Abstract
Organometallics are chemical compounds that consist of carbon-metal linkages. They have emerged as a result of the combination of organic and inorganic chemistry and exhibit a stable metal-carbon bond in solution. These compounds possess properties that lie between those of ionic and covalent bonds, making them highly significant in various industries. The fact that organometallics are present in all living organisms further emphasises their importance. In this overview, we will explore general reactions, such as substitution and insertion reactions, as well as different techniques for creating organometallic complexes. Additionally, we will provide a brief synthesis review of various types of organometallic complexes, including carbonyls, hydrides, alkyls, carbenes, and carbines. Organometallic compounds find extensive applications in stoichiometric chemical processes in both research and industry. Moreover, they serve as catalysts to enhance these reactions, making them more than just theoretical compounds. For example, organotin compounds are widely used as fire retardants, polymers, medications, insecticides, and stabilizers for polyvinyl chloride.
Acknowledgments
We want to express our gratitude to the heads of the chemistry departments at Koya University.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Abbott, J. K. C.; Smith, B. A.; Cook, T. M.; Xue, Z. L. Chapter 10 – Synthesis of Organometallic Compounds. In Modern Inorganic Synthetic Chemistry; Xu, R., Xu, Y., Eds., 2nd ed.; Elsevier: Amsterdam, Netherlands, 2017; pp 247–277.10.1016/B978-0-444-63591-4.00010-0Suche in Google Scholar
2. Bulatov, E. Synthetic and Structural Studies of Covalent and Non-covalent Interactions of Ligands and Metal Center in Platinum (II) Complexes Containing 2, 2′-dipyridylamine or Oxime Ligands. JYU Dissertations, 2019.Suche in Google Scholar
3. Chavain, N.; Biot, C. Organometallic Complexes: New Tools for Chemotherapy. Curr. Med. Chem. 2010, 17 (25), 2729–2745; https://doi.org/10.2174/092986710791859306.Suche in Google Scholar PubMed
4. Hosmane, N. S. Chapter 10 – Organometallic Chemistry. In Advanced Inorganic Chemistry; Hosmane, N. S., Ed.; Academic Press: Amsterdam, Netherlands, 2017; pp 199–208.10.1016/B978-0-12-801982-5.00010-2Suche in Google Scholar
5. Yunus, M. Y. B. M. Synthesis and Characterization of Novel Organometallic Chromium Hexacarbonyl Derivatives Via Ligand (l) Substitution. Uni. M. Pahang 2012, 3, 1–24.Suche in Google Scholar
6. Allardyce, C. S.; Dyson, P. J. Medicinal Properties of Organometallic Compounds. Bioorganomet. Chem. 2006, 177–210. https://doi.org/10.1007/3418_001.Suche in Google Scholar
7. Kavaklı, C. Synthesis and Characterization Carbonyl-Tungsten (0) Complexes [n, n’-Bis (Ferrocenylmethylene) Ethylenediamine]; Middle East Technical University: Ankara, Turkey, 2005.Suche in Google Scholar
8. Andersen, J.-A. M. The Synthesis and Reactivity of Some Hydrocarbyl Complexes of Manganese, Rhenium and Iron. Uni. Cape Town 1993, 1, 1–22.Suche in Google Scholar
9. Cotton, F. A.; Hong, B. Polydentate Phosphines: Their Syntheses, Structural Aspects, and Selected Applications. Prog. Inorg. Chem. 1992, 40, 179; https://doi.org/10.1002/9780470166413.ch3.Suche in Google Scholar
