Startseite Crystal structure of tetrakis(μ-naphthalene-1-carboxylato-κ2O,O′)bis(methanol)copper(II), C46H36Cu2O10
Artikel Open Access

Crystal structure of tetrakis(μ-naphthalene-1-carboxylato-κ2O,O′)bis(methanol)copper(II), C46H36Cu2O10

  • Li‐Qin Shi ORCID logo
Veröffentlicht/Copyright: 20. Januar 2021

Abstract

C46H36Cu2O10, monoclinic, C2/c (no. 15), a = 32.663(7) Å, b = 7.4214(15) Å, c = 21.785(4) Å, β = 131.68(3)°, V = 3944.0(19) Å3, Z = 4, Rgt(F) = 0.0478, wRref(F2) = 0.1583, T = 295 K.

CCDC no.: 2047897

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Blue block
Size:0.47 × 0.24 × 0.15 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:1.14 mm−1
Diffractometer, scan mode:Rigaku R-AXIS RAPID, ω
θmax, completeness:25.0°, >99%
N(hkl)measured, N(hkl)unique, Rint:14878, 3469, 0.054
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 2299
N(param)refined:262
Programs:Rigaku [1], SHELX [2], [, 3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Cu10.00310 (3)0.83972 (8)0.48061 (4)0.0417 (2)
O10.03638 (19)0.7646 (5)0.5920 (3)0.0592 (11)
O20.03265 (18)1.0437 (5)0.6249 (2)0.0611 (12)
O30.07396 (16)0.9280 (5)0.5230 (3)0.0566 (11)
O40.06879 (17)1.2057 (5)0.5548 (3)0.0646 (13)
O50.01618 (17)0.5841 (5)0.4482 (3)0.0563 (11)
H5B−0.0086300.5067800.4313700.084*
C10.0639 (3)0.9459 (9)0.7684 (4)0.0638 (18)
H1A0.0466691.0555340.7437620.077*
C20.0836 (3)0.9086 (10)0.8470 (5)0.079 (2)
H2A0.0790150.9924460.8737480.095*
C30.1093 (3)0.7505 (10)0.8840 (4)0.0657 (18)
H3A0.1226090.7272720.9365330.079*
C40.1162 (2)0.6210 (8)0.8446 (4)0.0509 (15)
C50.1428 (3)0.4556 (9)0.8837 (4)0.0626 (18)
H5A0.1559360.4332140.9361630.075*
C60.1494 (3)0.3303 (10)0.8464 (4)0.0688 (19)
H6A0.1658050.2206150.8721860.083*
C70.1317 (3)0.3647 (9)0.7688 (4)0.0680 (19)
H7A0.1371250.2784910.7437710.082*
C80.1067 (2)0.5231 (8)0.7297 (4)0.0561 (16)
H8A0.0957830.5438250.6784980.067*
C90.0969 (2)0.6574 (8)0.7646 (3)0.0460 (13)
C100.0693 (2)0.8251 (7)0.7270 (3)0.0426 (13)
C110.0446 (2)0.8798 (8)0.6416 (4)0.0443 (13)
C120.1682 (3)0.9853 (9)0.5590 (4)0.0593 (17)
H12A0.1492840.8767270.5374780.071*
C130.2175 (3)1.0052 (11)0.5757 (5)0.080 (2)
H13A0.2303520.9118080.5639030.096*
C140.2462 (3)1.1599 (11)0.6088 (5)0.074 (2)
H14A0.2787071.1723710.6192370.089*
C150.2280 (2)1.3028 (9)0.6278 (4)0.0577 (17)
C160.2593 (3)1.4604 (11)0.6656 (5)0.076 (2)
H16A0.2924661.4700010.6777090.092*
C170.2425 (3)1.5994 (11)0.6849 (5)0.082 (2)
H17A0.2640901.7018920.7106730.098*
C180.1924 (3)1.5861 (10)0.6654 (5)0.075 (2)
H18A0.1805021.6813830.6778850.090*
C190.1604 (3)1.4356 (9)0.6284 (4)0.0602 (17)
H19A0.1270001.4312880.6155110.072*
C200.1771 (2)1.2866 (8)0.6092 (3)0.0489 (15)
C210.1473 (2)1.1197 (8)0.5732 (3)0.0441 (13)
C220.0932 (2)1.0845 (8)0.5493 (3)0.0446 (13)
C230.0381 (3)0.5763 (10)0.4102 (5)0.079 (2)
H23A0.0410280.4527620.4004210.118*
H23B0.0144360.6399290.3588700.118*
H23C0.0737970.6308180.4454440.118*

