107/s2053229618010586.Suche in Google Scholar PubMed

24. Tan, S. L., Jotani, M. M., Tiekink, E. R. T. Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. 2019, E75, 308–318; https://doi.org/10.1107/s2056989019001129.Suche in Google Scholar

Received: 2020-12-05
Accepted: 2021-01-22
Published Online: 2021-02-17
Published in Print: 2021-05-26

© 2020 Yan Yi Chong et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxidoethylidene)benzohydrazonato-κ5N,O,O′:N′,O′′)hexkis(pyridine-κ1N)trinickel(II) - pyridine (1/1), C63H57Cl2N13Ni3O6
  4. Crystal structure of [(μ2-succinato κ3O,O′:O′′)-bis-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)]dinickel(II)] diperchlorate, dihydrate C36H82Cl2N8Ni2O15
  5. Crystal structure of catena-poly[aquabis(3-nitrobenzoato-κ2O:O′)-(μ2-pyrazine-N: N′)cadmium(II)], C18H14N4O9Cd
  6. Crystal structure of 4-(2,2-difluoroethyl)-2,4,6-trimethylisoquinoline-1,3(2H,4H)-dione, C14H15F2NO2
  7. The crystal structure of thioxanthen-9-one-10,10-dioxide, C13H8O3S – a second polymorph
  8. Crystal structure of (E)-2-((2-methoxy-3-pyridyl)methylene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  9. The crystal structure of diaquahydrogen 2,5-dimethylbenzenesulphonate, C8H14O5S
  10. The crystal structure of N-(4-(cyclohexylimino)pent-2-en-2-yl)cyclohexanamine, C17H30N2
  11. The twinned crystal structure of 1,3-phenylenedimethanaminium dibromide, C8H14Br2N2
  12. Crystal structure of 2,4,7,9-tetranitro-10H-benzofuro[3,2-b]indole – dimethyl sulfoxide (1/1), C16H11N5O10S
  13. Crystal structure of 2,6-bis(2-(pyridin-3-yl)ethyl)pyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-tetraone, C24H18N4O4
  14. The crystal structure of 3,4-dichlorobenzoic acid chloride, C7H3Cl3O
  15. Crystal structure of 1,1′-(1,4-phenylenebis(methylene))bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-k2S:S)zinc(II), C26H18N6ZnS4
  16. Crystal structure of tetrakis(μ-naphthalene-1-carboxylato-κ2O,O′)bis(methanol)copper(II), C46H36Cu2O10
  17. Crystal structure of 9-methyl-3-methylene-1,2,3,9-tetrahydro-4H-carbazol-4-one, C14H13NO
  18. Crystal structure of bis(amino(carbamothioylamino)methaniminium) 3-nitrophthalate monohydrate, C12H19N9O7S2
  19. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-ethyl-1H-imidazol-3-ium) bis(hexafluorophosphate), C18H24F12N4P2
  20. The crystal structure of 5-hydroxy-6,8-dimethoxy-2-methyl-4H-benzo[g]chromen-4-one– rubrofusarin B, C16H14O5
  21. The crystal structure of bis(ethanol-kO)- bis(6-aminopicolinato-k2N,O)manganese(II), C16H22O6N4Mn
  22. The crystal structure of 3,3′-((carbonylbis(azanediyl))bis(ethane-2,1-diyl)) bis(1-methyl-1H-benzo[d]imidazol-3-ium) tetrafluoroborate monohydrate, C21H28N6O3B2F8
  23. Crystal structure of dimethanol-dichlorido-bis( μ2-2-(((1,5-dimethyl-3-oxo-2- phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)phenolato- κ4O:O,O′,N)dinickel (II), C20H24ClNiN3O4
  24. The crystal structure of methyl 5-(trifluoromethyl)-1H-pyrrole-2-carboxylate, C7H6F3NO2
  25. Crystal structure of (OC‐6‐13)‐aqua‐tris (3‐bromopyridine‐κ1N)‐bis(trifluoroacetato‐κ1O)cadmium(II) C19H14Br3CdF6N3O5
  26. Crystal structure of methyl (E)-3-(4-(2-ethoxy-2-oxoethoxy)phenyl) acrylate, C14H16O5
  27. Crystal structure of methyl 4-acetoxy-3,5-dimethoxybenzoate, C12H14O6
  28. The crystal structure of 2-(1H-benzimidazol-2-yl)-3-bromo-5-chlorophenol, C13H8BrClN2O
  29. The crystal structure of bis(μ2-5-chloro-N-(2-methyl-1-oxidopropylidene)-2-oxidobenzohydrazonate-κ5N,O,O′:N′,O′′)pentakis(pyridine-κ1N)tricopper(II), C47H45Cl2N9Cu3O6
  30. Synthesis and crystal structure of catena-poly[aqua-bis(nitrato-κ2O:O′)- (μ2-((1 H-imidazol-1-yl)methyl)benzene-κ2 N,N′)-H2O-κ2O]cadmium(II), C14H16N6O7Cd
  31. The crystal structure of pentakis(carbonyl)-{μ-[2,3-bis(sulfanyl)propan-1-olato]}-(triphenylphosphane)diiron (FeFe)C26H21Fe2O6PS2
  32. Crystal structure of ethyl-2-(3-benzoylthioureido)propanoate, C13H16N2O3S
  33. Crystal structure of 2-methoxy-4b,5,14,15-tetrahydro-6H-isoquinolino[2′,1′:1,6] pyrazino[2,3-b]quinoxaline, C19H18N4O
  34. Crystal structure of 2,2′-[ethane-1,2-diylbis(azanylylidenemethylylidene)]bis(6-chlorophenol), C16H14Cl2N2O2
  35. The crystal structure of (Z)-3-((2-(2-(2-aminophenoxy)ethoxy)phenyl)amino)-1-phenylbut-2-en-1-one, C24H24N2O3
  36. The crystal structure of 10-(3,5-di(pyridin-4-yl)phenyl)-10H-phenoxazine dihydrate, C28H23N3O3
  37. Crystal structure of poly[dipoly[aqua-di(µ2-pyrazin-2-olato-κ2N:N′) zinc(II)], C8H8N4O3Zn
  38. Crystal structure of poly[tetra(μ2-cyanido-κ2N:O)-bis(N,N-dimethylformamide-κO)-manganese(II)-platinum(II)], C10H14MnN6O2Pt
  39. The crystal structure of aqua-chlorido-6,6′-((ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dichlorophenolato-κ4N,N′,O,O′)manganese(III), C16H12Cl5MnN2O3
  40. Crystal structure of [di(µ2-cyanido)-dicyanido-bis(dimethyl sulfoxide-κO)- bis(2,2′-(ethane-1,2-diylbis(azanylylidenemethanylylidene))diphenolato-κ4,N,N′,O,O′)- dimanganese(III)-platinum(II)], C40H40Mn2N8O6PtS2
  41. The crystal structure of (azido)-κ1N-6,6′-((cyclohexane-1,2-diylbis(azanylylidene)) bis(methanylylidene))bis(3-bromophenolato-κ4N,N,O,O)-(methanol)-manganese(III)–methanol(1/1), C22H26Br2MnN5O4
  42. Crystal structure of 7-chloro-N-(4-iodobenzyl)-1,2,3,4-tetrahydroacridin-9-amine, C20H18ClIN2
  43. Crystal structure of catena-poly[(1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N′′′)-bis(μ2-thiocyanato-κ2N:S)-bis(thiocyanato-κS)-nickel(II)palladium(II)], C14H24N8NiPdS4