10. Stoumpos, C. C.; Soe, C. M. M.; Tsai, H.; Nie, W.; Blancon, J.-C.; Cao, D. H.; Liu, F.; Traoré, B.; Katan, C.; Even, J. High Members of the 2D Ruddlesden-Popper Halide Perovskites: Synthesis, Optical Properties, and Solar Cells of (CH3 (CH2) 3NH3) 2 (CH3NH3) 4Pb5I16. Chem 2017, 2 (3), 427–440; https://doi.org/10.1016/j.chempr.2017.02.004.Suche in Google Scholar
11. Chalkley, M. J.; Drover, M. W.; Peters, J. C. Catalytic N2-to-NH3 (Or-N2h4) Conversion by Well-Defined Molecular Coordination Complexes. Chem. Rev. 2020, 120 (12), 5582–5636; https://doi.org/10.1021/acs.chemrev.9b00638.Suche in Google Scholar PubMed PubMed Central
12. Paskevicius, M.; Jepsen, L. H.; Schouwink, P.; Černý, R.; Ravnsbæk, D. B.; Filinchuk, Y.; Dornheim, M.; Besenbacher, F.; Jensen, T. R. Metal Borohydrides and Derivatives–Synthesis, Structure and Properties. Chem. Soc. Rev. 2017, 46 (5), 1565–1634; https://doi.org/10.1039/c6cs00705h.Suche in Google Scholar PubMed
13. Bünzli, J.-C. G.; Piguet, C. Lanthanide-Containing Molecular and Supramolecular Polymetallic Functional Assemblies. Chem. Rev. 2002, 102 (6), 1897–1928; https://doi.org/10.1021/cr010299j.Suche in Google Scholar PubMed
14. Kaltsoyannis, N.; McGrady, J.; Harvey, J. N. DFT Computation of Relative Spin-State Energetics of Transition Metal Compounds. In Principles and Applications of Density Functional Theory in Inorganic Chemistry I; Springer: Berlin, Germany, 2004; pp 151–184.10.1007/b97939Suche in Google Scholar
15. Rezaei, Z.; Solimannejad, M.; Esrafili, M. D. Interplay Between Hydrogen Bond and Single-Electron Tetrel Bond: H3C⃛ COX2⃛ HY and H3C⃛ CSX2⃛ HY (X= F, Cl; Y= CN, NC) Complexes as a Working Model. Comput. Theor. Chem. 2015, 1074, 101–106; https://doi.org/10.1016/j.comptc.2015.10.015.Suche in Google Scholar
16. Smith, M. B. Biochemistry: An Organic Chemistry Approach; CRC Press: Boca Raton, Florida, USA, 2020.Suche in Google Scholar
17. Soriano, E.; Fernández, I. Allenes and Computational Chemistry: from Bonding Situations to Reaction Mechanisms. Chem. Soc. Rev. 2014, 43 (9), 3041–3105; https://doi.org/10.1039/c3cs60457h.Suche in Google Scholar PubMed
18. Dolai, M. Organometallic and Catalysis; Purba Medinipur: India, 2020.Suche in Google Scholar
19. Conradie, M. M. Rhodium and Iron Complexes and Transition States: a Computational, Spectroscopic and Electrochemical Study; University of the Free State: Bloemfontein, South Africa, 2010.Suche in Google Scholar
20. Crabtree, R. H. The Organometallic Chemistry of the Transition Metals; John Wiley & Sons: New Jersey, USA, 2009.Suche in Google Scholar
21. Hill, A. F. Organotransition Metal Chemistry; Royal Society of Chemistry: Cambridge, UK, 2002.10.1039/9781847551597Suche in Google Scholar
22. Wales, D. J.; King, R. B. Electronic Structure of Clusters. In Encyclopedia of Inorganic Chemistry, 2nd ed.; King, R. B., Ed-in-Chief; John-Wiley and Sons, Ltd, 2005; pp 1506–1525.Suche in Google Scholar
23. Lawrance, G. A. Introduction to Coordination Chemistry; John Wiley & Sons: New Jersey, USA, 2013.Suche in Google Scholar
24. Constable, E. C.; Albrecht, M. Metals and Ligand Reactivity; Ellis Horwood: Chichester, UK, 1990.Suche in Google Scholar