Source of material

The reaction of 0.172 g (1.0 mmol) CuCl2⋅2H2O with 0.344 g (2.0 mmol) 1-naphthoic acid (HNAP) in 20 mL methanol for 15 min afforded green solid, which was then filtered. The green filtrate was allowed to stand at room temperature by slow evaporation within two days; green block crystals suitable for X-ray diffraction were obtained (yield: 63.5% based on CuCl2⋅2H2O input).

Experimental details

The structure was solved by direct methods with the SHELXS program. All H-atoms from C atoms were positioned with idealized geometry (Uiso(H) = 1.2 Ueq(C) and Uiso(H) = 1.5 Ueq(C) for aromatic and methyl H atoms, respectively) using a riding model with C–H = 0.93 or 0.96 Å. H atom attached to the O atom was refined using a riding model, with the O–H distance fixed with Uiso(H) values set at 1.5 Ueq(O).

Comment

Construction of supramolecular systems and crystal engineering have been one of the most active fields in chemistry and materials science, due to their fascinating structures and potential applications in ion exchange [4], catalysis [5], [, 6], gas storage and separation [7], [, 8], fluorescent sensing [9], [, 10], optical and magnetic properties [11], [, 12], and so on. In the past decades, considerable effort has been devoted to design the supramolecular assemblies by carefully selecting building blocks and organic ligands [13]. Aromatic carboxylate ligands, due to their versatile coordination modes and potential luminescence nature, have been extensively employed as linkers to construct functional materials. Up to now, many complexes which were assembled by 1-naphthoates (NAP) have been reported [14], [15], [16].

Crystallographic analysis of the title complex shows that it crystallizes in the monoclinic space group C2/c, containing a dinuclear paddle-wheel complex [Cu2(NAP)4(MeOH)2], which is composed of two CuII ions, four NAP ligands and two methanol molecules. Each Cu ion is coordinated by four O atoms from four different NAP ligands, while the O atom from methanol occupies the apical position, forming a slightly distorted square pyramid with d(Cu1–O1) =1.969(4) Å, d(Cu1–O2#1) = 1.956(4) Å, d(Cu1–O3) =1.949(4) Å, d(Cu1–O4#1) = 1.953(4) Å, d(Cu1–O5) = 2.163(4) Å (#1 = −x, −y + 2, −z + 1), which are in good agreement with those reported for similar complexes [17]. The Cu⃛Cu distance is 2.578(1) Å, which is observed within the normal range for dinuclear paddle-wheel units in the structures of CuII carboxylate complexes [18], [19]. The dinuclear CuII units are further connected to form one-dimensional chains by hydrogen bonds [d(O5⃛O1#2 = 2.900(4) Å, O5–H5B⃛O1#2 = 150(2)°, #2 = −x, −y + 2, −z + 1].


Corresponding author: Li‐Qin Shi, Ningbo Polytechnic, Ningbo315800, P.R.China, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

1. Rigaku. RAPID–AUTO; Rigaku Corporation: Tokyo, Japan, 1998.Suche in Google Scholar

2. Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Das, S., Kim, H., Kim, K. Metathesis in single crystal: complete and reversible exchange of metal ions constituting the frameworks of metal-organic frameworks. J. Am. Chem. Soc. 2009, 131, 3814–3815; https://doi.org/10.1021/ja808995d.Suche in Google Scholar

5. Xu, W., Chen, H., Jie, K. C., Yang, Z. Z., Li, T. T., Dai, S. Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation. Angew. Chem. Int. Ed. 2019, 58, 5018–5022; https://doi.org/10.1002/anie.201900787.Suche in Google Scholar

6. Zhang, M. Y., Xu, W., Li, T. T., Zhu, H. L., Zheng, Y. Q. In situ growth of tetrametallic FeCoMnNi–MOF-74 on nickel foam as efficient bifunctional electrocatalysts for the evolution reaction of oxygen and hydrogen. Inorg. Chem. 2020, 59, 15467–15477; https://doi.org/10.1021/acs.inorgchem.0c02504.Suche in Google Scholar

7. Forse, A. C., Gonzalez, M. I., Siegelman, R. L., Witherspoon, V. J., Jawahery, S., Mercado, R., Milner, P. J., Martell, J. D., Smit, B., Blümich, B., Long, J. R., Reimer, J. A. Unexpected diffusion anisotropy of carbon dioxide in the metal-organic framework Zn2(dobpdc). J. Am. Chem. Soc. 2018, 140, 1663–1673; https://doi.org/10.1021/jacs.7b09453.Suche in Google Scholar

8. Li, H., Wang, K. C., Sun, Y. J., Lollar, C. T., Li, J. L., Zhou, H. C. Recent advances in gas storage and separation using metal-organic frameworks. Mater. Today 2018, 21, 108–121; https://doi.org/10.1016/j.mattod.2017.07.006.Suche in Google Scholar

9. Lu, K. D., Aung, T., Guo, N. N., Weichselbaum, R., Lin, W. B. Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv. Mater. 2018, 30, 1707634; https://doi.org/10.1002/adma.201707634.Suche in Google Scholar

10. Wang, L., Tu, B. T., Xu, W., Fu, Y., Zheng, Y. Q. Uranyl organic framework as a highly selective and sensitive turn-on and turn-off luminescent sensor for dual functional detection arginine and MnO4−. Inorg. Chem. 2020, 59, 5004–5017; https://doi.org/10.1021/acs.inorgchem.0c00236.Suche in Google Scholar

11. Espallargas, G. M., Coronado, E. Magnetic functionalities in MOFs: from the framework to the pore. Chem. Soc. Rev. 2018, 47, 533–557.10.1039/C7CS00653ESuche in Google Scholar PubMed

12. Xu, W., Si, Z. X., Xie, M., Zhou, L. X., Zheng, Y. Q. Experimental and theoretical approaches to three uranyl coordination polymers constructed by phthalic acid and N,N′-donor bridging ligands: crystal structures, luminescence, and photocatalytic dedgradation of tetracycline hydrochloride. Cryst. Growth Des. 2017, 17, 2147–2157; https://doi.org/10.1021/acs.cgd.7b00097.Suche in Google Scholar

13. Inge, A. K., Köppen, M., Su, J., Feyand, M., Xu, H. Y., Zou, X. D., O’Keeffe, M., Stock, N. Unprecedented topological complexity in a metal- organic framework constructed from simple buiding units. J. Am. Chem. Soc. 2016, 138, 1970–1976; https://doi.org/10.1021/jacs.5b12484.Suche in Google Scholar

14. Takasaki, S., Takamizawa, S. Reversible crystal deformation of a single-crystal host of copper(II) 1-naphthoate-pyrazine through crystal phase transition induced by methanol vapor sorption. Chem. Commun. 2015, 51, 5024–5027; https://doi.org/10.1039/c4cc09948f.Suche in Google Scholar

15. Liu, Z. Y., Xia, Y. F., Jiao, J., Yang, E. C., Zhao, X. J. Two water-bridged cobalt(II) chains with isomeric naphthoate spacers: from metamagnetic to single-chain magnetic behaviour. Dalton Trans. 2015, 44, 19927–19934; https://doi.org/10.1039/c5dt03297k.Suche in Google Scholar

16. Xu, W., Yu, X. K. Crystal structure of tetrakis(μ-naphthalene-1-carboxylato-κ2O,O′)- bis(pyridine)copper(II), C54H38Cu2N2O8. Z. Kristallogr. NCS 2013, 228, 9–10; https://doi.org/10.1524/ncrs.2013.0006.Suche in Google Scholar

17. Karthik, K., Qadir, A. M. Synthesis and crystal structure of a new binuclear copper(II) carboxylate complex as precursor for copper(II) oxide nanoparticles. J. Struct. Chem. 2019, 60, 1126–1132; https://doi.org/10.1134/s002247661907014x.Suche in Google Scholar

18. Wang, G. M., Xue, Z. Z., Pan, J., Wei, L., Han, S. D., Qian, J. J., Wang, Z. H. Ligand-oriented assembly of a porous metal-organic framework by [Cu4II4] clusters and paddle-wheel [Cu2II(COO)4(H2O)2] subunits. CrystEngComm 2016, 18, 8362–8365; https://doi.org/10.1039/c6ce01954d.Suche in Google Scholar

19. Ohmura, T., Setoyama, N., Mukae, Y., Usuki, A., Senda, S., Matsumoto, T., Tatsumi, K. Supramolecular porphyrin-based metal-organic frameworks: Cu(II) naphthoate–Cu(II) tetrapyridyl porphine structures exhibiting selective CO2/N2 separation. CrystEngComm 2017, 19, 5173–5177; https://doi.org/10.1039/c7ce01138e.Suche in Google Scholar

Received: 2020-12-05
Accepted: 2020-12-23
Published Online: 2021-01-20
Published in Print: 2021-05-26

© 2020 Li‐Qin Shi, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxidoethylidene)benzohydrazonato-κ5N,O,O′:N′,O′′)hexkis(pyridine-κ1N)trinickel(II) - pyridine (1/1), C63H57Cl2N13Ni3O6
  4. Crystal structure of [(μ2-succinato κ3O,O′:O′′)-bis-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)]dinickel(II)] diperchlorate, dihydrate C36H82Cl2N8Ni2O15
  5. Crystal structure of catena-poly[aquabis(3-nitrobenzoato-κ2O:O′)-(μ2-pyrazine-N: N′)cadmium(II)], C18H14N4O9Cd
  6. Crystal structure of 4-(2,2-difluoroethyl)-2,4,6-trimethylisoquinoline-1,3(2H,4H)-dione, C14H15F2NO2
  7. The crystal structure of thioxanthen-9-one-10,10-dioxide, C13H8O3S – a second polymorph
  8. Crystal structure of (E)-2-((2-methoxy-3-pyridyl)methylene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  9. The crystal structure of diaquahydrogen 2,5-dimethylbenzenesulphonate, C8H14O5S
  10. The crystal structure of N-(4-(cyclohexylimino)pent-2-en-2-yl)cyclohexanamine, C17H30N2
  11. The twinned crystal structure of 1,3-phenylenedimethanaminium dibromide, C8H14Br2N2
  12. Crystal structure of 2,4,7,9-tetranitro-10H-benzofuro[3,2-b]indole – dimethyl sulfoxide (1/1), C16H11N5O10S
  13. Crystal structure of 2,6-bis(2-(pyridin-3-yl)ethyl)pyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-tetraone, C24H18N4O4
  14. The crystal structure of 3,4-dichlorobenzoic acid chloride, C7H3Cl3O
  15. Crystal structure of 1,1′-(1,4-phenylenebis(methylene))bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-k2S:S)zinc(II), C26H18N6ZnS4
  16. Crystal structure of tetrakis(μ-naphthalene-1-carboxylato-κ2O,O′)bis(methanol)copper(II), C46H36Cu2O10
  17. Crystal structure of 9-methyl-3-methylene-1,2,3,9-tetrahydro-4H-carbazol-4-one, C14H13NO
  18. Crystal structure of bis(amino(carbamothioylamino)methaniminium) 3-nitrophthalate monohydrate, C12H19N9O7S2
  19. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-ethyl-1H-imidazol-3-ium) bis(hexafluorophosphate), C18H24F12N4P2
  20. The crystal structure of 5-hydroxy-6,8-dimethoxy-2-methyl-4H-benzo[g]chromen-4-one– rubrofusarin B, C16H14O5
  21. The crystal structure of bis(ethanol-kO)- bis(6-aminopicolinato-k2N,O)manganese(II), C16H22O6N4Mn
  22. The crystal structure of 3,3′-((carbonylbis(azanediyl))bis(ethane-2,1-diyl)) bis(1-methyl-1H-benzo[d]imidazol-3-ium) tetrafluoroborate monohydrate, C21H28N6O3B2F8
  23. Crystal structure of dimethanol-dichlorido-bis( μ2-2-(((1,5-dimethyl-3-oxo-2- phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)phenolato- κ4O:O,O′,N)dinickel (II), C20H24ClNiN3O4
  24. The crystal structure of methyl 5-(trifluoromethyl)-1H-pyrrole-2-carboxylate, C7H6F3NO2
  25. Crystal structure of (OC‐6‐13)‐aqua‐tris (3‐bromopyridine‐κ1N)‐bis(trifluoroacetato‐κ1O)cadmium(II) C19H14Br3CdF6N3O5
  26. Crystal structure of methyl (E)-3-(4-(2-ethoxy-2-oxoethoxy)phenyl) acrylate, C14H16O5
  27. Crystal structure of methyl 4-acetoxy-3,5-dimethoxybenzoate, C12H14O6
  28. The crystal structure of 2-(1H-benzimidazol-2-yl)-3-bromo-5-chlorophenol, C13H8BrClN2O
  29. The crystal structure of bis(μ2-5-chloro-N-(2-methyl-1-oxidopropylidene)-2-oxidobenzohydrazonate-κ5N,O,O′:N′,O′′)pentakis(pyridine-κ1N)tricopper(II), C47H45Cl2N9Cu3O6
  30. Synthesis and crystal structure of catena-poly[aqua-bis(nitrato-κ2O:O′)- (μ2-((1 H-imidazol-1-yl)methyl)benzene-κ2 N,N′)-H2O-κ2O]cadmium(II), C14H16N6O7Cd
  31. The crystal structure of pentakis(carbonyl)-{μ-[2,3-bis(sulfanyl)propan-1-olato]}-(triphenylphosphane)diiron (FeFe)C26H21Fe2O6PS2
  32. Crystal structure of ethyl-2-(3-benzoylthioureido)propanoate, C13H16N2O3S
  33. Crystal structure of 2-methoxy-4b,5,14,15-tetrahydro-6H-isoquinolino[2′,1′:1,6] pyrazino[2,3-b]quinoxaline, C19H18N4O
  34. Crystal structure of 2,2′-[ethane-1,2-diylbis(azanylylidenemethylylidene)]bis(6-chlorophenol), C16H14Cl2N2O2
  35. The crystal structure of (Z)-3-((2-(2-(2-aminophenoxy)ethoxy)phenyl)amino)-1-phenylbut-2-en-1-one, C24H24N2O3
  36. The crystal structure of 10-(3,5-di(pyridin-4-yl)phenyl)-10H-phenoxazine dihydrate, C28H23N3O3
  37. Crystal structure of poly[dipoly[aqua-di(µ2-pyrazin-2-olato-κ2N:N′) zinc(II)], C8H8N4O3Zn
  38. Crystal structure of poly[tetra(μ2-cyanido-κ2N:O)-bis(N,N-dimethylformamide-κO)-manganese(II)-platinum(II)], C10H14MnN6O2Pt
  39. The crystal structure of aqua-chlorido-6,6′-((ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dichlorophenolato-κ4N,N′,O,O′)manganese(III), C16H12Cl5MnN2O3
  40. Crystal structure of [di(µ2-cyanido)-dicyanido-bis(dimethyl sulfoxide-κO)- bis(2,2′-(ethane-1,2-diylbis(azanylylidenemethanylylidene))diphenolato-κ4,N,N′,O,O′)- dimanganese(III)-platinum(II)], C40H40Mn2N8O6PtS2
  41. The crystal structure of (azido)-κ1N-6,6′-((cyclohexane-1,2-diylbis(azanylylidene)) bis(methanylylidene))bis(3-bromophenolato-κ4N,N,O,O)-(methanol)-manganese(III)–methanol(1/1), C22H26Br2MnN5O4
  42. Crystal structure of 7-chloro-N-(4-iodobenzyl)-1,2,3,4-tetrahydroacridin-9-amine, C20H18ClIN2
