Home Physical Sciences Crystal structure of dimethanol-dichlorido-bis( μ2-2-(((1,5-dimethyl-3-oxo-2- phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)phenolato- κ4O:O,O′,N)dinickel (II), C20H24ClNiN3O4
Article Open Access

Crystal structure of dimethanol-dichlorido-bis( μ2-2-(((1,5-dimethyl-3-oxo-2- phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)phenolato- κ4O:O,O′,N)dinickel (II), C20H24ClNiN3O4

  • Long Gu EMAIL logo , Haixia Pang ORCID logo , Qiang Tang , Jie Min , Li Ma and Peiran Pan
Published/Copyright: February 15, 2021

Abstract

C20H24ClNiN3O4, monoclinic, P21/c (no. 14), a = 10.3831(7) Å, b = 17.0139(12) Å, c = 12.2649(9) Å, β = 102.6230(10)°, V = 2114.3(3) Å3, Z = 4, Rgt(F) = 0.0318, wRref(F2) = 0.1066, T = 298(2) K.

CCDC no.: 1870874

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Green needle
Size:0.10 × 0.10 × 0.10 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:1.08 mm−1
Diffractometer, scan mode: θmax, completeness:27.0°, >99%
N(hkl)measured, N(hkl)unique, Rint:15523, 4610, 0.026
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3909
N(param)refined:276
Programs:Bruker [1], SHELX [2], [, 3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Ni10.55092 (2)0.91538 (2)0.03408 (2)0.02728 (11)
C10.8363 (2)0.70927 (13)0.26612 (18)0.0336 (5)
C20.9438 (3)0.66454 (16)0.2565 (2)0.0506 (6)
H20.94290.63560.19210.061*
C31.0544 (3)0.6634 (2)0.3452 (3)0.0645 (9)
H31.12760.63330.33980.077*
C41.0556 (3)0.7059 (2)0.4390 (3)0.0722 (10)
H41.12970.70480.49750.087*
C50.9485 (3)0.7503 (2)0.4482 (2)0.0650 (9)
H50.95040.77930.51280.078*
C60.8367 (3)0.75216 (16)0.3614 (2)0.0441 (6)
H60.76350.78190.36760.053*
C70.5913 (2)0.67067 (12)0.01814 (18)0.0333 (5)
C80.5836 (2)0.75125 (12)0.02114 (17)0.0303 (4)
C90.6662 (2)0.77761 (12)0.12177 (18)0.0323 (4)
C100.5184 (3)0.61269 (14)−0.0632 (2)0.0505 (7)
H10A0.55360.5611−0.04410.076*
H10B0.52810.6260−0.13700.076*
H10C0.42660.6135−0.06080.076*
C110.6684 (3)0.57173 (14)0.1674 (2)0.0496 (6)
H11A0.58230.56870.18390.074*
H11B0.73430.56930.23570.074*
H11C0.68000.52850.12010.074*
C120.4523 (2)0.79991 (13)−0.14835 (18)0.0336 (5)
H120.44910.7490−0.17640.040*
C130.3825 (2)0.86047 (12)−0.22113 (17)0.0306 (4)
C140.3174 (3)0.83425 (14)−0.32878 (19)0.0415 (5)
H140.32440.7816−0.34730.050*
C150.2452 (3)0.88356 (15)−0.4060 (2)0.0485 (6)
H150.20490.8653−0.47670.058*
C160.2327 (3)0.96181 (15)−0.3772 (2)0.0474 (6)
H160.18210.9958−0.42870.057*
C170.2941 (2)0.98965 (13)−0.27332 (18)0.0373 (5)
H170.28381.0422−0.25630.045*
C180.37198 (19)0.94089 (12)−0.19233 (16)0.0264 (4)
C190.8346 (3)0.9550 (2)0.0061 (3)0.0606 (8)
H19A0.83760.98690.07110.091*
H19B0.88260.9806−0.04250.091*
H19C0.87380.90480.02820.091*
Cl10.38041 (6)0.88730 (4)0.13587 (5)0.04530 (16)
N10.7226 (2)0.71252 (10)0.17782 (15)0.0368 (4)
N20.6812 (2)0.64593 (10)0.11016 (15)0.0369 (4)
N30.51804 (17)0.81115 (10)−0.04814 (14)0.0295 (4)
O10.68866 (16)0.84778 (9)0.15263 (13)0.0403 (4)
O20.42909 (14)0.97077 (8)−0.09405 (11)0.0281 (3)
O30.70015 (15)0.94432 (10)−0.05165 (13)0.0384 (4)
H3A0.66790.9870−0.07360.058*
C20′a0.942 (2)0.0665 (19)0.6923 (15)0.116 (3)
H20Aa0.92940.11840.66110.175*
H20Ba0.90350.02870.63630.175*
H20Ca1.03420.05600.71740.175*
O4′a0.8804 (14)0.0611 (13)0.7818 (11)0.1230 (17)
H4′a0.82770.09730.77890.184*
O4b0.8071 (4)0.1097 (4)0.6906 (3)0.1230 (17)
H4Ab0.76200.09770.73530.184*
C20b0.9311 (6)0.1144 (5)0.7427 (6)0.116 (3)
H20Db0.94880.16600.77410.175*
H20Eb0.98640.10460.69090.175*
H20Fb0.94900.07600.80140.175*
  1. aOccupancy: 0.233(5),

    bOccupancy: 0.767(5).

Source of material

The title compound was synthesized by mixing 0.154 g (0.5 mmol) (4E)-4- (2-hydroxybenzylideneamino)-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one) (LH), 0.6064 g (2.5 mmol) NiCl2·H2O, 9 mL absolute methanol, 0.5 mL dichloromethane and 0.5 mL trithylamine in a 25 mL polytetrafluoroethylene-lined reactor. Then the reactor was placed in an oven at 90 °C. After seven days, Green needle crystals separated out with 80.60% yield. Elemental Analysis Data (%, measured/theoretical): C, 51.71/ 51.66; H, 5.21/ 5.27; N, 9.03/8.98. IR spectrum (cm−1, KBr pellet): 3423(s), 3332(s), 1624(s), 1591(s), 1539(m), 1496(m), 1439(m), 1397(m), 1285(m), 1037(w), 901(w), 762(m), 571(w).

Experimental details

Comment

Nickel, as an essential trace element in organisms participates in the composition and metabolism of many enzymes in the human body, thus promoting iron absorption, the growth of red blood cells and the synthesis of amino acids [4], [, 5]. Schiff base complexes have a series of excellent properties, such as bactericidal, antiviral and magnetic properties, and have a wide application prospect in bioengineering and material research [6], [7], [8], [9], [10]. Because of its rich spatial topology, binuclear metal complexes can be used as artificial nuclease and have a good catalytic hydrolysis mechanism but there are few reports on the structural characterization of 4-aminoantipyrine derivative ligands and metal complexes. Therefore, it is of great significance to study the synthesis and structure of such metal complexes.

Each Ni(II) in the dinuclear title is coordinated by a methanol molecule, a chlorine atom and three atoms from two different L ligands (a salicylidene hydroxyl oxygen atom, an imino nitrogen atom, and a carbonyl oxygen atom). In the complex, the Ni(II) center adopts a distorted octahedral coordination (see the Figure). The chlorine atom and the oxygen atom from the methanol molecule are respectively above and underneath the plane defined by the Ni atoms and the bridging ligands. Two different hydroxyl oxygen atoms, the nitrogen atom in the imine and the carbonyl oxygen atom in the pyrazole ring are in the equatorial plane of the distorted octahedron. Each ligand molecule coordinates two metal centers. The Ni–O bond length is 2.0222(13)–2.1385(15) Å, which is slightly longer than that reported in [11]; Ni(1)–Cl(1) bond length is 2.4263(7) Å, which is longer than that reported in [12]; Ni–N bond length is 2.0317(17) Å. The distance of Ni1–Ni1a is 3.118(17) Å, and O2–O2a is 2.645(17) Å. The bond angle of O2-Ni1-O2a is 80.61(6)°, Ni1-O2-Ni1a is 99.39(6)°. Each dinuclear Ni could form a structurally stable six-membered ring with a hydroxyl oxygen atom, an imine nitrogen atom and three carbon atoms. It also formed a five-membered ring with a carbonyl atom, an imine nitrogen atom and two carbon atoms in the pyrazole ring. The remaining bond lengths and bond angles are in the normal range [13].


Corresponding authors: Haixia Pang,Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan430068, P. R. China; and State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei, 430074, P. R. China; and Qiang Tang,Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan430068, P. R. China, E-mail: (H. Pang), 31897819@qq.com (Q. Tang).

Funding source: Hubei Provincial Key Laboratory of Green Materials for Light Industry

Award Identifier / Grant number: 202007B14

Funding source: Collaborative Innovation Center of Green Light-weight Materials and Processing

Award Identifier / Grant number: 201907A02

Funding source: State Key Laboratory of Geological Processes and Mineral Resources

Award Identifier / Grant number: GPMR202010

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Hubei Provincial Key Laboratory of Green Materials for Light Industry and Collaborative Innovation Center of Green Light-weight Materials and Processing (no. 202007B14 and no. 201907A02), the State Key Laboratory of Geological Processes and Mineral Resources (no. GPMR202010).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SMART and SAINT; Bruker AXS Inc.: Madison, WI, USA, 2007.Search in Google Scholar

2. Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal refinement with SHELX. Acta Crystallogr. 2015, C71, 3–8.10.1107/S2053229614024218Search in Google Scholar

4. Xu, B., Shi, P., Guan, Q., Shi, X., Zhao, G. Synthesis, crystal structure, and biological activity of a nickel(II) complex constructed by 2-phenyl-4-selenazole carboxylic acid and 1,10-phenanthroline. J. Coord. Chem. 2013, 66, 2605–2614; https://doi.org/10.1080/00958972.2013.811497.Search in Google Scholar

5. Xia, Q., Sun, H., Liu, H. Effects of nickel exposure on encapsulation rate of hemocytes of Spodoptera litura Fabricius larvae. J. Environ. Entomol. 2014, 36, 718–723.Search in Google Scholar

6. Kim, M. S., Jo, T. G., Yang, M., Han, J., Kim, C. A fluorescent and colorimetric Schiff base chemosensor for the detection of Zn2+ and Cu2+: application in live cell imaging and colorimetric test kit. Spectrochim. Acta, Part A 2019, 211, 34–43; https://doi.org/10.1016/j.saa.2018.11.058.Search in Google Scholar PubMed

7. Gopalakrishnan, D., Srinath, S., Baskar, B., Bhuvanesh, N. S. P., Ganeshpandian, M. Biological and catalytic evaluation of Ru(II) p-cymene complexes of Schiff base ligands: impact of ligand appended moiety on photoinduced DNA and protein cleavage, cytotoxicity and C–H activation. Appl. Organomet. Chem. 2019, 33, e4756; https://doi.org/10.1002/aoc.4756.Search in Google Scholar

8. Jana, K., Das, S., Puschmann, H., Debnath, S. C., Samanta, B. C. Supramolecular self-assembly, DNA interaction, antibacterialand cell viabilitystudies of Cu(II) and Ni(II) complexes derived from NNN donor Schiff base ligand. Inorg. Chim. Acta 2019, 487, 128–137; https://doi.org/10.1016/j.ica.2018.12.007.Search in Google Scholar

9. Nazirkar, B., Mandewale, M., Yamgar, R. Synthesis, characterization and antibacterial activity of Cu(II) and Zn(II) complexes of 5-aminobenzofuran-2-carboxylate Schiff base ligands. J. Taibah Univ. Sci. 2019, 13, 440–449; https://doi.org/10.1080/16583655.2019.1592316.Search in Google Scholar

10. Al–Humaidi, J. Y. Insitualkalinemedia: synthesis, spectroscopic, morphology and anticancer assignments of some transition metal ion complexes of 1-((2-aminophenylimino)methyl)naphthalen-2-ol Schiff base. J. Mol. Struct. 2019, 1183, 190–201; https://doi.org/10.1016/j.molstruc.2019.01.083.Search in Google Scholar

11. Jing, L., Tao, D., Hu, R., Pang, H. Crystal structure of tetraqua-bis(4-(hydroxymethyl)benzoato-κO)nickel(II), C16H22O10Ni. Z. Kristallogr. NCS 2019, 234, 523–525; https://doi.org/10.1515/ncrs-2018-0528.Search in Google Scholar

12. Mao, R., Zou, X., Yu, Q., Ma, L., Liu, C., Pang, H., Yuan, X. Synthesis, characterizationand properties of the antipyrine derivative metal nickel(II) complex. J. Centr. China Normal Univ. (Nat. Sci.). 2017, 51, 184–187.Search in Google Scholar

13. Pang, H., He, X., Feng, X., Yuan, X. Crystal structure of diaqua-dichlorido- bis(µ2-2-(((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) imino)methyl)phenolato-κ4O:O,N,O’)dicobalt(II), C36H36Cl2N6O6CO2. Z. Kristallogr NCS 2019, 234, 563–565; https://doi.org/10.1515/ncrs-2018-0560.Search in Google Scholar

Received: 2020-12-19
Accepted: 2021-01-14
Published Online: 2021-02-15
Published in Print: 2021-05-26

© 2021 Long Gu et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxidoethylidene)benzohydrazonato-κ5N,O,O′:N′,O′′)hexkis(pyridine-κ1N)trinickel(II) - pyridine (1/1), C63H57Cl2N13Ni3O6
  4. Crystal structure of [(μ2-succinato κ3O,O′:O′′)-bis-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)]dinickel(II)] diperchlorate, dihydrate C36H82Cl2N8Ni2O15
  5. Crystal structure of catena-poly[aquabis(3-nitrobenzoato-κ2O:O′)-(μ2-pyrazine-N: N′)cadmium(II)], C18H14N4O9Cd
  6. Crystal structure of 4-(2,2-difluoroethyl)-2,4,6-trimethylisoquinoline-1,3(2H,4H)-dione, C14H15F2NO2
  7. The crystal structure of thioxanthen-9-one-10,10-dioxide, C13H8O3S – a second polymorph
  8. Crystal structure of (E)-2-((2-methoxy-3-pyridyl)methylene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  9. The crystal structure of diaquahydrogen 2,5-dimethylbenzenesulphonate, C8H14O5S
  10. The crystal structure of N-(4-(cyclohexylimino)pent-2-en-2-yl)cyclohexanamine, C17H30N2
  11. The twinned crystal structure of 1,3-phenylenedimethanaminium dibromide, C8H14Br2N2
  12. Crystal structure of 2,4,7,9-tetranitro-10H-benzofuro[3,2-b]indole – dimethyl sulfoxide (1/1), C16H11N5O10S
  13. Crystal structure of 2,6-bis(2-(pyridin-3-yl)ethyl)pyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-tetraone, C24H18N4O4
  14. The crystal structure of 3,4-dichlorobenzoic acid chloride, C7H3Cl3O
  15. Crystal structure of 1,1′-(1,4-phenylenebis(methylene))bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-k2S:S)zinc(II), C26H18N6ZnS4
  16. Crystal structure of tetrakis(μ-naphthalene-1-carboxylato-κ2O,O′)bis(methanol)copper(II), C46H36Cu2O10
  17. Crystal structure of 9-methyl-3-methylene-1,2,3,9-tetrahydro-4H-carbazol-4-one, C14H13NO
  18. Crystal structure of bis(amino(carbamothioylamino)methaniminium) 3-nitrophthalate monohydrate, C12H19N9O7S2
  19. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-ethyl-1H-imidazol-3-ium) bis(hexafluorophosphate), C18H24F12N4P2
  20. The crystal structure of 5-hydroxy-6,8-dimethoxy-2-methyl-4H-benzo[g]chromen-4-one– rubrofusarin B, C16H14O5
  21. The crystal structure of bis(ethanol-kO)- bis(6-aminopicolinato-k2N,O)manganese(II), C16H22O6N4Mn
  22. The crystal structure of 3,3′-((carbonylbis(azanediyl))bis(ethane-2,1-diyl)) bis(1-methyl-1H-benzo[d]imidazol-3-ium) tetrafluoroborate monohydrate, C21H28N6O3B2F8
  23. Crystal structure of dimethanol-dichlorido-bis( μ2-2-(((1,5-dimethyl-3-oxo-2- phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)phenolato- κ4O:O,O′,N)dinickel (II), C20H24ClNiN3O4
  24. The crystal structure of methyl 5-(trifluoromethyl)-1H-pyrrole-2-carboxylate, C7H6F3NO2
  25. Crystal structure of (OC‐6‐13)‐aqua‐tris (3‐bromopyridine‐κ1N)‐bis(trifluoroacetato‐κ1O)cadmium(II) C19H14Br3CdF6N3O5
  26. Crystal structure of methyl (E)-3-(4-(2-ethoxy-2-oxoethoxy)phenyl) acrylate, C14H16O5
  27. Crystal structure of methyl 4-acetoxy-3,5-dimethoxybenzoate, C12H14O6
  28. The crystal structure of 2-(1H-benzimidazol-2-yl)-3-bromo-5-chlorophenol, C13H8BrClN2O
  29. The crystal structure of bis(μ2-5-chloro-N-(2-methyl-1-oxidopropylidene)-2-oxidobenzohydrazonate-κ5N,O,O′:N′,O′′)pentakis(pyridine-κ1N)tricopper(II), C47H45Cl2N9Cu3O6
  30. Synthesis and crystal structure of catena-poly[aqua-bis(nitrato-κ2O:O′)- (μ2-((1 H-imidazol-1-yl)methyl)benzene-κ2 N,N′)-H2O-κ2O]cadmium(II), C14H16N6O7Cd
  31. The crystal structure of pentakis(carbonyl)-{μ-[2,3-bis(sulfanyl)propan-1-olato]}-(triphenylphosphane)diiron (FeFe)C26H21Fe2O6PS2
  32. Crystal structure of ethyl-2-(3-benzoylthioureido)propanoate, C13H16N2O3S
  33. Crystal structure of 2-methoxy-4b,5,14,15-tetrahydro-6H-isoquinolino[2′,1′:1,6] pyrazino[2,3-b]quinoxaline, C19H18N4O
  34. Crystal structure of 2,2′-[ethane-1,2-diylbis(azanylylidenemethylylidene)]bis(6-chlorophenol), C16H14Cl2N2O2
  35. The crystal structure of (Z)-3-((2-(2-(2-aminophenoxy)ethoxy)phenyl)amino)-1-phenylbut-2-en-1-one, C24H24N2O3
  36. The crystal structure of 10-(3,5-di(pyridin-4-yl)phenyl)-10H-phenoxazine dihydrate, C28H23N3O3
  37. Crystal structure of poly[dipoly[aqua-di(µ2-pyrazin-2-olato-κ2N:N′) zinc(II)], C8H8N4O3Zn
  38. Crystal structure of poly[tetra(μ2-cyanido-κ2N:O)-bis(N,N-dimethylformamide-κO)-manganese(II)-platinum(II)], C10H14MnN6O2Pt
  39. The crystal structure of aqua-chlorido-6,6′-((ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dichlorophenolato-κ4N,N′,O,O′)manganese(III), C16H12Cl5MnN2O3
  40. Crystal structure of [di(µ2-cyanido)-dicyanido-bis(dimethyl sulfoxide-κO)- bis(2,2′-(ethane-1,2-diylbis(azanylylidenemethanylylidene))diphenolato-κ4,N,N′,O,O′)- dimanganese(III)-platinum(II)], C40H40Mn2N8O6PtS2
  41. The crystal structure of (azido)-κ1N-6,6′-((cyclohexane-1,2-diylbis(azanylylidene)) bis(methanylylidene))bis(3-bromophenolato-κ4N,N,O,O)-(methanol)-manganese(III)–methanol(1/1), C22H26Br2MnN5O4
  42. Crystal structure of 7-chloro-N-(4-iodobenzyl)-1,2,3,4-tetrahydroacridin-9-amine, C20H18ClIN2
  43. Crystal structure of catena-poly[(1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N′′′)-bis(μ2-thiocyanato-κ2N:S)-bis(thiocyanato-κS)-nickel(II)palladium(II)], C14H24N8NiPdS4
  44. Crystal structure of 3-chloro-4-(4-ethylpiperazin-1-yl)aniline monohydrate, C12H20ClN3O
  45. Crystal structure of the 2D coordination polymer poly[diaqua-bis(μ2-3- methoxyisonicotinato-κ2N:O)cobalt(II)] — dimethylformamide (1/1), C20H30CoN4O10
  46. Crystal structure of 4-[(5-chloro-2-hydroxybenzylidene)amino]-3-propyl-1H-1,2,4-triazole-5(4H)-thione, C12H13ClN4OS
  47. Crystal structure of N-(5-(2-(benzyl(1-(4-methoxyphenyl)propan-2-yl)amino)-1-hydroxyethyl)-2-(benzyloxy)phenyl)formamide, C33H36N2O4
  48. Crystal structure of 3-(methoxycarbonyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylic acid, C9H12O5
  49. The crystal structure of 1-((dimethylamino)(3-nitrophenyl)methyl)naphthalen-2-ol, C19H18N2O3
  50. Crystal structure of catena-poly[di(μ2-cyanido-κ2C:N)-dicyanido-tetrakis(dimethyl sulfoxide-κO)-manganese(II)-platinum(II)], C12H24MnN4O4PtS4
  51. Crystal structure of 4-amino-N-(2-pyrimidinyl)benzenesulfonamide–1,4-dioxane (1/1), C14H18N4O4S
  52. Crystal structure of bis{1-[(benzotriazol-1-yl)methyl]-1H-1,3-(2-methyl-imidazol)}di-chloridomercury(II), [Hg(C11H11N5)2Cl2], C22H22N10Cl2Hg
  53. Crystal structure of 2, 3-bis((4-methylbenzoyl)oxy) succinic acid–N, N-dimethylformamide (1/1), C23H25NO9
  54. Crystal structure of catena-poly[bis(4-(4-carboxyphenoxy)benzoato-κ1O)-μ2-(1,4-bis(1-imidazolyl)benzene-κ2N:N′)cobalt(II)], C40H28N4O10Co
  55. Crystal structure of 1H-imidazol-3-ium poly[aqua-(μ4-glutarato-κ6O,O′:O′:O′′,O′′′:O′′′)-(nitrato-κ2O,O′)strontium(II)], C8H13N3O8Sr
  56. Crystal structure of (R)-6-(benzo[b]thiophen-5-yl)-2-methyl-2,6-dihydrobenzo [5,6] silino[4,3,2-cd]indole, C23H17NSSi
  57. Crystal structure of catena-poly[bis(μ2-thiocyanato-κ2N:S)-(2-(5-methyl-1H-pyrazol-3-yl)pyridine-κ2N,N′)cadmium(II)]–dioxane (1/1), C15H17CdN5O2S2
  58. Crystal structure of poly[aqua-(μ2-1,4-bis(2′-carboxylatophenoxy)benzene-κ2O:O′)-(μ2-4,4′-bipyridione-κ2N:N′)cadmium(II)] monhydrate, C30H22CdN2O7⋅H2O
  59. Crystal structure of catena-poly[tetraaqua-(μ2-4,4′-bipyridine-k2N:N′)-bis(μ2-4′-methyl-[1,1′-biphenyl]-3,5-dicarboxylato-k4O,O′:O″,O′″)dicadmium(II)] dihydrate, C20H20NO7Cd
  60. Crystal structure of 1‐tert‐butyl‐3‐(2,6‐diisopropyl‐4‐phenoxyphenyl)‐2-methylisothiourea, C24H34N2OS
  61. Crystal structure of catena-poly[triaqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-(4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ1O)cobalt(II)] — N,N′-dimethylformamide (1/1), C28H34N8O8Co
  62. Crystal structure of tetraaqua-bis(1,4-di(1H-imidazol-1-yl)benzene-κ1N)manganese(II) 2,3-dihydroxyterephthalate, C32H32MnN8O10
Downloaded on 3.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0637/html
Scroll to top button