25. Crabtree, H. The Organometallic Chemistry of the Transition Metals; John Wiley & Sons: New Jersey, USA, 2009.Suche in Google Scholar
26. Denny, J. A.; Darensbourg, M. Y. Metallodithiolates as Ligands in Coordination, Bioinorganic, and Organometallic Chemistry. Chem. Rev. 2015, 115 (11), 5248–5273; https://doi.org/10.1021/cr500659u.Suche in Google Scholar PubMed
27. McCleverty, J. A.; Connelly, N. G. Nomenclature of Inorganic Chemistry II: Recommendations 2000; Royal Society of Chemistry: Cambridge, UK, 2001.10.1039/9781849732529Suche in Google Scholar
28. Leigh, G. J. Nomenclature of Inorganic Chemistry: Recommendations 1990; Institut d’Estudis Catalans: Barcelona, Spain, 1990.Suche in Google Scholar
29. Damhus, T.; Hartshorn, R.; Hutton, A. Nomenclature of Inorganic Chemistry: IUPAC Recommendations; Royal Society of Chemistry: Cambridge, 2005.Suche in Google Scholar
30. Jeannin, Y. P. The Nomenclature of Polyoxometalates: How to Connect a Name and a Structure. Chem. Rev. 1998, 98 (1), 51–76; https://doi.org/10.1021/cr960397i.Suche in Google Scholar PubMed
31. Poli, R. Open-shell Organometallics as a Bridge between Werner-type and Low-Valent Organometallic Complexes. The Effect of the Spin State on the Stability, Reactivity, and Structure. Chem. Rev. 1996, 96 (6), 2135–2204; https://doi.org/10.1021/cr9500343.Suche in Google Scholar PubMed
32. Tsarevsky, N. V.; Matyjaszewski, K. “Green” Atom Transfer Radical Polymerization: from Process Design to Preparation of Well-Defined Environmentally Friendly Polymeric Materials. Chem. Rev. 2007, 107 (6), 2270–2299; https://doi.org/10.1002/chin.200736258.Suche in Google Scholar
33. Kubas, G. J. Fundamentals of H2 Binding and Reactivity on Transition Metals Underlying Hydrogenase Function and H2 Production and Storage. Chem. Rev. 2007, 107 (10), 4152–4205; https://doi.org/10.1002/chin.200750233.Suche in Google Scholar
34. Komiya, S. Synthesis of Organometallic Compounds: A Practical Guide; John Wiley & Sons: New Jersey, USA, 1997.Suche in Google Scholar
35. Werner, H.; Werner, H. The Nineteenth Century: A Sequence of Accidental Discoveries. In Landmarks in Organo-Transition Metal Chemistry: A Personal View; Springer: Berlin, Germany, 2009; pp 1–16.10.1007/978-0-387-09848-7_3Suche in Google Scholar
36. Werner, H.; Werner, H. Transition Metal Carbonyls: From Small Molecules to Giant Clusters. In Landmarks in Organo-Transition Metal Chemistry: A Personal View; Springer: New York, 2009; pp 1–43.10.1007/978-0-387-09848-7_4Suche in Google Scholar
37. Anderson, J. Chemistry of the Metal Carbonyls. Q. Rev. Chem. Soc. 1947, 1 (4), 331–357; https://doi.org/10.1039/qr9470100331.Suche in Google Scholar
38. Albers, M. O.; Coville, N. J. Reagent and Catalyst Induced Substitution Reactions of Metal Carbonyl Complexes. Coord. Chem. Rev. 1984, 53, 227–259; https://doi.org/10.1016/0010-8545(84)85009-2.Suche in Google Scholar
39. Wilcox, R. J. Sorption to Dissolution: The Reactivity of Small Molecules with Condensed Phase Metal Halide Networks; Raleigh: North Carolina, 2009.Suche in Google Scholar
40. Astruc, D. Organometallic Chemistry and Catalysis; Springer: Berlin, Germany, 2007.Suche in Google Scholar
41. Leininger, S.; Olenyuk, B.; Stang, P. J. Self-assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals. Chem. Rev. 2000, 100 (3), 853–908; https://doi.org/10.1021/cr9601324.Suche in Google Scholar PubMed
