Startseite Effect of tool pin profile on the heat generation model of the friction stir welding of aluminium alloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of tool pin profile on the heat generation model of the friction stir welding of aluminium alloy

  • Rahul Kesharwani ORCID logo EMAIL logo , Kishor Kumar Jha , Chiranjit Sarkar und Murshid Imam
Veröffentlicht/Copyright: 31. August 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The present work aims to model the three-dimensional heat transfer coupled with the material flow model of 7075-T6 aluminium alloy material using the three tool pin profiles, square, pentagon, and hexagon, in the friction stir welding process. The temperature rise and fluid flow behaviour from the top to the bottom of the tool were evaluated. Also, the strain rate and dynamic viscosity variation were found near the tool pin and shoulder region. The results showed that the frictional contact heat between the shoulder surface and workpiece was responsible for the maximum heat generation. The probe area was minimum in the square tool pin geometry, which results in high heat generation due to the maximum shoulder surface contact area with the workpiece model. Furthermore, the analytical formula for calculating the heat generation on the tool shoulder/workpiece interface and the tool pin/workpiece contact region were also evaluated. The numerical modelling of heat generation was evaluated by COMSOL Multiphysics V5.3a software.


Corresponding author: Rahul Kesharwani, Department of Mechanical Engineering, Indian Institute of Technology Patna, Room Number 306, Block 3, 801106, Patna, Bihar, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The author Dr. Murshid Imam acknowledges DST, SERB, the Government of India funding support for this work.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Aval, H. J. Mater. Des. 2015, 67, 413. https://doi.org/10.1016/j.matdes.2014.11.055.Suche in Google Scholar

2. Panda, S. S. CIRP J. Manuf. Sci. Technol. 2021, 35, 454. https://doi.org/10.1016/j.cirpj.2021.07.009.Suche in Google Scholar

3. Kah, P., Rajan, R., Martikainen, J., Suoranta, R. Int. J. Mech. Mater. Eng. 2015, 10, 1. https://doi.org/10.1186/s40712-015-0053-8.Suche in Google Scholar

4. Anshari, M. A. A., Imam, M., Yusufzai, M. Z. K., Chinthapenta, V., Mishra, R. Mater. Sci. Eng. A. 2021, 805, 140582. https://doi.org/10.1016/j.msea.2020.140582.Suche in Google Scholar

5. Anshari, M. A. A., Pandit, D., Imam, M. Mater. Today: Proc. 2022, 56, 862. https://doi.org/10.1016/j.matpr.2022.02.515.Suche in Google Scholar

6. Jha, K. K., Ansari, M. A. A. Mater. Today: Proc. 2022, 56, 722. https://doi.org/10.1016/j.matpr.2022.01.320.Suche in Google Scholar

7. Kesharwani, R., Imam, M., Sarkar, C. Manuf. Lett. 2020, 24, 100. https://doi.org/10.1016/j.mfglet.2020.04.008.Suche in Google Scholar

8. Kesharwani, R., Imam, M., Sarkar, C. Trans. Indian Inst. Met. 2021, 74, 3185. https://doi.org/10.1007/s12666-021-02386-4.Suche in Google Scholar

9. Jha, K. K., Kesharwani, R., Imam, M. Mater. Today: Proc. 2022, 56, 819. https://doi.org/10.1016/j.matpr.2022.02.262.Suche in Google Scholar

10. Kesharwani, R., Jha, K. K., Sarkar, C., Imam, M. Mater. Today: Proc. 2022, 56, 826. https://doi.org/10.1016/j.matpr.2022.02.295.Suche in Google Scholar

11. Raturi, M., Garg, A., Bhattacharya, A. Eng. Failure Anal. 2019, 96, 570. https://doi.org/10.1016/j.engfailanal.2018.12.003.Suche in Google Scholar

12. Garg, A., Raturi, M., Bhattacharya, A. CIRP J. Manuf. Sci. Technol. 2020, 29, 99. https://doi.org/10.1016/j.cirpj.2020.03.001.Suche in Google Scholar

