Home The crystal structure of pentakis(carbonyl)-{μ-[2,3-bis(sulfanyl)propan-1-olato]}-(triphenylphosphane)diiron (Fe–Fe)C26H21Fe2O6PS2
Article Open Access

The crystal structure of pentakis(carbonyl)-{μ-[2,3-bis(sulfanyl)propan-1-olato]}-(triphenylphosphane)diiron (FeFe)C26H21Fe2O6PS2

  • Wei Gao ORCID logo , Yan-Jie Bai , Jia-Le Mao and Xue-Quan Guo
Published/Copyright: February 8, 2021

Abstract

C26H21Fe2O6PS2, monoclinic, P21/c (no. 14), a = 9.0892(6) Å, b = 27.6631(18) Å, c = 11.3409(8) Å, β = 106.409(2)°, V = 2735.4(3) Å3, Z = 4, Rgt(F) = 0.0670, wRref(F2) = 0.1620, T = 296(2) K.

CCDC no.: 2057958

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Red block
Size:0.32 × 0.24 × 0.22 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:1.31 mm−1
Diffractometer, scan mode:Bruker D8 QUEST, φ and ω
θmax, completeness:25.1°, >99%
N(hkl)measured, N(hkl)unique, Rint:63350, 4837, 0.090
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3418
N(param)refined:344
Programs:Bruker [1], Olex2 [2], SHELX [3], [, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Fe10.15445 (10)0.47736 (3)0.78454 (10)0.0539 (3)
Fe20.04267 (9)0.39648 (3)0.80761 (8)0.0408 (2)
S10.0102 (2)0.43417 (6)0.62538 (18)0.0630 (5)
S2−0.0601 (2)0.46758 (6)0.8423 (2)0.0666 (6)
P1−0.14211 (17)0.34028 (5)0.77659 (14)0.0377 (4)
O10.1284 (9)0.5793 (2)0.7129 (7)0.116 (2)
O20.3498 (7)0.4877 (3)1.0349 (6)0.095 (2)
O30.4231 (7)0.4501 (3)0.7076 (7)0.110 (2)
O40.1733 (7)0.3814 (2)1.0694 (5)0.0915 (19)
O50.2586 (6)0.3345 (2)0.7345 (5)0.0789 (16)
O6a−0.3938 (18)0.5321 (5)0.5693 (15)0.177 (9)
H6a−0.41990.50540.53950.265*
O6Ab−0.190 (2)0.5637 (7)0.673 (3)0.181 (14)
H6Ab−0.15040.55720.61840.271*
C10.1361 (9)0.5396 (3)0.7370 (8)0.076 (2)
C20.2699 (8)0.4846 (3)0.9364 (8)0.064 (2)
C30.3178 (9)0.4613 (3)0.7375 (8)0.071 (2)
C40.1203 (8)0.3869 (3)0.9665 (7)0.0583 (18)
C50.1747 (7)0.3581 (2)0.7667 (6)0.0493 (16)
C6−0.1707 (10)0.4643 (3)0.5850 (9)0.087 (3)
H6B−0.16380.49370.54010.104*
H6C−0.24760.44360.53190.104*
C7−0.2161 (8)0.4762 (3)0.6950 (10)0.083 (3)
H7−0.29840.45370.69750.099*
C8−0.2855 (14)0.5268 (4)0.6842 (11)0.114 (4)
H8AAa−0.33430.53180.74900.137*
H8ABa−0.20520.55080.69350.137*
H8BCb−0.37520.52740.61340.137*
H8BDb−0.31990.53280.75640.137*
C9−0.2793 (6)0.34205 (19)0.6247 (5)0.0384 (13)
C10−0.4319 (7)0.3516 (2)0.6067 (6)0.0518 (16)
H10−0.46970.35450.67450.062*
C11−0.5296 (8)0.3569 (3)0.4918 (7)0.069 (2)
H11−0.63250.36380.48220.082*
C12−0.4774 (10)0.3522 (3)0.3905 (7)0.072 (2)
H12−0.54490.35550.31230.087*
C13−0.3266 (9)0.3427 (2)0.4041 (6)0.0636 (19)
H13−0.29120.33940.33520.076*
C14−0.2258 (7)0.3379 (2)0.5203 (6)0.0486 (15)
H14−0.12250.33180.52940.058*
C15−0.2676 (7)0.3375 (2)0.8774 (5)0.0426 (14)
C16−0.3450 (7)0.2951 (3)0.8861 (6)0.0557 (17)
H16−0.33010.26790.84290.067*
C17−0.4441 (8)0.2930 (3)0.9585 (7)0.069 (2)
H17−0.49530.26430.96380.083*
C18−0.4675 (8)0.3328 (3)1.0225 (7)0.073 (2)
H18−0.53520.33131.07040.088*
C19−0.3904 (9)0.3747 (3)1.0156 (7)0.076 (2)
H19−0.40570.40181.05920.092*
C20−0.2896 (8)0.3769 (3)0.9438 (6)0.0584 (18)
H20−0.23650.40540.94080.070*
C21−0.0634 (6)0.2792 (2)0.7929 (5)0.0399 (14)
C22−0.1010 (8)0.2444 (2)0.7017 (6)0.0532 (17)
H22−0.17040.25180.62640.064*
C23−0.0365 (9)0.1987 (3)0.7211 (7)0.068 (2)
H23−0.06370.17570.65910.081*
C240.0663 (9)0.1872 (3)0.8303 (8)0.070 (2)
H240.10920.15650.84280.084*
C250.1060 (8)0.2210 (3)0.9210 (7)0.067 (2)
H250.17640.21330.99560.081*
C260.0422 (8)0.2668 (2)0.9028 (7)0.0588 (18)
H260.07080.28960.96550.071*
  1. aOccupancy: 0.589(16), bOccupancy: 0.411(16).

Source of material

A mixture of complex [Fe2(CO)6{μ-SCH2CH(CH2OH)}] (1 mmol) and triphenylphosphine (1 mmol) was treated with Me3NO⋅2H2O (1 mmol). The resulting solution was stirred at room temperature for 0.5 h. Afterwards, the solvent was reduced in vacuo and the residue was subjected to TLC separation using CH2Cl2: petroleum ether = 1:3 (v/v) as eluent. The title complex was obtained from the main red band. Slow evaporation of CH2Cl2/hexane solution at 4 °C afforded crystals suitable for X-ray diffraction analysis.

Experimental details

The structure was solved by direct method with the SHELXS program. Hydrogen atoms were positioned geometrically (C–H = 0.93–0.98 Å and O–H = 0.82 Å). Their Uiso values were set to 1.2Ueq or 1.5Ueq of the parent atoms. The hydroxy group features a disorder (see the figure).

Comment

Over the past decades, dithiolate-bridging diiron complexes have attracted great interest due to their structural resemblance with the active site of [FeFe]-hydrogenases [5], [6], [7]. [FeFe]-hydrogenases are natural metalloenzymes that can catalyze the reduction of protons to H2 [8], [, 9]. The X-ray crystallographic structures of the active site of [FeFe]-hydrogenases have promoted chemists to produce a great number of diiron analogues as mimics for the active site of [FeFe]-hydrogenases [10], [11], [12], [13]. In this study, we have successfully prepared a diiron analogue with a monophosphine ligand.

The asymmetric unit of the title complex consists of a butterfly diiron ethane-1,2-dithiolate dinuclear complex with five terminal carbonyls and a triphenylphosphine ligand, respectively. The phosphine ligand occupies an apical position of the distorted octahedral geometry of Fe2, in good agreement with monosubstituted analogues [14], [15], [16]. The Fe1–Fe2 bond length [2.5013(12) Å] is identical to that of the parent complex [Fe2(CO)6{μ-SCH2CH(CH2OH)}] [2.4998(6) Å] [17], but much shorter than those in diphosphine-substituted analogues [18], [19], [20] as well as in natural [FeFe]-hydrogenases [8], [, 9]. Note that the O6 atom is disordered over two sites with an occupancy of 0.589(16). The disorder suggests that it is unlikely that this OH⃛O hydrogen bond is present. Moreover, weak hydrogen bonds are also observed.