42. Frenking, G.; Fröhlich, N. The Nature of the Bonding in Transition-Metal Compounds. Chem. Rev. 2000, 100 (2), 717–774; https://doi.org/10.1021/cr980401l.Suche in Google Scholar PubMed
43. Geiger, W. E.; Barrière, F. Organometallic Electrochemistry Based on Electrolytes Containing Weakly-Coordinating Fluoroarylborate Anions. Acc. Chem. Res. 2010, 43 (7), 1030–1039; https://doi.org/10.1021/ar1000023.Suche in Google Scholar PubMed
44. Al-Muwallad, S. A. A. Synthesis and Characterization of Tungsten Carbonyl Complexes with some Schiff base ligands including phosphine derivatives (PR3); King Abdulaziz University Jeddah: Saudi Arabia, 2023.Suche in Google Scholar
45. Li, J.; Huang, C. Y.; Li, C. J. Deoxygenative Functionalizations of Aldehydes, Ketones and Carboxylic Acids. Angew. Chem. 2022, 134 (10), e202112770; https://doi.org/10.1002/anie.202112770.Suche in Google Scholar PubMed
46. Warwick, G. The Mechanism of Action of Alkylating Agents. Cancer Res. 1963, 23 (8_Part_1), 1315–1333.Suche in Google Scholar
47. Lersch, M.; Tilset, M. Mechanistic Aspects of C− H Activation by Pt Complexes. Chem. Rev. 2005, 105 (6), 2471–2526; https://doi.org/10.1021/cr030710y.Suche in Google Scholar PubMed
48. Hahn, C. Enhancing Electrophilic Alkene Activation by Increasing the Positive Net Charge in Transition-Metal Complexes and Application in Homogeneous Catalysis. Chem. Eur. J. 2004, 10 (23), 5888–5899; https://doi.org/10.1002/chem.200400550.Suche in Google Scholar PubMed
49. Brown, S.; Brown, S. L. Mechanistic Organometallic Chemistry; University of Oxford: UK, 1986.Suche in Google Scholar
50. Burt, J.; Levason, W.; Reid, G. Coordination Chemistry of the Main Group Elements with Phosphine, Arsine and Stibine Ligands. Coord. Chem. Rev. 2014, 260, 65–115; https://doi.org/10.1016/j.ccr.2013.09.020.Suche in Google Scholar
51. Pratt, J. M.; Craig, P. J. Preparation and Reactions of Organocobalt (III) Complexes. In Advances in Organometallic Chemistry; Stone, F. G. A., West, R., Eds.; Academic Press: California, USA, Vol. 11, 1973; pp 331–446, https://doi.org/10.1016/s0065-3055(08)60164-1.Suche in Google Scholar
52. Mestroni, G.; Camus, A.; Mestroni, E. Cobalt Complexes of 2, 2′-Bipyridine and 1, 10-Phenanthroline: I. Reaction with Alkyl Halides and π-Acids. J. Organomet. Chem. 1970, 24 (3), 775–781; https://doi.org/10.1016/s0022-328x(00)84510-6.Suche in Google Scholar
53. Wilke, G.; Bogdanović, B.; Hardt, P.; Heimbach, P.; Keim, W.; Kröner, M.; Oberkirch, W.; Tanaka, K.; Steinrücke, E.; Walter, D. Allyl-Transition Metal Systems. Angew Chem. Int. Ed. Engl. 1966, 5 (2), 151–164; https://doi.org/10.1002/anie.196601511.Suche in Google Scholar
54. Cope, A.; Gourley, R. J. A New σ-Bonded Arylsingle Bondcobalt(III) Complex. J. Organometa. Chem. 1967, 8, 527; https://doi.org/10.1016/s0022-328x(00)83675-x.Suche in Google Scholar
55. Seyferth, D. Cadet’s Fuming Arsenical Liquid and the Cacodyl Compounds of Bunsen; ACS Publications: Washington, D.C., USA, Vol. 20, 2001; pp 1488–1498.10.1021/om0101947Suche in Google Scholar