13. Ilangovan, M., Boopathy, S. R., Balasubramanian, V. Def. Technol. 2015, 11, 174. https://doi.org/10.1016/j.dt.2015.01.004.Suche in Google Scholar

14. Patel, V. V., Badheka, V., Kumar, A. J. Mater. Process. Technol. 2017, 240, 68. https://doi.org/10.1016/j.jmatprotec.2016.09.009.Suche in Google Scholar

15. Mugada, K. K., Adepu, K. J. Manuf. Process. 2018, 32, 625. https://doi.org/10.1016/j.jmapro.2018.03.034.Suche in Google Scholar

16. Biswas, P., Kumar, D. A., Mandal, N. R. Proc. Inst. Mech. Eng., Part B 2012, 226, 641. https://doi.org/10.1177/0954405411424111.Suche in Google Scholar

17. Chen, G. Q., Shi, Q. Y., Li, Y. J., Sun, Y. J., Dai, Q. L., Jia, J. Y., Zhu, Y. C., Wu, J. J. Comput. Mater. Sci. 2013, 79, 540. https://doi.org/10.1016/j.commatsci.2013.07.004.Suche in Google Scholar

18. Song, M., Kovacevic, R. Int. J. Mach. Tools Manuf. 2003, 43, 605. https://doi.org/10.1016/S0890-6955(03)00022-1.Suche in Google Scholar

19. Song, M., Kovacevic, R. R. Proc. Inst. Mech. Eng., Part B 2003, 217, 73. https://doi.org/10.1243/095440503762502297.Suche in Google Scholar

20. Sadeghian, B., Taherizadeh, A., Atapour, M. J. Mater. Process. Technol. 2018, 259, 96. https://doi.org/10.1016/j.jmatprotec.2018.04.012.Suche in Google Scholar

21. Nandan, R., Roy, G. G., Debroy, T. Metall. Mater. Trans. A 2006, 37, 1247. https://doi.org/10.1007/s11661-006-1076-9.Suche in Google Scholar

22. Grujicic, M., He, T., Arakere, G., Yalavarthy, H. V., Yen, C. F., Cheeseman, B. A. Proc. Inst. Mech. Eng., Part B 2010, 224, 609. https://doi.org/10.1243/09544054JEM1750.Suche in Google Scholar

23. Gadakh, V. S., Adepu, K. K. J. Mater. Res. Technol. 2013, 2, 370. https://doi.org/10.1016/j.jmrt.2013.10.003.Suche in Google Scholar

24. Hamilton, C., Kopyściański, M., Senkov, O., Dymek, S. Metall. Mater. Trans. A 2013, 44, 1730. https://doi.org/10.1007/s11661-012-1512-y.Suche in Google Scholar

25. Malika, V., Sanjeev, N. K. B., Hebbarb, H. S., Kailas, S. V. 12th GCMM, Vol. 97; Elsevier Procedia: Vellore, 2014; p. 1060.10.1016/j.proeng.2014.12.384Suche in Google Scholar

26. Bayazid, S. M., Farhangi, H., Ghahramani, A. Procedia Mater. Sci. 2015, 11, 12. https://doi.org/10.1016/j.mspro.2015.11.013.Suche in Google Scholar

27. Su, H., Wu, C. S., Bachmann, M., Rethmeier, M. Mater. Des. 2015, 77, 114. https://doi.org/10.1016/j.matdes.2015.04.012.Suche in Google Scholar

28. Mehta, M., Reddy, G. M., Rao, A. V., De, A. Def. Technol. 2015, 11, 229. https://doi.org/10.1016/j.dt.2015.05.001.Suche in Google Scholar

29. Yaduwanshi, D. K., Bag, S., Pal, S. Proc. Inst. Mech. Eng., Part B 2015, 229, 1722. https://doi.org/10.1177/0954405414539297.Suche in Google Scholar