Corresponding author: Wei Gao, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan450046, P. R. China, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. BRUKER. SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

5. Tard, C., Pickett, C. J. Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem. Rev. 2009, 109, 2245–2274; https://doi.org/10.1021/cr800542q.Search in Google Scholar

6. Li, Y., Rauchfuss, T. B. Synthesis of diiron(I) dithiolato carbonyl complexes. Chem. Rev. 2016, 116, 7043–7077; https://doi.org/10.1021/acs.chemrev.5b00669.Search in Google Scholar

7. Rauchfuss, T. B. Diiron azadithiolates as models for the [FeFe]- hydrogenase active site and paradigm for the role of the second coordination sphere. Acc. Chem. Res. 2015, 48, 2107–2116; https://doi.org/10.1021/acs.accounts.5b00177.Search in Google Scholar

8. Peters, J. W., Lanzilotta, W. N., Lemon, B. J., Seefeldt, L. C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 1998, 282, 1853–1857; https://doi.org/10.1126/science.282.5395.1853.Search in Google Scholar

9. Nicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E., Fontecilla- Camps, J. C. Desulfovibrio Desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 1999, 7, 13–23; https://doi.org/10.1016/s0969-2126(99)80005-7.Search in Google Scholar

10. Ghosh, S., Hogarth, G., Hollingsworth, N., Holt, K. B., Richard, I., Richmond, M. G., Sanchez, B. E., Unwin, D. Models of the iron-only hydrogenase: a comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts. Dalton. Trans. 2013, 42, 6775–6792; https://doi.org/10.1039/c3dt50147g.Search in Google Scholar

11. Gloaguen, F., Lawrence, J. D., Rauchfuss, T. B. Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate. J. Am. Chem. Soc. 2001, 123, 9476–9477; https://doi.org/10.1021/ja016516f.Search in Google Scholar

12. Lyon, E. J., Georgakaki, I. P., Reibenspies, J. H., Darensbourg, M. Y. Coordination sphere flexibility of active-site models for Fe-only hydrogenase: studies in intra- and intermolecular diatomic ligand exchange. J. Am. Chem. Soc. 2001, 123, 3268–3278; https://doi.org/10.1021/ja003147z.Search in Google Scholar

13. Zhao, P. H., Ma, Z. Y., Hu, M. Y., He, J., Wang, Y. Z., Jing, X. B., Chen, H. Y., Li, Y. L. PNP-chelated and -bridged diiron dithiolate complexes Fe2(μ-pdt)(CO)4{(Ph2P)2NR} together with related monophosphine complexes for the [2Fe]H subsite of [FeFe]-hydrogenases: preparation, structure, and electrocatalysis. Organometallics 2018, 37, 1280–1290; https://doi.org/10.1021/acs.organomet.8b00030.Search in Google Scholar

14. Hu, M. Y., Zhao, P. H., Li, J. R., Gu, X. L., Jing, X. B., Liu, X. F. Synthesis, structures, and electrocatalytic properties of phosphine- monodentate, -chelate, and -bridge diiron 2,2-dimethylpropanedithiolate complexes related to [FeFe]-hydrogenases. Appl. Organomet. Chem. 2020, 34, e5523; https://doi.org/10.1002/aoc.5523.Search in Google Scholar

15. Yan, L., Hu, K., Liu, X. F., Li, Y. L., Liu, X. H., Jiang, Z. Q. Diiron ethane-1,2-dithiolate complexes with 1,2,3-thiadiazole moiety: synthesis, X-ray crystal structures, electrochemistry, and fungicidal activity. Appl. Organomet. Chem. 2021, 35, e6084.10.1002/aoc.6084Search in Google Scholar

16. Lü, S., Huang, H. L., Zhang, R. F., Ma, C. L., Li, Q. L., He, J., Yang, J., Li, T., Li, Y. L. Phosphine-substituted Fe-Te clusters related to the active site of [FeFe]-H2ases. Inorg. Chem. Front. 2020, 7, 2352–2361; https://doi.org/10.1039/d0qi00276c.Search in Google Scholar

17. Niu, S. J., Yu, X. Y., Liu, X. F., Li, Y. L. Tris(2-methoxyphenyl)phosphine substituted diiron ethanedithiolate complexes containing hydroxymethyl, methyl or ethyl groups. Polyhedron 2017, 137, 127–133; https://doi.org/10.1016/j.poly.2017.08.041.Search in Google Scholar

18. Zhao, P. H., Hu, M. Y., Ma, Z. Y., Li, J. R., Wang, Y. Z., He, J., Li, Y. L., Liu, X. F. Influence of dithiolate bridges on the structures and electrocatalytic performance of small bite-angle PNP-chelated diiron complexes Fe2(μ-xdt)(CO)4{k2-(Ph2P)2NR} related to [FeFe]- hydrogenases. Organometallics 2019, 38, 385–394; https://doi.org/10.1021/acs.organomet.8b00759.Search in Google Scholar

19. Hu, M. Y., Yan, L., Li, J. R., Wang, Y. H., Zhao, P. H., Liu, X. F. Reactions of Fe2(μ-odt)(CO)6 (odt = 1, 3-oxadithiolate) with small bite-angle diphosphines to afford the monodentate, chelate, and bridge diiron complexes: selective substitution, structures, protonation, and electrocatalytic proton reduction. Appl. Organomet. Chem. 2019, 33, e4949; https://doi.org/10.1002/aoc.4949.Search in Google Scholar

20. Zhao, P. H., Hu, M. Y., Li, J. R., Wang, Y. Z., Lu, B. P., Han, H. F., Liu, X. F. Impacts of coordination modes (chelate versus bridge) of PNP- diphosphine ligands on the redox and electrocatalytic properties of diiron oxadithiolate complexes for proton reduction. Electrochim. Acta 2020, 353, 136615; https://doi.org/10.1016/j.electacta.2020.136615.Search in Google Scholar

Received: 2021-01-05
Accepted: 2021-01-22
Published Online: 2021-02-08
Published in Print: 2021-05-26

© 2021 Wei Gao et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxidoethylidene)benzohydrazonato-κ5N,O,O′:N′,O′′)hexkis(pyridine-κ1N)trinickel(II) - pyridine (1/1), C63H57Cl2N13Ni3O6
  4. Crystal structure of [(μ2-succinato κ3O,O′:O′′)-bis-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)]dinickel(II)] diperchlorate, dihydrate C36H82Cl2N8Ni2O15
  5. Crystal structure of catena-poly[aquabis(3-nitrobenzoato-κ2O:O′)-(μ2-pyrazine-N: N′)cadmium(II)], C18H14N4O9Cd
  6. Crystal structure of 4-(2,2-difluoroethyl)-2,4,6-trimethylisoquinoline-1,3(2H,4H)-dione, C14H15F2NO2
  7. The crystal structure of thioxanthen-9-one-10,10-dioxide, C13H8O3S – a second polymorph
  8. Crystal structure of (E)-2-((2-methoxy-3-pyridyl)methylene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  9. The crystal structure of diaquahydrogen 2,5-dimethylbenzenesulphonate, C8H14O5S
  10. The crystal structure of N-(4-(cyclohexylimino)pent-2-en-2-yl)cyclohexanamine, C17H30N2
  11. The twinned crystal structure of 1,3-phenylenedimethanaminium dibromide, C8H14Br2N2
  12. Crystal structure of 2,4,7,9-tetranitro-10H-benzofuro[3,2-b]indole – dimethyl sulfoxide (1/1), C16H11N5O10S
  13. Crystal structure of 2,6-bis(2-(pyridin-3-yl)ethyl)pyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-tetraone, C24H18N4O4
  14. The crystal structure of 3,4-dichlorobenzoic acid chloride, C7H3Cl3O
  15. Crystal structure of 1,1′-(1,4-phenylenebis(methylene))bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-k2S:S)zinc(II), C26H18N6ZnS4
  16. Crystal structure of tetrakis(μ-naphthalene-1-carboxylato-κ2O,O′)bis(methanol)copper(II), C46H36Cu2O10
  17. Crystal structure of 9-methyl-3-methylene-1,2,3,9-tetrahydro-4H-carbazol-4-one, C14H13NO
  18. Crystal structure of bis(amino(carbamothioylamino)methaniminium) 3-nitrophthalate monohydrate, C12H19N9O7S2
  19. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-ethyl-1H-imidazol-3-ium) bis(hexafluorophosphate), C18H24F12N4P2
  20. The crystal structure of 5-hydroxy-6,8-dimethoxy-2-methyl-4H-benzo[g]chromen-4-one– rubrofusarin B, C16H14O5
  21. The crystal structure of bis(ethanol-kO)- bis(6-aminopicolinato-k2N,O)manganese(II), C16H22O6N4Mn
  22. The crystal structure of 3,3′-((carbonylbis(azanediyl))bis(ethane-2,1-diyl)) bis(1-methyl-1H-benzo[d]imidazol-3-ium) tetrafluoroborate monohydrate, C21H28N6O3B2F8
  23. Crystal structure of dimethanol-dichlorido-bis( μ2-2-(((1,5-dimethyl-3-oxo-2- phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)phenolato- κ4O:O,O′,N)dinickel (II), C20H24ClNiN3O4
  24. The crystal structure of methyl 5-(trifluoromethyl)-1H-pyrrole-2-carboxylate, C7H6F3NO2
  25. Crystal structure of (OC‐6‐13)‐aqua‐tris (3‐bromopyridine‐κ1N)‐bis(trifluoroacetato‐κ1O)cadmium(II) C19H14Br3CdF6N3O5
  26. Crystal structure of methyl (E)-3-(4-(2-ethoxy-2-oxoethoxy)phenyl) acrylate, C14H16O5
  27. Crystal structure of methyl 4-acetoxy-3,5-dimethoxybenzoate, C12H14O6
  28. The crystal structure of 2-(1H-benzimidazol-2-yl)-3-bromo-5-chlorophenol, C13H8BrClN2O
  29. The crystal structure of bis(μ2-5-chloro-N-(2-methyl-1-oxidopropylidene)-2-oxidobenzohydrazonate-κ5N,O,O′:N′,O′′)pentakis(pyridine-κ1N)tricopper(II), C47H45Cl2N9Cu3O6
  30. Synthesis and crystal structure of catena-poly[aqua-bis(nitrato-κ2O:O′)- (μ2-((1 H-imidazol-1-yl)methyl)benzene-κ2 N,N′)-H2O-κ2O]cadmium(II), C14H16N6O7Cd
  31. The crystal structure of pentakis(carbonyl)-{μ-[2,3-bis(sulfanyl)propan-1-olato]}-(triphenylphosphane)diiron (FeFe)C26H21Fe2O6PS2
  32. Crystal structure of ethyl-2-(3-benzoylthioureido)propanoate, C13H16N2O3S
  33. Crystal structure of 2-methoxy-4b,5,14,15-tetrahydro-6H-isoquinolino[2′,1′:1,6] pyrazino[2,3-b]quinoxaline, C19H18N4O
  34. Crystal structure of 2,2′-[ethane-1,2-diylbis(azanylylidenemethylylidene)]bis(6-chlorophenol), C16H14Cl2N2O2
  35. The crystal structure of (Z)-3-((2-(2-(2-aminophenoxy)ethoxy)phenyl)amino)-1-phenylbut-2-en-1-one, C24H24N2O3
  36. The crystal structure of 10-(3,5-di(pyridin-4-yl)phenyl)-10H-phenoxazine dihydrate, C28H23N3O3
  37. Crystal structure of poly[dipoly[aqua-di(µ2-pyrazin-2-olato-κ2N:N′) zinc(II)], C8H8N4O3Zn
  38. Crystal structure of poly[tetra(μ2-cyanido-κ2N:O)-bis(N,N-dimethylformamide-κO)-manganese(II)-platinum(II)], C10H14MnN6O2Pt
  39. The crystal structure of aqua-chlorido-6,6′-((ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dichlorophenolato-κ4N,N′,O,O′)manganese(III), C16H12Cl5MnN2O3
  40. Crystal structure of [di(µ2-cyanido)-dicyanido-bis(dimethyl sulfoxide-κO)- bis(2,2′-(ethane-1,2-diylbis(azanylylidenemethanylylidene))diphenolato-κ4,N,N′,O,O′)- dimanganese(III)-platinum(II)], C40H40Mn2N8O6PtS2
  41. The crystal structure of (azido)-κ1N-6,6′-((cyclohexane-1,2-diylbis(azanylylidene)) bis(methanylylidene))bis(3-bromophenolato-κ4N,N,O,O)-(methanol)-manganese(III)–methanol(1/1), C22H26Br2MnN5O4
  42. Crystal structure of 7-chloro-N-(4-iodobenzyl)-1,2,3,4-tetrahydroacridin-9-amine, C20H18ClIN2
  43. Crystal structure of catena-poly[(1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N′′′)-bis(μ2-thiocyanato-κ2N:S)-bis(thiocyanato-κS)-nickel(II)palladium(II)], C14H24N8NiPdS4
  44. Crystal structure of 3-chloro-4-(4-ethylpiperazin-1-yl)aniline monohydrate, C12H20ClN3O
  45. Crystal structure of the 2D coordination polymer poly[diaqua-bis(μ2-3- methoxyisonicotinato-κ2N:O)cobalt(II)] — dimethylformamide (1/1), C20H30CoN4O10
  46. Crystal structure of 4-[(5-chloro-2-hydroxybenzylidene)amino]-3-propyl-1H-1,2,4-triazole-5(4H)-thione, C12H13ClN4OS
  47. Crystal structure of N-(5-(2-(benzyl(1-(4-methoxyphenyl)propan-2-yl)amino)-1-hydroxyethyl)-2-(benzyloxy)phenyl)formamide, C33H36N2O4
  48. Crystal structure of 3-(methoxycarbonyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylic acid, C9H12O5
  49. The crystal structure of 1-((dimethylamino)(3-nitrophenyl)methyl)naphthalen-2-ol, C19H18N2O3
  50. Crystal structure of catena-poly[di(μ2-cyanido-κ2C:N)-dicyanido-tetrakis(dimethyl sulfoxide-κO)-manganese(II)-platinum(II)], C12H24MnN4O4PtS4
  51. Crystal structure of 4-amino-N-(2-pyrimidinyl)benzenesulfonamide–1,4-dioxane (1/1), C14H18N4O4S
  52. Crystal structure of bis{1-[(benzotriazol-1-yl)methyl]-1H-1,3-(2-methyl-imidazol)}di-chloridomercury(II), [Hg(C11H11N5)2Cl2], C22H22N10Cl2Hg
  53. Crystal structure of 2, 3-bis((4-methylbenzoyl)oxy) succinic acid–N, N-dimethylformamide (1/1), C23H25NO9
  54. Crystal structure of catena-poly[bis(4-(4-carboxyphenoxy)benzoato-κ1O)-μ2-(1,4-bis(1-imidazolyl)benzene-κ2N:N′)cobalt(II)], C40H28N4O10Co
  55. Crystal structure of 1H-imidazol-3-ium poly[aqua-(μ4-glutarato-κ6O,O′:O′:O′′,O′′′:O′′′)-(nitrato-κ2O,O′)strontium(II)], C8H13N3O8Sr
  56. Crystal structure of (R)-6-(benzo[b]thiophen-5-yl)-2-methyl-2,6-dihydrobenzo [5,6] silino[4,3,2-cd]indole, C23H17NSSi
  57. Crystal structure of catena-poly[bis(μ2-thiocyanato-κ2N:S)-(2-(5-methyl-1H-pyrazol-3-yl)pyridine-κ2N,N′)cadmium(II)]–dioxane (1/1), C15H17CdN5O2S2
  58. Crystal structure of poly[aqua-(μ2-1,4-bis(2′-carboxylatophenoxy)benzene-κ2O:O′)-(μ2-4,4′-bipyridione-κ2N:N′)cadmium(II)] monhydrate, C30H22CdN2O7⋅H2O
  59. Crystal structure of catena-poly[tetraaqua-(μ2-4,4′-bipyridine-k2N:N′)-bis(μ2-4′-methyl-[1,1′-biphenyl]-3,5-dicarboxylato-k4O,O′:O″,O′″)dicadmium(II)] dihydrate, C20H20NO7Cd
  60. Crystal structure of 1‐tert‐butyl‐3‐(2,6‐diisopropyl‐4‐phenoxyphenyl)‐2-methylisothiourea, C24H34N2OS
  61. Crystal structure of catena-poly[triaqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-(4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ1O)cobalt(II)] — N,N′-dimethylformamide (1/1), C28H34N8O8Co
  62. Crystal structure of tetraaqua-bis(1,4-di(1H-imidazol-1-yl)benzene-κ1N)manganese(II) 2,3-dihydroxyterephthalate, C32H32MnN8O10
Downloaded on 20.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0003/html
Scroll to top button