56. Jana, R.; Pathak, T. P.; Sigman, M. S. Advances in Transition Metal (Pd, Ni, Fe)-Catalyzed Cross-Coupling Reactions Using Alkyl-Organometallics as Reaction Partners. Chem. Rev. 2011, 111 (3), 1417–1492; https://doi.org/10.1021/cr100327p.Suche in Google Scholar PubMed PubMed Central
57. Lenhert, P. The Structure of Vitamin B12-VII. The X-Ray Analysis of the Vitamin B12 Coenzyme. Proc. Roy. Soc. Lond. Math. Phys. Sci. 1968, 303 (1472), 45–84.10.1098/rspa.1968.0039Suche in Google Scholar
58. Hill, J.; Pratt, J.; Williams, R. The Corphyrins. J. Theor. Biol. 1962, 3 (3), 423–445; https://doi.org/10.1016/s0022-5193(62)80035-6.Suche in Google Scholar
59. Iguchi, M. A Study on the Contact Oxidation–Reduction Effect of Metal Complexes. Hydrogen Adsorption of Cobalt-Thiane Complexes. J. Chem. Soc. Jap. 1942, 63, 634.Suche in Google Scholar
60. Brown, L. D.; Raymond, K. N.; Goldberg, S. Z. Preparation and Structural Characterization of Barium Decacyanodicobaltate (II) Tridecahydrate, Ba3 [Co2 (CN) 10]. 13H2O, an Air-Stable Salt of the [Co2 (CN) 10] 6-ion. J. Am. Chem. Soc. 1972, 94 (22), 7664–7674; https://doi.org/10.1021/ja00777a010.Suche in Google Scholar
61. Halpern, J.; Maher, J. P. Pentacyanobenzylcobaltate (III): A New Series of Stable Organocobalt Compounds. J. Am. Chem. Soc. 1964, 86 (11), 2311; https://doi.org/10.1021/ja01065a060.Suche in Google Scholar
62. Kwiatek, J.; Seyler, J. K. Preparation of Organocyanocobaltate (III) Complexes. J. Organomet. Chem. 1965, 3 (6), 421–432; https://doi.org/10.1016/s0022-328x(00)83570-6.Suche in Google Scholar
63. Schollhorn, R. Intercalation Compounds; Academic Press: New York, Vol. 1, 1984; pp 249–349.Suche in Google Scholar
64. Cutler, A. R.; Hanna, P. K.; Vites, J. C. Carbon Monoxide and Carbon Dioxide Fixation: Relevant C1 and C2 Ligand Reactions Emphasizing (. Eta. 5-C5H5) Fe-Containing Complexes. Chem. Rev. 1988, 88 (7), 1363–1403; https://doi.org/10.1021/cr00089a016.Suche in Google Scholar
65. Garnovskii, A. D.; Kharissov, B. I. Main Methods of the Synthesis of Coordination Compounds. In Synthetic Coordination and Organometallic Chemistry; CRC Press: Florida, USA, 2003; pp 172–354.10.1201/9780203911525-7Suche in Google Scholar
66. Lee, T.-Y.; Messerle, L. Utility of Hydridotributyltin as Both Reductant and Hydride Transfer Reagent in Organotransition Metal Chemistry: I. A Convenient Synthesis of the Organoditantalum (IV) Hydrides (η-C5Me4R) 2Ta2 (μ-H) 2Cl4 (R= Me, Et) from (η-C5Me4R) TaCl4, and Probes of the Possible Reaction Pathways. J. Organomet. Chem. 1998, 553 (1–2), 397–403; https://doi.org/10.1016/s0022-328x(97)00620-7.Suche in Google Scholar
67. Hermann, M. Ueber die bei der technischen Gewinnung des Broms beobachtete flüchtige Bromverbindung. Justus Liebigs Ann. Chem. 1855, 95 (2), 211–225; https://doi.org/10.1002/jlac.18550950211.Suche in Google Scholar
68. Rouschias, G.; Shaw, B. A Revised Structure for Chugaev’s Salt [PtC 8 H 15 N 6] X Cl X. J. Chem. Soc. D Chem. Commun. 1970 (3), 183. https://doi.org/10.1039/c29700000183.Suche in Google Scholar
69. Badley, E.; Chatt, J.; Richards, R.; Sim, G. The Reactions of Isocyanide Complexes of Platinum (II): A Convenient Route to Carbene Complexes. J. Chem. Soc. D Chem. Commun. 1969 (22), 1322–1323. https://doi.org/10.1039/c29690001322.Suche in Google Scholar