30. Mohanty, H., Mahapatra, M. M., Kumar, P., Biswas, P., Mandal, N. R. Proc. Inst. Mech. Eng., Part B 2012, 226, 1527. https://doi.org/10.1177/0954405412451811.Suche in Google Scholar

31. Jha, K. K., Kesharwani, R., Imam, M. Trans. Indian Inst. Met. 2022, 76, 1, https://doi.org/10.1007/s12666-022-02672-9.Suche in Google Scholar

32. Fiedler, T., Belova, I. V., Öchsner, A., Murch, G. E. Comput. Mater. Sci. 2009, 45, 434. https://doi.org/10.1016/j.commatsci.2008.10.021.Suche in Google Scholar

33. Gadakh, V. S., Kumar, A., Patil, G. J. V. Weld. J. 2015, 93, 115.Suche in Google Scholar

34. Woźnicki, A., Leszczyńska-Madej, B., Włoch, G., Grzyb, J., Madura, J., Leśniak, D. Metals 2021, 11, 338. https://doi.org/10.3390/met11020338.Suche in Google Scholar

35. Tello, K. E., Gerlich, A. P., Mendez, P. F. Sci. Technol. Weld. Joining 2010, 15, 260. https://doi.org/10.1179/136217110X12665778348380.Suche in Google Scholar

Received: 2022-05-09
Accepted: 2022-07-28
Published Online: 2023-08-31
Published in Print: 2023-10-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Additive manufacturing and allied technologies
  4. Original Papers
  5. Influence of process parameters on ageing and free vibration characteristics of fiber-reinforced polymer composites by fusion filament fabrication process
  6. 3D biomimetic scaffold’s dimensional accuracy: a crucial geometrical response for bone tissue engineering
  7. Investigation of mechanical and microstructure properties of metal inert gas based wire arc additive manufactured Inconel 600 superalloy
  8. Study on the influence of surface roughness on tensile and low-cycle fatigue behavior of electron beam melted Ti‐6Al‐4V
  9. Effect of tool pin profile on the heat generation model of the friction stir welding of aluminium alloy
  10. Effect of clamping position on the residual stress in wire arc additive manufacturing
  11. Effect of welding speed on butt joint quality of laser powder bed fusion AlSi10Mg parts welded using Nd:YAG laser
  12. Mechanical behaviour, microstructure and texture studies of wire arc additive manufactured 304L stainless steel
  13. Evolution of microstructure and properties of CoCrFeMnNi high entropy alloy fabricated by selective laser melting
  14. Effect of laser energy density on surface morphology, microstructure and mechanical behaviour of direct metal laser melted 17-4 PH stainless steel
  15. The influence of rheology in the fabrication of ceramic-based scaffold for bone tissue engineering
  16. Behaviour of glass fiber reinforced polymer (GFRP) structural profile columns under axial compression
  17. Desirability function analysis approach for optimization of fused deposition modelling process parameters
  18. Effect of robotic weaving motion on mechanical and microstructural characteristics of wire arc additively manufactured NiTi shape memory alloy
  19. Rapid tooling of composite aluminium filled epoxy mould for injection moulding of polypropylene parts with small protruded features
  20. Investigation of microstructural evolution in a hybrid additively manufactured steel bead
  21. Fused filament fabricated PEEK based polymer composites for orthopaedic implants: a review
  22. Design of fixture for ultrasonic assisted gas tungsten arc welding using an integrated approach
  23. Effect of post-processing treatment on 3D-printed polylactic acid parts: layer interfaces and mechanical properties
  24. Investigating the effect of input parameters on tool wear in incremental sheet metal forming
  25. Microstructural evolution and improved corrosion resistance of NiCrSiFeB coatings prepared by laser cladding
  26. Microstructure and electrochemical behaviour of laser clad stainless steel 410 substrate with stainless steel 420 particles
  27. News
  28. DGM – Deutsche Gesellschaft für Materialkunde
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0217/html
Button zum nach oben scrollen