  44. Crystal structure of 3-chloro-4-(4-ethylpiperazin-1-yl)aniline monohydrate, C12H20ClN3O
  45. Crystal structure of the 2D coordination polymer poly[diaqua-bis(μ2-3- methoxyisonicotinato-κ2N:O)cobalt(II)] — dimethylformamide (1/1), C20H30CoN4O10
  46. Crystal structure of 4-[(5-chloro-2-hydroxybenzylidene)amino]-3-propyl-1H-1,2,4-triazole-5(4H)-thione, C12H13ClN4OS
  47. Crystal structure of N-(5-(2-(benzyl(1-(4-methoxyphenyl)propan-2-yl)amino)-1-hydroxyethyl)-2-(benzyloxy)phenyl)formamide, C33H36N2O4
  48. Crystal structure of 3-(methoxycarbonyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylic acid, C9H12O5
  49. The crystal structure of 1-((dimethylamino)(3-nitrophenyl)methyl)naphthalen-2-ol, C19H18N2O3
  50. Crystal structure of catena-poly[di(μ2-cyanido-κ2C:N)-dicyanido-tetrakis(dimethyl sulfoxide-κO)-manganese(II)-platinum(II)], C12H24MnN4O4PtS4
  51. Crystal structure of 4-amino-N-(2-pyrimidinyl)benzenesulfonamide–1,4-dioxane (1/1), C14H18N4O4S
  52. Crystal structure of bis{1-[(benzotriazol-1-yl)methyl]-1H-1,3-(2-methyl-imidazol)}di-chloridomercury(II), [Hg(C11H11N5)2Cl2], C22H22N10Cl2Hg
  53. Crystal structure of 2, 3-bis((4-methylbenzoyl)oxy) succinic acid–N, N-dimethylformamide (1/1), C23H25NO9
  54. Crystal structure of catena-poly[bis(4-(4-carboxyphenoxy)benzoato-κ1O)-μ2-(1,4-bis(1-imidazolyl)benzene-κ2N:N′)cobalt(II)], C40H28N4O10Co
  55. Crystal structure of 1H-imidazol-3-ium poly[aqua-(μ4-glutarato-κ6O,O′:O′:O′′,O′′′:O′′′)-(nitrato-κ2O,O′)strontium(II)], C8H13N3O8Sr
  56. Crystal structure of (R)-6-(benzo[b]thiophen-5-yl)-2-methyl-2,6-dihydrobenzo [5,6] silino[4,3,2-cd]indole, C23H17NSSi
  57. Crystal structure of catena-poly[bis(μ2-thiocyanato-κ2N:S)-(2-(5-methyl-1H-pyrazol-3-yl)pyridine-κ2N,N′)cadmium(II)]–dioxane (1/1), C15H17CdN5O2S2
  58. Crystal structure of poly[aqua-(μ2-1,4-bis(2′-carboxylatophenoxy)benzene-κ2O:O′)-(μ2-4,4′-bipyridione-κ2N:N′)cadmium(II)] monhydrate, C30H22CdN2O7⋅H2O
  59. Crystal structure of catena-poly[tetraaqua-(μ2-4,4′-bipyridine-k2N:N′)-bis(μ2-4′-methyl-[1,1′-biphenyl]-3,5-dicarboxylato-k4O,O′:O″,O′″)dicadmium(II)] dihydrate, C20H20NO7Cd
  60. Crystal structure of 1‐tert‐butyl‐3‐(2,6‐diisopropyl‐4‐phenoxyphenyl)‐2-methylisothiourea, C24H34N2OS
  61. Crystal structure of catena-poly[triaqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-(4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ1O)cobalt(II)] — N,N′-dimethylformamide (1/1), C28H34N8O8Co
  62. Crystal structure of tetraaqua-bis(1,4-di(1H-imidazol-1-yl)benzene-κ1N)manganese(II) 2,3-dihydroxyterephthalate, C32H32MnN8O10
Heruntergeladen am 9.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0623/html
Button zum nach oben scrollen