70. Burke, A.; Balch, A. L.; Enemark, J. H. Palladium and Platinum Complex Resulting from the Addition of Hydrazine to Coordinated Isocyanide. J. Am. Chem. Soc. 1970, 92 (8), 2555–2557; https://doi.org/10.1021/ja00711a063.Suche in Google Scholar
71. Butler, W. M.; Enemark, J. H. Chelative Addition of Hydrazine to Coordinated Isocyanides. Structure of 1, 1’-dichloropallado-2, 5-di (Methylamino)-3, 4-diazacyclopentadiene, [Me2C2N4H4] PdCl2. Inorg. Chem. 1971, 10 (11), 2416–2419; https://doi.org/10.1021/ic50105a010.Suche in Google Scholar
72. Rouschias, G.; Shaw, B. The Chemistry and Structure of Chugaev’s Salt and Related Compounds Containing a Cyclic Carbene Ligand. J. Chem. Soc. Inorg. Phys. Theor. 1971, 2097–2104. https://doi.org/10.1039/j19710002097.Suche in Google Scholar
73. Balch, A. Formation of Platinum (IV) Carbene Complexes by Oxidative Addition. J. Organomet. Chem. 1972, 37 (1), C19–C20; https://doi.org/10.1016/s0022-328x(00)89248-7.Suche in Google Scholar
74. Butler, W. M.; Enemark, J. H.; Parks, J.; Balch, A. L. Chelative Addition of Hydrazines to Coordinated Isocyanides. Structure of Chugaev’s Red Salt. Inorg. Chem. 1973, 12 (2), 451–457; https://doi.org/10.1021/ic50120a042.Suche in Google Scholar
75. Fischer, E.; Öfele, K. Mangan (I)-pentacarbonyl-äthylen-Kation. Angew. Chem. 1961, 73 (16), 581; https://doi.org/10.1002/ange.19610731614.Suche in Google Scholar
76. Fischer, E.; Öfele, K. Rhenium (I)-tetra-carbonyl-di-äthylen-Kation. Angew. Chem. 1962, 74 (2), 76; https://doi.org/10.1002/ange.19620740210.Suche in Google Scholar
77. Fischer, E.; Maasböl, A. On the Existence of a Tungsten Carbonyl Carbene Complex. Angew Chem. Int. Ed. Engl. 1964, 3 (8), 580–581; https://doi.org/10.1002/anie.196405801.Suche in Google Scholar
78. Cardin, D.; Cetinkaya, B.; Lappert, M. Transition Metal-Carbene Complexes. Chem. Rev. 1972, 72 (5), 545–574; https://doi.org/10.1021/cr60279a006.Suche in Google Scholar
79. Vilsmeier, A.; Haack, A. Über die Einwirkung von Halogenphosphor auf Alkyl-formanilide. Eine neue Methode zur Darstellung sekundärer und tertiärer p-Alkylamino-benzaldehyde. Ber. Dtsch. Chem. Ges. 1927, 60 (1), 119–122; https://doi.org/10.1002/cber.19270600118.Suche in Google Scholar
80. Hartshorn, A. J.; Lappert, M. F.; Turner, K. Carbene Complexes. Part 13. The Synthesis and Characterisation of Secondary Carbene Complexes of Vanadium (I), Chromium (0), Molybdenum (0), Tungsten (0), Manganese (I), Rhenium (I), Iron (0), Ruthenium (II), Cobalt (I), Iridium (III), and Platinum (IV), and Hydridorhodium (III). J. Chem. Soc., Dalton Trans. 1978 (4), 348–356. https://doi.org/10.1039/dt9780000348.Suche in Google Scholar
81. Lappert, M. F. Contributions to the Chemistry of Carbenemetal Chemistry. J. Organomet. Chem. 2005, 690 (24-25), 5467–5473; https://doi.org/10.1016/j.jorganchem.2005.07.066.Suche in Google Scholar
82. Cetinkaya, B.; Lappert, M.; McLaughlin, G.; Turner, K. Carbene Complexes. 7. Chloromethyleneammonium Chlorides-Electron-Rich Carbenoids, as Precursors to Secondary Carbene Metal-Complexes-Crystal and Molecular-Structure of Trichloro (Dimethyl-Aminomethylene) Bis (Triethylphosphine) Rhodium (III). J. Chem. Soc. Dalton Trans. 1974 (15), 1591–1599.10.1039/DT9740001591Suche in Google Scholar