  43. Crystal structure of catena-poly[(1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N′′′)-bis(μ2-thiocyanato-κ2N:S)-bis(thiocyanato-κS)-nickel(II)palladium(II)], C14H24N8NiPdS4
  44. Crystal structure of 3-chloro-4-(4-ethylpiperazin-1-yl)aniline monohydrate, C12H20ClN3O
  45. Crystal structure of the 2D coordination polymer poly[diaqua-bis(μ2-3- methoxyisonicotinato-κ2N:O)cobalt(II)] — dimethylformamide (1/1), C20H30CoN4O10
  46. Crystal structure of 4-[(5-chloro-2-hydroxybenzylidene)amino]-3-propyl-1H-1,2,4-triazole-5(4H)-thione, C12H13ClN4OS
  47. Crystal structure of N-(5-(2-(benzyl(1-(4-methoxyphenyl)propan-2-yl)amino)-1-hydroxyethyl)-2-(benzyloxy)phenyl)formamide, C33H36N2O4
  48. Crystal structure of 3-(methoxycarbonyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylic acid, C9H12O5
  49. The crystal structure of 1-((dimethylamino)(3-nitrophenyl)methyl)naphthalen-2-ol, C19H18N2O3
  50. Crystal structure of catena-poly[di(μ2-cyanido-κ2C:N)-dicyanido-tetrakis(dimethyl sulfoxide-κO)-manganese(II)-platinum(II)], C12H24MnN4O4PtS4
  51. Crystal structure of 4-amino-N-(2-pyrimidinyl)benzenesulfonamide–1,4-dioxane (1/1), C14H18N4O4S
  52. Crystal structure of bis{1-[(benzotriazol-1-yl)methyl]-1H-1,3-(2-methyl-imidazol)}di-chloridomercury(II), [Hg(C11H11N5)2Cl2], C22H22N10Cl2Hg
  53. Crystal structure of 2, 3-bis((4-methylbenzoyl)oxy) succinic acid–N, N-dimethylformamide (1/1), C23H25NO9
  54. Crystal structure of catena-poly[bis(4-(4-carboxyphenoxy)benzoato-κ1O)-μ2-(1,4-bis(1-imidazolyl)benzene-κ2N:N′)cobalt(II)], C40H28N4O10Co
  55. Crystal structure of 1H-imidazol-3-ium poly[aqua-(μ4-glutarato-κ6O,O′:O′:O′′,O′′′:O′′′)-(nitrato-κ2O,O′)strontium(II)], C8H13N3O8Sr
  56. Crystal structure of (R)-6-(benzo[b]thiophen-5-yl)-2-methyl-2,6-dihydrobenzo [5,6] silino[4,3,2-cd]indole, C23H17NSSi
  57. Crystal structure of catena-poly[bis(μ2-thiocyanato-κ2N:S)-(2-(5-methyl-1H-pyrazol-3-yl)pyridine-κ2N,N′)cadmium(II)]–dioxane (1/1), C15H17CdN5O2S2
  58. Crystal structure of poly[aqua-(μ2-1,4-bis(2′-carboxylatophenoxy)benzene-κ2O:O′)-(μ2-4,4′-bipyridione-κ2N:N′)cadmium(II)] monhydrate, C30H22CdN2O7⋅H2O
  59. Crystal structure of catena-poly[tetraaqua-(μ2-4,4′-bipyridine-k2N:N′)-bis(μ2-4′-methyl-[1,1′-biphenyl]-3,5-dicarboxylato-k4O,O′:O″,O′″)dicadmium(II)] dihydrate, C20H20NO7Cd
  60. Crystal structure of 1‐tert‐butyl‐3‐(2,6‐diisopropyl‐4‐phenoxyphenyl)‐2-methylisothiourea, C24H34N2OS
  61. Crystal structure of catena-poly[triaqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-(4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ1O)cobalt(II)] — N,N′-dimethylformamide (1/1), C28H34N8O8Co
  62. Crystal structure of tetraaqua-bis(1,4-di(1H-imidazol-1-yl)benzene-κ1N)manganese(II) 2,3-dihydroxyterephthalate, C32H32MnN8O10
Heruntergeladen am 9.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0622/html
Button zum nach oben scrollen