83. Tri, N. M.; Thanh, N. D.; Ha, L. N.; Anh, D. T. T.; Toan, V. N.; Giang, N. T. K. Study on Synthesis of Some Substituted N-Propargyl Isatins by Propargylation Reaction of Corresponding Isatins Using Potassium Carbonate as Base under Ultrasound-And Microwave-Assisted Conditions. Chem. Pap. 2021, 75 (9), 4793–4801; https://doi.org/10.1007/s11696-021-01697-6.Suche in Google Scholar
84. Cheng, Y.; Yang, H.; Meth-Cohn, O. The Unique Nucleophilic Reactivity of Arylaminochlorocarbenes. Chem. Commun. 2003 (1), 90–91. https://doi.org/10.1002/chin.200320044.Suche in Google Scholar
85. Borel, C.; Hegedus, L. S.; Krebs, J.; Satoh, Y. Synthesis of Amino-. beta.-lactams by the Photolytic Reaction of Imines with Pentacarbonyl [(dibenzylamino) Carbene] Chromium (0). J. Am. Chem. Soc. 1987, 109 (4), 1101–1105; https://doi.org/10.1021/ja00238a018.Suche in Google Scholar
86. Rendina, L. M.; Vittal, J. J.; Puddephatt, R. J. Cationic Carbene Complexes of Platinum (IV): Structure of a Secondary Carbene Complex. Organometallics 1995, 14 (2), 1030–1038; https://doi.org/10.1021/om00002a058.Suche in Google Scholar
87. Claverie, J. P.; Soula, R. Catalytic Polymerizations in Aqueous Medium. Prog. Polym. Sci. 2003, 28 (4), 619–662; https://doi.org/10.1016/s0079-6700(02)00078-3.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
- Advanced synthetic routes of metal organic frameworks and their diverse applications
- Carbon materials derived by crystalline porous materials for capacitive energy storage
- BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
- Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base
- Solid-phase extraction of organophosphates from polluted waters on a matrix-imprinted sorbent
- Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
- Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
- Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
- Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
- Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
- A review of carbon-based adsorbents for the removal of organic and inorganic components
- Mercury removal from water: insights from MOFs and their composites
- Organometallic complexes and reaction methods for synthesis: a review
- Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity
Artikel in diesem Heft
- Frontmatter
- Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
- Advanced synthetic routes of metal organic frameworks and their diverse applications
- Carbon materials derived by crystalline porous materials for capacitive energy storage
- BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
- Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base
- Solid-phase extraction of organophosphates from polluted waters on a matrix-imprinted sorbent
- Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
- Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
- Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
- Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
- Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
- A review of carbon-based adsorbents for the removal of organic and inorganic components
- Mercury removal from water: insights from MOFs and their composites
- Organometallic complexes and reaction methods for synthesis: a review
- Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity