Home Carbon materials derived by crystalline porous materials for capacitive energy storage
Article
Licensed
Unlicensed Requires Authentication

Carbon materials derived by crystalline porous materials for capacitive energy storage

  • Hang Wang ORCID logo EMAIL logo , Yiting Li , Longyu Wang and Jieting Jin
Published/Copyright: April 8, 2024

Abstract

The controlled synthesis of precise carbon nanostructures with high electron conductivity, high reaction activity, and structural stability plays a significant role in practical applications yet largely unmet. Metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and coordination polymers (CPs) as crystalline porous materials (CPMs) have shown extraordinary porosity, tremendous structural diversity, and highly ordered pores, offering a platform for precise controlled carbon materials (CMs) with regular porous structures and high performances. Some recent studies have shown that CMs derived from CPMs with high specific surface area, superior chemical stability, excellent electrical conductivity offer a great opportunity for electrochemical energy storage and conversion. In this review, we summarize recent milestones of CPMs derived CMs in the field of capacitive energy storage. We hope the more precise design and control at the atomic level of CPMs could provide us a constructive view of the structure-activity relationship between CMs and electrochemical capacitors, as well as future trends and prospects.


Corresponding author: Hang Wang, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, P.R. China, E-mail:

Award Identifier / Grant number: 22105226

Award Identifier / Grant number: 23CX06019A, R20220132

Funding source: Shandong Province Postdoctoral Innovative Talent Support Program

Award Identifier / Grant number: SDBX20200004

  1. Research ethics: This article has no ethical implications.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: National Natural Science Foundation of China (Nos. 22105226), Shandong Province Postdoctoral Innovative Talent Support Program (SDBX20200004), the Fundamental Research Funds for the Central Universities (23CX06019A, R20220132).

  5. Data availability: Data available on request from the authors.

References

1. Shao, Y.; El-Kady, M. F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R. B. Design and Mechanisms of Asymmetric Supercapacitors. Chem. Rev. 2018, 118, 9233–9280; https://doi.org/10.1021/acs.chemrev.8b00252.Search in Google Scholar PubMed

2. Fan, E.; Li, L.; Wang, Z.; Lin, J.; Huang, Y.; Yao, Y.; Chen, R.; Wu, F. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chem. Rev. 2020, 120, 7020–7063; https://doi.org/10.1021/acs.chemrev.9b00535.Search in Google Scholar PubMed

3. Ott, S.; Orfanidi, A.; Schmies, H.; Anke, B.; Nong, H. N.; Hubner, J.; Gernert, U.; Gliech, M.; Lerch, M.; Strasser, P. Ionomer Distribution Control in Porous Carbon-Supported Catalyst Layers for High-Power and Low Pt-Loaded Proton Exchange Membrane Fuel Cells. Nat. Mater. 2020, 19, 77–85; https://doi.org/10.1038/s41563-019-0487-0.Search in Google Scholar PubMed

4. Fleischmann, S.; Mitchell, J. B.; Wang, R.; Zhan, C.; Jiang, D. E.; Presser, V.; Augustyn, V. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chem. Rev. 2020, 120, 6738–6782; https://doi.org/10.1021/acs.chemrev.0c00170.Search in Google Scholar PubMed

5. Chen, S.; Qiu, L.; Cheng, H. M. Carbon-Based Fibers for Advanced Electrochemical Energy Storage Devices. Chem. Rev. 2020, 120, 2811–2878; https://doi.org/10.1021/acs.chemrev.9b00466.Search in Google Scholar PubMed

6. Mochalin, V. N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The Properties and Applications of Nanodiamonds. Nat. Nanotechnol. 2011, 7, 11–23; https://doi.org/10.1038/nnano.2011.209.Search in Google Scholar PubMed

7. Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Carbon Nanomaterials for Electronics, Optoelectronics, Photovoltaics, and Sensing. Chem. Soc. Rev. 2013, 42, 2824–2860; https://doi.org/10.1039/c2cs35335k.Search in Google Scholar PubMed

8. Wu, Z. Y.; Xu, S. L.; Yan, Q. Q.; Chen, Z. Q.; Ding, Y. W.; Li, C.; Liang, H. W.; Yu, S. H. Transition Metal-Assisted Carbonization of Small Organic Molecules Toward Functional Carbon Materials. Sci. Adv. 2018, 4, eaat0788; https://doi.org/10.1126/sciadv.aat0788.Search in Google Scholar PubMed PubMed Central

9. Flandrois, S.; Simon, B. Carbon Materials for Lithium-Ion Rechargeable Batteries. Carbon 1999, 37, 165–180; https://doi.org/10.1016/s0008-6223(98)00290-5.Search in Google Scholar

10. Balandin, A. A. Thermal Properties of Graphene and Nanostructured Carbon Materials. Nat. Mater. 2011, 10, 569–581; https://doi.org/10.1038/nmat3064.Search in Google Scholar PubMed

11. Linares, N.; Silvestre-Albero, A. M.; Serrano, E.; Silvestre-Albero, J.; Garcia-Martinez, J. Mesoporous Materials for Clean Energy Technologies. Chem. Soc. Rev. 2014, 43, 7681–7717; https://doi.org/10.1039/c3cs60435g.Search in Google Scholar PubMed

12. Wang, Q.; Yan, J.; Fan, Z. Carbon Materials for High Volumetric Performance Supercapacitors: Design, Progress, Challenges and Opportunities. Energy Environ. Sci. 2016, 9, 729–762; https://doi.org/10.1039/c5ee03109e.Search in Google Scholar

13. Mauter, M. S.; Elimelech, M. Environmental Applications of Carbon-Based Nanomaterials. Environ. Sci. Technol. 2008, 42, 5843–5859; https://doi.org/10.1021/es8006904.Search in Google Scholar PubMed

14. Titirici, M. M.; White, R. J.; Brun, N.; Budarin, V. L.; Su, D. S.; del Monte, F.; Clark, J. H.; MacLachlan, M. J. Sustainable Carbon Materials. Chem. Soc. Rev. 2015, 44, 250–290; https://doi.org/10.1039/c4cs00232f.Search in Google Scholar PubMed

15. Hodges, B. C.; Cates, E. L.; Kim, J. H. Challenges and Prospects of Advanced Oxidation Water Treatment Processes Using Catalytic Nanomaterials. Nat. Nanotechnol. 2018, 13, 642–650; https://doi.org/10.1038/s41565-018-0216-x.Search in Google Scholar PubMed

16. Liu, X.; Dai, L. Carbon-Based Metal-Free Catalysts. Nat. Rev. Mater. 2016, 1, 16064; https://doi.org/10.1038/natrevmats.2016.64.Search in Google Scholar

17. Wu, J.; Ma, S.; Sun, J.; Gold, J. I.; Tiwary, C.; Kim, B.; Zhu, L.; Chopra, N.; Odeh, I. N.; Vajtai, R.; Yu, A. Z.; Luo, R.; Lou, J.; Ding, G.; Kenis, P. J.; Ajayan, P. M. A Metal-Free Electrocatalyst for Carbon Dioxide Reduction to Multi-Carbon Hydrocarbons and Oxygenates. Nat. Commun. 2016, 7, 13869; https://doi.org/10.1038/ncomms13869.Search in Google Scholar PubMed PubMed Central

18. Duan, X.; Xu, J.; Wei, Z.; Ma, J.; Guo, S.; Wang, S.; Liu, H.; Dou, S. Metal-Free Carbon Materials for CO2 Electrochemical Reduction. Adv. Mater. 2017, 29, 1701784; https://doi.org/10.1002/adma.201701784.Search in Google Scholar PubMed

19. Lee, J.; Kim, J.; Hyeon, T. Recent Progress in the Synthesis of Porous Carbon Materials. Adv. Mater. 2006, 18, 2073–2094; https://doi.org/10.1002/adma.200501576.Search in Google Scholar

20. Fang, B.; Kim, J. H.; Kim, M. S.; Yu, J. S. Hierarchical Nanostructured Carbons With Meso-Macroporosity: Design, Characterization, and Applications. Acc. Chem. Res. 2013, 46, 1397–1406; https://doi.org/10.1021/ar300253f.Search in Google Scholar PubMed

21. Lu, A. H.; Schüth, F. Nanocasting: A Versatile Strategy for Creating Nanostructured Porous Materials. Adv. Mater. 2006, 18, 1793–1805; https://doi.org/10.1002/adma.200600148.Search in Google Scholar

22. Che, G.; Lakshmi, B. B.; Martin, C. R.; Fisher, E. R.; Ruoff, R. S. Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method. Chem. Mater. 1998, 10, 260–267; https://doi.org/10.1021/cm970412f.Search in Google Scholar

23. Krishna, R. Diffusion in Porous Crystalline Materials. Chem. Soc. Rev. 2012, 41, 3099–3118; https://doi.org/10.1039/c2cs15284c.Search in Google Scholar PubMed

24. Meng, X.; Wang, H. N.; Song, S. Y.; Zhang, H. J. Proton-Conducting Crystalline Porous Materials. Chem. Soc. Rev. 2017, 46, 464–480; https://doi.org/10.1039/c6cs00528d.Search in Google Scholar PubMed

25. Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective Gas Adsorption and Separation in Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504; https://doi.org/10.1039/b802426j.Search in Google Scholar PubMed

26. Li, J. R.; Sculley, J.; Zhou, H. C. Metal-Organic Frameworks for Separations. Chem. Rev. 2012, 112, 869–932; https://doi.org/10.1021/cr200190s.Search in Google Scholar PubMed

27. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W. Hydrogen Storage in Metal-Organic Frameworks. Chem. Rev. 2012, 112, 782–835; https://doi.org/10.1021/cr200274s.Search in Google Scholar PubMed

28. Huang, N.; Chen, X.; Krishna, R.; Jiang, D. Two-Dimensional Covalent Organic Frameworks for Carbon Dioxide Capture Through Channel-Wall Functionalization. Angew. Chem. Int. Ed. 2015, 54, 2986–2990; https://doi.org/10.1002/anie.201411262.Search in Google Scholar PubMed PubMed Central

29. Wu, M.-X.; Yang, Y.-W. Applications of Covalent Organic Frameworks (COFs): From Gas Storage and Separation to Drug Delivery. Chin. Chem. Lett. 2017, 28, 1135–1143; https://doi.org/10.1016/j.cclet.2017.03.026.Search in Google Scholar

30. Xu, H.; Gao, J.; Jiang, D. Stable, Crystalline, Porous, Covalent Organic Frameworks as a Platform for Chiral Organocatalysts. Nat. Chem. 2015, 7, 905–912; https://doi.org/10.1038/nchem.2352.Search in Google Scholar PubMed

31. Woellner, M.; Hausdorf, S.; Klein, N.; Mueller, P.; Smith, M. W.; Kaskel, S. Adsorption and Detection of Hazardous Trace Gases by Metal-Organic Frameworks. Adv. Mater. 2018, 30, e1704679; https://doi.org/10.1002/adma.201704679.Search in Google Scholar PubMed

32. Liu, X.; Huang, D.; Lai, C.; Zeng, G.; Qin, L.; Wang, H.; Yi, H.; Li, B.; Liu, S.; Zhang, M.; Deng, R.; Fu, Y.; Li, L.; Xue, W.; Chen, S. Recent Advances in Covalent Organic Frameworks (COFs) as a Smart Sensing Material. Chem. Soc. Rev. 2019, 48, 5266–5302; https://doi.org/10.1039/c9cs00299e.Search in Google Scholar PubMed

33. Li, X.; Liu, Y.; Wang, J.; Gascon, J.; Li, J.; Van der Bruggen, B. Metal-Organic Frameworks Based Membranes for Liquid Separation. Chem. Soc. Rev. 2017, 46, 7124–7144; https://doi.org/10.1039/c7cs00575j.Search in Google Scholar PubMed

34. Xu, Y. M.; Chung, T. S. High-Performance UiO-66/Polyimide Mixed Matrix Membranes for Ethanol, Isopropanol and N-Butanol Dehydration Via Pervaporation. J. Membr. Sci. 2017, 531, 16–26; https://doi.org/10.1016/j.memsci.2017.02.041.Search in Google Scholar

35. Liang, B.; He, X.; Hou, J.; Li, L.; Tang, Z. Membrane Separation in Organic Liquid: Technologies, Achievements, and Opportunities. Adv. Mater. 2018, 31, 1806090; https://doi.org/10.1002/adma.201806090.Search in Google Scholar PubMed

36. Hu, M.; Reboul, J.; Furukawa, S.; Torad, N. L.; Ji, Q.; Srinivasu, P.; Ariga, K.; Kitagawa, S.; Yamauchi, Y. Direct Carbonization of Al-Based Porous Coordination Polymer for Synthesis of Nanoporous Carbon. J. Am. Chem. Soc. 2012, 134, 2864–2867; https://doi.org/10.1021/ja208940u.Search in Google Scholar PubMed

37. Huang, N.; Wang, P.; Jiang, D. Covalent Organic Frameworks: A Materials Platform for Structural and Functional Designs. Nat. Rev. Mater. 2016, 1, 16068; https://doi.org/10.1038/natrevmats.2016.68.Search in Google Scholar

38. Guan, B. Y.; Kushima, A.; Yu, L.; Li, S.; Li, J.; Lou, X. W. Coordination Polymers Derived General Synthesis of Multishelled Mixed Metal-Oxide Particles for Hybrid Supercapacitors. Adv. Mater. 2017, 29, 1605902; https://doi.org/10.1002/adma.201605902.Search in Google Scholar PubMed

39. Li, J.; Jing, X.; Li, Q.; Li, S.; Gao, X.; Feng, X.; Wang, B. Bulk COFs and COF Nanosheets for Electrochemical Energy Storage and Conversion. Chem. Soc. Rev. 2020, 49, 3565–3604; https://doi.org/10.1039/d0cs00017e.Search in Google Scholar PubMed

40. Zhao, X.; Pachfule, P.; Thomas, A. Covalent Organic Frameworks (COFs) for Electrochemical Applications. Chem. Soc. Rev. 2021, 50, 6871–6913; https://doi.org/10.1039/d0cs01569e.Search in Google Scholar PubMed

41. Tang, Y.; Guo, W.; Zou, R. Nickel-Based Bimetallic Battery-Type Materials for Asymmetric Supercapacitors. Coord. Chem. Rev. 2022, 451, 214242; https://doi.org/10.1016/j.ccr.2021.214242.Search in Google Scholar

42. Jin, S.; Hill, J. P.; Ji, Q.; Shrestha, L. K.; Ariga, K. Supercapacitive Hybrid Materials from the Thermolysis of Porous Coordination Nanorods Based on a Catechol Porphyrin. J. Mater. Chem. A 2016, 4, 5737–5744; https://doi.org/10.1039/c6ta00516k.Search in Google Scholar

43. Kim, G.; Yang, J.; Nakashima, N.; Shiraki, T. Highly Microporous Nitrogen-Doped Carbon Synthesized from Azine-Linked Covalent Organic Framework and Its Supercapacitor Function. Chem. Eur. J. 2017, 23, 17504–17510; https://doi.org/10.1002/chem.201702805.Search in Google Scholar PubMed

44. Zhang, W.; Jiang, X.; Wang, X.; Kaneti, Y. V.; Chen, Y.; Liu, J.; Jiang, J. S.; Yamauchi, Y.; Hu, M. Spontaneous Weaving of Graphitic Carbon Networks Synthesized by Pyrolysis of ZIF-67 Crystals. Angew. Chem. Int. Ed. 2017, 56, 8435–8440; https://doi.org/10.1002/anie.201701252.Search in Google Scholar PubMed

45. Wei, H.; Ning, J.; Cao, X.; Li, X.; Hao, L. Benzotrithiophene-Based Covalent Organic Frameworks: Construction and Structure Transformation Under Lonothermal Condition. J. Am. Chem. Soc. 2018, 140, 11618–11622; https://doi.org/10.1021/jacs.8b08282.Search in Google Scholar PubMed

46. Kaneti, Y. V.; Tang, J.; Salunkhe, R. R.; Jiang, X.; Yu, A.; Wu, K. C.; Yamauchi, Y. Nanoarchitectured Design of Porous Materials and Nanocomposites from Metal-Organic Frameworks. Adv. Mater. 2017, 29, 1604898; https://doi.org/10.1002/adma.201604898.Search in Google Scholar PubMed

47. Jayaramulu, K.; Dubal, D. P.; Nagar, B.; Ranc, V.; Tomanec, O.; Petr, M.; Datta, K. K. R.; Zboril, R.; Gómez-Romero, P.; Fischer, R. A. Ultrathin Hierarchical Porous Carbon Nanosheets for High-Performance Supercapacitors and Redox Electrolyte Energy Storage. Adv. Mater. 2018, 30, 1705789; https://doi.org/10.1002/adma.201705789.Search in Google Scholar PubMed

48. Yang, W.; Li, X.; Li, Y.; Zhu, R.; Pang, H. Applications of Metal-Organic-Framework-Derived Carbon Materials. Adv. Mater. 2019, 31, e1804740; https://doi.org/10.1002/adma.201804740.Search in Google Scholar PubMed

49. Huang, Q.; Xu, Y.; Guo, Y.; Zhang, L.; Hu, Y.; Qian, J.; Huang, S. Highly Graphitized N-Doped Carbon Nanosheets from 2-Dimensional Coordination Polymers for Efficient Metal-Air Batteries. Carbon 2022, 188, 135–145; https://doi.org/10.1016/j.carbon.2021.11.062.Search in Google Scholar

50. Yang, S.; Li, X.; Tan, T.; Mao, J.; Xu, Q.; Liu, M.; Miao, Q.; Mei, B.; Qiao, P.; Gu, S.; Sun, F.; Ma, J.; Zeng, G.; Jiang, Z. A Fully-Conjugated Covalent Organic Framework-Derived Carbon Supporting Ultra-Close Single Atom Sites for ORR. Appl. Catal. B: Environ. 2022, 307, 121147; https://doi.org/10.1016/j.apcatb.2022.121147.Search in Google Scholar

51. Xiao, X.; Zou, L.; Pang, H.; Xu, Q. Synthesis of Micro/Nanoscaled Metal-Organic Frameworks and Their Direct Electrochemical Applications. Chem. Soc. Rev. 2020, 49, 301–331; https://doi.org/10.1039/c7cs00614d.Search in Google Scholar PubMed

52. Liu, Y.; Li, G.; Guo, Y.; Ying, Y.; Peng, X. Flexible and Binder-Free Hierarchical Porous Carbon Film for Supercapacitor Electrodes Derived from MOFs/CNT. ACS Appl. Mater. Interfaces 2017, 9, 14043–14050; https://doi.org/10.1021/acsami.7b03368.Search in Google Scholar PubMed

53. Kale, V. S.; Hwang, M.; Chang, H.; Kang, J.; Chae, S. I.; Jeon, Y.; Yang, J.; Kim, J.; Ko, Y.-J.; Piao, Y.; Hyeon, T. Microporosity-Controlled Synthesis of Heteroatom Codoped Carbon Nanocages by Wrap-Bake-Sublime Approach for Flexible All-Solid-State-Supercapacitors. Adv. Funct. Mater. 2018, 28, 1803786; https://doi.org/10.1002/adfm.201803786.Search in Google Scholar

54. Pachfule, P.; Shinde, D.; Majumder, M.; Xu, Q. Fabrication of Carbon Nanorods and Graphene Nanoribbons from a Metal-Organic Framework. Nat. Chem. 2016, 8, 718–724; https://doi.org/10.1038/nchem.2515.Search in Google Scholar PubMed

55. Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-Organic Framework as a Template for Porous Carbon Synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391; https://doi.org/10.1021/ja7106146.Search in Google Scholar PubMed

56. Hu, J.; Wang, H.; Gao, Q.; Guo, H. Porous Carbons Prepared by Using Metal–Organic Framework as the Precursor for Supercapacitors. Carbon 2010, 48, 3599–3606; https://doi.org/10.1016/j.carbon.2010.06.008.Search in Google Scholar

57. Li, Z.-X.; Zhang, X.; Liu, Y.-C.; Zou, K.-Y.; Yue, M.-L. Controlling the Bet Surface Area of Porous Carbon by Using the Cd/C Ratio of a Cd-MOF Precursor and Enhancing the Capacitance by Activation With KOH. Chem. Eur. J. 2016, 22, 17734–17747; https://doi.org/10.1002/chem.201603072.Search in Google Scholar PubMed

58. Lin, X. M.; Niu, J. L.; Lin, J.; Wei, L. M.; Hu, L.; Zhang, G.; Cai, Y. P. Lithium-Ion-Battery Anode Materials With Improved Capacity from a Metal-Organic Framework. Inorg. Chem. 2016, 55, 8244–8247; https://doi.org/10.1021/acs.inorgchem.6b01123.Search in Google Scholar PubMed

59. Liu, S.; Wang, Z.; Zhou, S.; Yu, F.; Yu, M.; Chiang, C. Y.; Zhou, W.; Zhao, J.; Qiu, J. Metal-Organic-Framework-Derived Hybrid Carbon Nanocages as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution. Adv. Mater. 2017, 29, 1700874; https://doi.org/10.1002/adma.201700874.Search in Google Scholar PubMed

60. Yue, M. L.; Jiang, Y. F.; Zhang, L.; Yu, C. Y.; Zou, K. Y.; Li, Z. X. Solvent-Induced Cadmium(Ii) Metal-Organic Frameworks With Adjustable Guest-Evacuated Porosity: Application in the Controllable Assembly of MOF-Derived Porous Carbon Materials for Supercapacitors. Chemistry 2017, 23, 15680–15693; https://doi.org/10.1002/chem.201702694.Search in Google Scholar PubMed

61. Salunkhe, R. R.; Tang, J.; Kamachi, Y.; Nakato, T.; Kim, J. H.; Yamauchi, Y. Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal-Organic Framework. ACS Nano 2015, 9, 6288–6296; https://doi.org/10.1021/acsnano.5b01790.Search in Google Scholar PubMed

62. Mahmood, A.; Zou, R.; Wang, Q.; Xia, W.; Tabassum, H.; Qiu, B.; Zhao, R. Nanostructured Electrode Materials Derived from Metal-Organic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor. ACS Appl. Mater. Interfaces 2016, 8, 2148–2157; https://doi.org/10.1021/acsami.5b10725.Search in Google Scholar PubMed

63. Wang, Z.; Yan, T.; Fang, J.; Shi, L.; Zhang, D. Nitrogen-Doped Porous Carbon Derived from a Bimetallic Metal–Organic Framework as Highly Efficient Electrodes for Flow-Through Deionization Capacitors. J. Mater. Chem. A 2016, 4, 10858–10868; https://doi.org/10.1039/c6ta02420c.Search in Google Scholar

64. Chen, C.; Wu, M.-K.; Tao, K.; Zhou, J.-J.; Li, Y.-L.; Han, X.; Han, L. Formation of Bimetallic Metal-Organic Framework Nanosheets and Their Derived Porous Nickel-Cobalt Sulfides for Supercapacitorst. Dalton Trans. 2018, 47, 5639–5645; https://doi.org/10.1039/c8dt00464a.Search in Google Scholar PubMed

65. Hu, C.; Xu, J.; Wang, Y.; Wei, M.; Lu, Z.; Cao, C. Core-Shell Crystalline ZIF-67@Amorphous ZIF for High-Performance Supercapacitors. J. Mater. Sci. 2020, 55, 16360–16373; https://doi.org/10.1007/s10853-020-05163-8.Search in Google Scholar

66. Wen, Y.; Chen, X.; Mijowska, E. Insight into the Effect of ZIF-8 Particle Size on the Performance in Nanocarbon-Based Supercapacitors. Chem. Eur. J. 2020, 26, 16328–16337; https://doi.org/10.1002/chem.202001979.Search in Google Scholar PubMed

67. Ma, W.; Wang, N.; Tong, T.; Zhang, L.; Lin, K.-Y. A.; Han, X.; Du, Y. Nitrogen, Phosphorus, and Sulfur Tri-Doped Hollow Carbon Shells Derived from Zif-67@Poly (Cyclotriphosphazene-Co-4, 4′-Sulfonyldiphenol) as a Robust Catalyst of Peroxymonosulfate Activation for Degradation of Bisphenol A. Carbon 2018, 137, 291–303; https://doi.org/10.1016/j.carbon.2018.05.039.Search in Google Scholar

68. Zhang, J.; Fang, J.; Han, J.; Yan, T.; Shi, L.; Zhang, D. N, P, S Co-Doped Hollow Carbon Polyhedra Derived from MOF-Based Core–Shell Nanocomposites for Capacitive Deionization. J. Mater. Chem. A 2018, 6, 15245–15252; https://doi.org/10.1039/c8ta04813d.Search in Google Scholar

69. Zheng, S.; Li, X.; Yan, B.; Hu, Q.; Xu, Y.; Xiao, X.; Xue, H.; Pang, H. Transition-Metal (Fe, Co, Ni) Based Metal-Organic Frameworks for Electrochemical Energy Storage. Adv. Energy Mater. 2017, 7, 1602733; https://doi.org/10.1002/aenm.201602733.Search in Google Scholar

70. Lv, Z.; Zhong, Q.; Bu, Y. In Site Growth of Crosslinked Nickel-Cobalt Hydroxides@Carbon Nanotubes Composite for a High-Performance Hybrid Supercapacitor. Adv. Mater. Interfac. 2018, 5, 1800438; https://doi.org/10.1002/admi.201800438.Search in Google Scholar

71. Yang, Q.; Liu, Y.; Yan, M.; Lei, Y.; Shi, W. Mof-Derived Hierarchical Nanosheet Arrays Constructed by Interconnected Nico-Alloy@Nico-Sulfide Core-Shell Nanoparticles for High-Performance Asymmetric Supercapacitors. Chem. Eng. J. 2019, 370, 666–676; https://doi.org/10.1016/j.cej.2019.03.239.Search in Google Scholar

72. Ren, C.; Jia, X.; Zhang, W.; Hou, D.; Xia, Z.; Huang, D.; Hu, J.; Chen, S.; Gao, S. Hierarchical Porous Integrated Co1−xS/CoFe2O4@RGO Nanoflowers Fabricated Via Temperature-Controlled In Situ Calcining Sulfurization of Multivariate CoFe-MOF-74@RGO for High-Performance Supercapacitor. Adv. Funct. Mater. 2020, 30, 2004519; https://doi.org/10.1002/adfm.202004519.Search in Google Scholar

73. Klose, M.; Reinhold, R.; Pinkert, K.; Uhlemann, M.; Wolke, F.; Balach, J.; Jaumann, T.; Stoeck, U.; Eckert, J.; Giebeler, L. Hierarchically Nanostructured Hollow Carbon Nanospheres for Ultra-Fast and Long-Life Energy Storage. Carbon 2016, 106, 306–313; https://doi.org/10.1016/j.carbon.2016.05.046.Search in Google Scholar

74. Yue, M.-L.; Yu, C.-Y.; Duan, H.-H.; Yang, B.-L.; Meng, X.-X.; Li, Z.-X. Six Isomorphous Window-Beam Mofs: Explore the Effects O F Metal Ions on Mof-Derived Carbon for Supercapacitors. Chem. Eur. J. 2018, 24, 16160–16169; https://doi.org/10.1002/chem.201803554.Search in Google Scholar PubMed

75. Wang, J.; Tang, J.; Ding, B.; Chang, Z.; Hao, X.; Takei, T.; Kobayashi, N.; Bando, Y.; Zhang, X.; Yamauchi, Y. Self-Template-Directed Metal-Organic Frameworks Network and the Derived Honeycomb-Like Carbon Flakes Via Confinement Pyrolysis. Small 2018, 14, 1704461; https://doi.org/10.1002/smll.201704461.Search in Google Scholar PubMed

76. Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A Metal–Organic Framework-Derived Bifunctional Oxygen electrocatalyst. Nat. Energy 2016, 1, 15006; https://doi.org/10.1038/nenergy.2015.6.Search in Google Scholar

77. Zhong, H.; Luo, Y.; He, S.; Tang, P.; Li, D.; Alonso-Vante, N.; Feng, Y. Electrocatalytic Cobalt Nanoparticles Interacting With Nitrogen-Doped Carbon Nanotube In Situ Generated from a Metal-Organic Framework for the Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2017, 9, 2541–2549; https://doi.org/10.1021/acsami.6b14942.Search in Google Scholar PubMed

78. Zou, F.; Chao, S. L.; Wang, Y. X.; Wang, Y. L.; Guan, Q. X.; Li, W. Controllable Self-Catalytic Fabrication of Carbon Nanomaterials Mediated by a Nickel Metal Organic Framework. Environ. Sci. Nano 2017, 4, 46–51; https://doi.org/10.1039/c6en00441e.Search in Google Scholar

79. Chen, Z.; Wu, R.; Liu, Y.; Ha, Y.; Guo, Y.; Sun, D.; Liu, M.; Fang, F. Ultrafine Co Nanoparticles Encapsulated in Carbon-Nanotubes-Grafted Graphene Sheets as Advanced Electrocatalysts for the Hydrogen Evolution Reaction. Adv. Mater. 2018, 30, e1802011; https://doi.org/10.1002/adma.201802011.Search in Google Scholar PubMed

80. Wang, X.; Dong, A.; Hu, Y.; Qian, J.; Huang, S. A Review of Recent Work on Using Metal-Organic Frameworks to Grow Carbon Nanotubes. Chem. Commun. 2020, 56, 10809–10823; https://doi.org/10.1039/d0cc04015k.Search in Google Scholar PubMed

81. Feng, X.; Ding, X.; Jiang, D. Covalent Organic Frameworks. Chem. Soc. Rev. 2012, 41, 6010–6022; https://doi.org/10.1039/c2cs35157a.Search in Google Scholar PubMed

82. Ding, S. Y.; Wang, W. Covalent Organic Frameworks (COFs): From Design to Applications. Chem. Soc. Rev. 2013, 42, 548–568; https://doi.org/10.1039/c2cs35072f.Search in Google Scholar PubMed

83. Geng, K.; He, T.; Liu, R.; Tan, K. T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent Organic Frameworks: Design, Synthesis, and Functions. Chem. Rev. 2020, 120, 8814–8933; https://doi.org/10.1021/acs.chemrev.9b00550.Search in Google Scholar PubMed

84. Zhou, J.; Wang, B. Emerging Crystalline Porous Materials as a Multifunctional Platform for Electrochemical Energy Storage. Chem. Soc. Rev. 2017, 46, 6927–6945; https://doi.org/10.1039/c7cs00283a.Search in Google Scholar PubMed

85. Kong, L.; Zhong, M.; Shuang, W.; Xu, Y.; Bu, X. H. Electrochemically Active Sites Inside Crystalline Porous Materials for Energy Storage and Conversion. Chem. Soc. Rev. 2020, 49, 2378–2407; https://doi.org/10.1039/c9cs00880b.Search in Google Scholar PubMed

86. Wang, J.; Zhuang, S. Covalent Organic Frameworks (COFs) for Environmental Applications. Coord. Chem. Rev. 2019, 400, 213046; https://doi.org/10.1016/j.ccr.2019.213046.Search in Google Scholar

87. Xu, F.; Wu, D.; Fu, R.; Wei, B. Design and Preparation of Porous Carbons from Conjugated Polymer Precursors. Mater. Today 2017, 20, 629–656; https://doi.org/10.1016/j.mattod.2017.04.026.Search in Google Scholar

88. Zhang, S.; Tsuzuki, S.; Ueno, K.; Dokko, K.; Watanabe, M. Upper Limit of Nitrogen Content in Carbon Materials. Angew. Chem. Int. Ed. 2015, 54, 1302–1306; https://doi.org/10.1002/anie.201410234.Search in Google Scholar PubMed

89. Wang, C.; Wang, F.; Liu, Z.; Zhao, Y.; Liu, Y.; Yue, Q.; Zhu, H.; Deng, Y.; Wu, Y.; Zhao, D. N-Doped Carbon Hollow Microspheres for Metal-Free Quasi-Solid-State Full Sodium-Ion Capacitors. Nano Energy 2017, 41, 674–680; https://doi.org/10.1016/j.nanoen.2017.10.025.Search in Google Scholar

90. Dantas, R.; Ribeiro, C.; Souto, M. Organic Electrodes Based on Redox-Active Covalent Organic Frameworks for Lithium Batteries. Chem. Commun. 2023, 60, 138–149; https://doi.org/10.1039/d3cc04322c.Search in Google Scholar PubMed

91. Haldar, S.; Schneemann, A.; Kaskel, S. Covalent Organic Frameworks as Model Materials for Fundamental and Mechanistic Understanding of Organic Battery Design Principles. J. Am. Chem. Soc. 2023, 145, 13494–13513; https://doi.org/10.1021/jacs.3c01131.Search in Google Scholar PubMed PubMed Central

92. Zhuang, X.; Zhao, W.; Zhang, F.; Cao, Y.; Liu, F.; Bi, S.; Feng, X. A Two-Dimensional Conjugated Polymer Framework With Fully Sp2-Bonded Carbon Skeleton. Polym. Chem. 2016, 7, 4176–4181; https://doi.org/10.1039/c6py00561f.Search in Google Scholar

93. Yan, D.; Wu, Y.; Kitaura, R.; Awaga, K. Salt-Assisted Pyrolysis of Covalent Organic Frameworks to Porous Heteroatom-Doped Carbons for Supercapacitive Energy Storage. J. Mater. Chem. A 2019, 7, 26829–26837; https://doi.org/10.1039/c9ta05150c.Search in Google Scholar

94. Sun, J.; Klechikov, A.; Moise, C.; Prodana, M.; Enachescu, M.; Talyzin, A. V. A Molecular Pillar Approach to Grow Vertical Covalent Organic Framework Nanosheets on Graphene: Hybrid Materials for Energy Storage. Angew. Chem. Int. Ed. 2018, 57, 1034–1038; https://doi.org/10.1002/anie.201710502.Search in Google Scholar PubMed

95. Zhuang, X.; Zhang, F.; Wu, D.; Feng, X. Graphene Coupled Schiff-Base Porous Polymers: Towards Nitrogen-Enriched Porous Carbon Nanosheets With Ultrahigh Electrochemical Capacity. Adv. Mater. 2014, 26, 3081–3086; https://doi.org/10.1002/adma.201305040.Search in Google Scholar PubMed

96. Yuan, D.; Chen, J.; Tan, S.; Xia, N.; Liu, Y. Worm-Like Mesoporous Carbon Synthesized from Metal–Organic Coordination Polymers for Supercapacitors. Electrochem. Commun. 2009, 11, 1191–1194; https://doi.org/10.1016/j.elecom.2009.03.045.Search in Google Scholar

97. Tong, L.; Zhang, L. L.; Wang, Y. C.; Wan, L. Y.; Yan, Q. Q.; Hua, C.; Jiao, C. J.; Zhou, Z. Y.; Ding, Y. W.; Liu, B.; Liang, H. W. Hierarchically Porous Carbons Derived from Nonporous Coordination Polymers. ACS Appl. Mater. Interfaces 2020, 12, 25211–25220; https://doi.org/10.1021/acsami.0c06423.Search in Google Scholar PubMed

98. Pariyar, A.; Gopalakrishnan, S.; Stansbery, J.; Patel, R. L.; Liang, X.; Gerasimchuk, N.; Choudhury, A. A 1-D Coordination Polymer Route to Catalytically Active Co@C Nanoparticles. RSC Adv. 2016, 6, 38533–38540; https://doi.org/10.1039/c6ra04650a.Search in Google Scholar

99. Zhang, M. W.; Yeoh, F. Y.; Du, Y.; Lin, K. A. Magnetic Cobalt-Embedded Carbon Nitride Composite Derived from One-Dimensional Coordination Polymer as an Efficient Catalyst for Activating Oxone to Degrade Methyltheobromine in Water. Sci. Total Environ. 2019, 678, 466–475; https://doi.org/10.1016/j.scitotenv.2019.04.295.Search in Google Scholar PubMed

100. Jiang, W.; Sun, J.; Lu, K.; Jiang, C.; Xu, H.; Huang, Z.; Cao, N.; Dai, F. 2D Coordination Polymer-Derived Cose2-Nise2/Cn Nanosheets: The Dual-Phase Synergistic Effect and Ultrathin Structure to Enhance the Hydrogen Evolution Reaction. Dalton Trans. 2021, 50, 9934–9941; https://doi.org/10.1039/d1dt01487k.Search in Google Scholar PubMed

101. Hu, M.; Reboul, J.; Furukawa, S.; Radhakrishnan, L.; Zhang, Y.; Srinivasu, P.; Iwai, H.; Wang, H.; Nemoto, Y.; Suzuki, N.; Kitagawa, S.; Yamauchi, Y. Direct Synthesis of Nanoporous Carbon Nitride Fibers Using Al-Based Porous Coordination Polymers (Al-PCPs). Chem. Commun. 2011, 47, 8124–8126; https://doi.org/10.1039/c1cc12378e.Search in Google Scholar PubMed

102. Qu, J.; Chu, T. C.; Meng, X. X.; Zhang, L. Y.; Li, Z. X. Coordination Polymer Derived Porous Carbon Activated In Situ by the Zncl2 Dot: Capacitances Greatly Enhanced by Redox-Activity Additives in Electrolytes. Langmuir 2021, 37, 14275–14283; https://doi.org/10.1021/acs.langmuir.1c01778.Search in Google Scholar PubMed

103. Radhakrishnan, L.; Reboul, J.; Furukawa, S.; Srinivasu, P.; Kitagawa, S.; Yamauchi, Y. Preparation of Microporous Carbon Fibers Through Carbonization of Al-Based Porous Coordination Polymer (Al-PCP) With Furfuryl Alcohol. Chem. Mater. 2011, 23, 1225–1231; https://doi.org/10.1021/cm102921y.Search in Google Scholar

104. Qian, J.-S.; Liu, M.-X.; Gan, L.-H.; Lu, Y.-K.; Chen, L.-Y.; Ye, R.-J.; Chen, L.-W. Synthesis and Electrochemical Performance of Microporous Carbon Using a Zinc(Ii)-Organic Coordination Polymer. Acta Phys. Chim. Sin. 2013, 29, 1494–1500; https://doi.org/10.3866/pku.whxb201304271.Search in Google Scholar

105. Yan, X.; Li, X.; Yan, Z.; Komarneni, S. Porous Carbons Prepared by Direct Carbonization of MOFs for Supercapacitors. Appl. Surf. Sci. 2014, 308, 306–310; https://doi.org/10.1016/j.apsusc.2014.04.160.Search in Google Scholar

106. Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845–854; https://doi.org/10.1038/nmat2297.Search in Google Scholar PubMed

107. Wang, G.; Zhang, L.; Zhang, J. A Review of Electrode Materials for Electrochemical Supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828; https://doi.org/10.1039/c1cs15060j.Search in Google Scholar PubMed

108. Wang, Y.; Song, Y.; Xia, Y. Electrochemical Capacitors: Mechanism, Materials, Systems, Characterization and Applications. Chem. Soc. Rev. 2016, 45, 5925–5950; https://doi.org/10.1039/c5cs00580a.Search in Google Scholar PubMed

109. Salunkhe, R. R.; Kaneti, Y. V.; Kim, J.; Kim, J. H.; Yamauchi, Y. Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons Toward Supercapacitor Applications. Acc. Chem. Res. 2016, 49, 2796–2806; https://doi.org/10.1021/acs.accounts.6b00460.Search in Google Scholar PubMed

110. Cao, X.; Tan, C.; Sindoro, M.; Zhang, H. Hybrid Micro-/Nano-Structures Derived from Metal-Organic Frameworks: Preparation and Applications in Energy Storage and Conversion. Chem. Soc. Rev. 2017, 46, 2660–2677; https://doi.org/10.1039/c6cs00426a.Search in Google Scholar PubMed

111. Wang, D.-G.; Liang, Z.; Gao, S.; Qu, C.; Zou, R. Metal-Organic Framework-Based Materials for Hybrid Supercapacitor Application. Coord. Chem. Rev. 2020, 404, 213093; https://doi.org/10.1016/j.ccr.2019.213093.Search in Google Scholar

112. Yin, J.; Zhang, W.; Alhebshi, N. A.; Salah, N.; Alshareef, H. N. Synthesis Strategies of Porous Carbon for Supercapacitor Applications. Small Methods 2020, 4, 1900853; https://doi.org/10.1002/smtd.201900853.Search in Google Scholar

113. Li, Z.; Mi, H.; Liu, L.; Bai, Z.; Zhang, J.; Zhang, Q.; Qiu, J. Nano-Sized Zif-8 Anchored Polyelectrolyte-Decorated Silica for Nitrogen-Rich Hollow Carbon Shell Frameworks Toward Alkaline and Neutral Supercapacitors. Carbon 2018, 136, 176–186; https://doi.org/10.1016/j.carbon.2018.04.075.Search in Google Scholar

114. Wang, C.; Liu, C.; Li, J.; Sun, X.; Shen, J.; Han, W.; Wang, L. Electrospun Metal-Organic Framework Derived Hierarchical Carbon Nanofibers With High Performance for Supercapacitors. Chem. Commun. 2017, 53, 1751–1754; https://doi.org/10.1039/c6cc09832k.Search in Google Scholar PubMed

115. Chen, L.-F.; Lu, Y.; Yu, L.; Lou, X. W. Designed Formation of Hollow Particle-Based Nitrogen-Doped Carbon Nanofibers for High-Performance Supercapacitors. Energy Environ. Sci. 2017, 10, 1777–1783; https://doi.org/10.1039/c7ee00488e.Search in Google Scholar

116. Zhu, Q.-L.; Pachfule, P.; Strubel, P.; Li, Z.; Zou, R.; Liu, Z.; Kaskel, S.; Xu, Q. Fabrication of Nitrogen and Sulfur Co-Doped Hollow Cellular Carbon Nanocapsules as Efficient Electrode Materials for Energy Storage. Energy Storage Mater. 2018, 13, 72–79; https://doi.org/10.1016/j.ensm.2017.12.027.Search in Google Scholar

117. Liu, B.; Shioyama, H.; Jiang, H.; Zhang, X.; Xu, Q. Metal-Organic Framework (MOF) as a Template for Syntheses of Nanoporous Carbons as Electrode Materials for Supercapacitor. Carbon 2010, 48, 456–463; https://doi.org/10.1016/j.carbon.2009.09.061.Search in Google Scholar

118. Xu, J.; Li, Y.; Wang, L.; Cai, Q.; Li, Q.; Gao, B.; Zhang, X.; Huo, K.; Chu, P. K. High-Energy Lithium-Ion Hybrid Supercapacitors Composed of Hierarchical Urchin-Like Wo3/C Anodes and MOF-Derived Polyhedral Hollow Carbon Cathodes. Nanoscale 2016, 8, 16761–16768; https://doi.org/10.1039/c6nr05480c.Search in Google Scholar PubMed

119. Zhao, K.; Lyu, K.; Liu, S.; Gan, Q.; He, Z.; Zhou, Z. Ordered Porous Mn3O4@N-Doped Carbon/Graphene Hybrids Derived from Metal-Organic Frameworks for Supercapacitor Electrodes. J. Mater. Sci. 2017, 52, 446–457; https://doi.org/10.1007/s10853-016-0344-3.Search in Google Scholar

120. Carrasco, J. A.; Romero, J.; Abellan, G.; Hernandez-Saz, J.; Molina, S. I.; Marti-Gastaldo, C.; Coronado, E. Small-Pore Driven High Capacitance in a Hierarchical Carbon Via Carbonization of Ni-MOF-74 at Low Temperatures. Chem. Commun. 2016, 52, 9141–9144; https://doi.org/10.1039/c6cc02252a.Search in Google Scholar PubMed

121. Chen, S.; Cai, D.; Yang, X.; Chen, Q.; Zhan, H.; Qu, B.; Wang, T. Metal-Organic Frameworks Derived Nanocomposites of Mixed-Valent MnOx Nanoparticles In-Situ Grown on Ultrathin Carbon Sheets for High-Performance Supercapacitors and Lithium-Ion Batteries. Electrochim. Acta 2017, 256, 63–72; https://doi.org/10.1016/j.electacta.2017.10.016.Search in Google Scholar

122. Wang, Q.; Xia, W.; Guo, W.; An, L.; Xia, D.; Zou, R. Functional Zeolitic-Imidazolate-Framework-Templated Porous Carbon Materials for CO2 Capture and Enhanced Capacitors. Chem. Asian J. 2013, 8, 1879–1885; https://doi.org/10.1002/asia.201300147.Search in Google Scholar PubMed

123. Salunkhe, R. R.; Kamachi, Y.; Torad, N. L.; Hwang, S. M.; Sun, Z.; Dou, S. X.; Kim, J. H.; Yamauchi, Y. Fabrication of Symmetric Supercapacitors Based on MOF-Derived Nanoporous Carbons. J. Mater. Chem. A 2014, 2, 19848–19854; https://doi.org/10.1039/c4ta04277h.Search in Google Scholar

124. Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.; Furukawa, S.; Yamauchi, Y. Thermal Conversion of Core-Shell Metal-Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon. J. Am. Chem. Soc. 2015, 137, 1572–1580; https://doi.org/10.1021/ja511539a.Search in Google Scholar PubMed

125. Wang, R.; Jin, D.; Zhang, Y.; Wang, S.; Lang, J.; Yan, X.; Zhang, L. Engineering Metal Organic Framework Derived 3D Nanostructures for High Performance Hybrid Supercapacitors. J. Mater. Chem. A 2017, 5, 292–302; https://doi.org/10.1039/c6ta09143a.Search in Google Scholar

126. Cao, F.; Zhao, M.; Yu, Y.; Chen, B.; Huang, Y.; Yang, J.; Cao, X.; Lu, Q.; Zhang, X.; Zhang, Z.; Tan, C.; Zhang, H. Synthesis of Two-Dimensional CoS1.097/Nitrogen-Doped Carbon Nanocomposites Using Metal–Organic Framework Nanosheets as Precursors for Supercapacitor Application. J. Am. Chem. Soc. 2016, 138, 6924–6927; https://doi.org/10.1021/jacs.6b02540.Search in Google Scholar PubMed

127. Li, Z.-X.; Yang, B.-L.; Zou, K.-Y.; Kong, L.; Yue, M.-L.; Duan, H.-H. Novel Porous Carbon Nanosheet Derived from a 2D Cu-MMOF: Ultrahigh Porosity and Excellent Performances in the Supercapacitor Cell. Carbon 2019, 144, 540–548; https://doi.org/10.1016/j.carbon.2018.12.061.Search in Google Scholar

128. Wang, L.; Wei, T.; Sheng, L.; Jiang, L.; Wu, X.; Zhou, Q.; Yuan, B.; Yue, J.; Liu, Z.; Fan, Z. “Brick-and-Mortar” Sandwiched Porous Carbon Building Constructed by Metal-Organic Framework and Graphene: Ultrafast Charge/Discharge Rate up to 2 V S−1 for Supercapacitors. Nano Energy 2016, 30, 84–92; https://doi.org/10.1016/j.nanoen.2016.09.042.Search in Google Scholar

129. Xu, X.; Wang, M.; Liu, Y.; Li, Y.; Lu, T.; Pan, L. In Situ Construction of Carbon Nanotubes/Nitrogen-Doped Carbon Polyhedra Hybrids for Supercapacitors. Energy Storage Mater. 2016, 5, 132–138; https://doi.org/10.1016/j.ensm.2016.07.002.Search in Google Scholar

130. Xu, Q.; Tang, Y.; Zhai, L.; Chen, Q.; Jiang, D. Pyrolysis of Covalent Organic Frameworks: A General Strategy for Template Converting Conventional Skeletons into Conducting Microporous Carbons for High-Performance Energy Storage. Chem. Commun. 2017, 53, 11690–11693; https://doi.org/10.1039/c7cc07002k.Search in Google Scholar PubMed

131. Romero, J.; Rodriguez-San-Miguel, D.; Ribera, A.; Mas-Ballesté, R.; Otero, T. F.; Manet, I.; Licio, F.; Abellán, G.; Zamora, F.; Coronado, E. Metal-Functionalized Covalent Organic Frameworks as Precursors of Supercapacitive Porous N-Doped Graphene. J. Mater. Chem. A 2017, 5, 4343–4351; https://doi.org/10.1039/c6ta09296a.Search in Google Scholar

132. Kim, D. J.; Yoon, J. W.; Lee, C. S.; Bae, Y.-S.; Kim, J. H. Covalent Organic Framework-Derived Microporous Carbon Nanoparticles Coated With Conducting Polypyrrole as an Electrochemical Capacitor. Appl. Surf. Sci. 2018, 439, 833–838; https://doi.org/10.1016/j.apsusc.2018.01.103.Search in Google Scholar

133. Li, R.; Xing, L.; Chen, A.; Zhang, X.; Kong, A.; Shan, Y. Covalent Organic Polymer-Derived Carbon Nanotube-Twined Carbon Nanospheres for Efficient Oxygen Electroreduction and Capacitance Storage. Ionics 2019, 26, 927–937; https://doi.org/10.1007/s11581-019-03277-x.Search in Google Scholar

134. Umezawa, S.; Douura, T.; Yoshikawa, K.; Takashima, Y.; Yoneda, M.; Gotoh, K.; Stolojan, V.; Silva, S. R. P.; Hayashi, Y.; Tanaka, D. Supercapacitor Electrode With High Charge Density Based on Boron-Doped Porous Carbon Derived from Covalent Organic Frameworks. Carbon 2021, 184, 418–425; https://doi.org/10.1016/j.carbon.2021.08.022.Search in Google Scholar

135. Vargheese, S.; Dinesh, M.; Kavya, K. V.; Pattappan, D.; Rajendra Kumar, R. T.; Haldorai, Y. Triazine-Based 2D Covalent Organic Framework-Derived Nitrogen-Doped Porous Carbon for Supercapacitor Electrode. Carbon Lett. 2020, 31, 879–886; https://doi.org/10.1007/s42823-020-00190-6.Search in Google Scholar

136. Xue, R.; Gou, H.; Liu, Y.; Rao, H. A Layered Triazinyl-Cof Linked by −Nh− Linkage and Resulting N-Doped Microporous Carbons: Preparation, Characterization and Application for Supercapacitance. J. Porous Mater. 2021, 28, 895–903; https://doi.org/10.1007/s10934-021-01046-8.Search in Google Scholar

137. Zhang, H.; Lin, L.; Wu, B.; Hu, N. Vertical Carbon Skeleton Introduced Three-Dimensional MnO2 Nanostructured Composite Electrodes for High-Performance Asymmetric Supercapacitors. J. Power Sources 2020, 476, 228527; https://doi.org/10.1016/j.jpowsour.2020.228527.Search in Google Scholar

138. Zhou, Z.; Zhang, X.; Xing, L.; Liu, J.; Kong, A.; Shan, Y. Copper-Assisted Thermal Conversion of Microporous Covalent Melamine-Boroxine Frameworks to Hollow B, N-Codoped Carbon Capsules as Bifunctional Metal-Free Electrode Materials. Electrochim. Acta 2019, 298, 210–218; https://doi.org/10.1016/j.electacta.2018.12.080.Search in Google Scholar

139. Fan, H.; Fu, D.; Shu, T.; Luo, M.; Zhu, F.; Liu, Y.; Yue, S.; Zheng, M. Simple Synthesis of Bimetal Oxide@Graphitized Carbon Nanocomposites Via In-Situ Thermal Decomposition of Coordination Polymers and Their Enhanced Electrochemical Performance for Electrochemical Energy Storage. Electrochim. Acta 2017, 224, 80–89; https://doi.org/10.1016/j.electacta.2016.12.031.Search in Google Scholar

140. Li, H.; Yu, C.; Zhou, Y.; Tuo, H.; Zhong, W. Biligand Metal-Organic Coordination Polymer to Prepare High N-Doped Content and Structure Controllable Porous Carbon With High-Electrochemical Performance. Electrochim. Acta 2019, 308, 263–276; https://doi.org/10.1016/j.electacta.2019.04.025.Search in Google Scholar

141. Lim, A. C.; Jadhav, H. S.; Seo, J. G. Electron Transport Shuttle Mechanism Via an Fe–N–C Bond Derived from a Conjugated Microporous Polymer for a Supercapacitor. Dalton Trans. 2018, 47, 852–858; https://doi.org/10.1039/c7dt04094f.Search in Google Scholar PubMed

142. Luo, J.; Zhong, W.; Zou, Y.; Xiong, C.; Yang, W. Metal-Organic Coordination Polymer to Prepare Density Controllable and High Nitrogen-Doped Content Carbon/Graphene for High Performance Supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 317–326; https://doi.org/10.1021/acsami.6b10201.Search in Google Scholar PubMed

143. Naveen, M. H.; Shim, K.; Hossain, M. S. A.; Kim, J. H.; Shim, Y.-B. Template Free Preparation of Heteroatoms Doped Carbon Spheres With Trace Fe for Efficient Oxygen Reduction Reaction and Supercapacitor. Adv. Energy Mater. 2017, 7, 1602002; https://doi.org/10.1002/aenm.201602002.Search in Google Scholar

144. Qi, S.; Wang, D.; Li, W.; Zhang, R.; Liu, F.; Zhang, J.; Liu, Z.; Guo, Y.; Wang, F.; Wen, G. Mass Production of Nitrogen and Oxygen Codoped Carbon Nanotubes by a Delicately-Designed Pechini Method for Supercapacitors and Electrocatalysis. Nanoscale 2019, 11, 17425–17435; https://doi.org/10.1039/c9nr06319f.Search in Google Scholar PubMed

145. Wang, K.; Ma, X.; Zhang, Z.; Zheng, M.; Geng, Z.; Wang, Z. Indirect Transformation of Coordination-Polymer Particles into Magnetic Carbon-Coated Mn3O4 (Mn3O4@C) Nanowires for Supercapacitor Electrodes With Good Cycling Performance. Chemistry 2013, 19, 7084–7089; https://doi.org/10.1002/chem.201300188.Search in Google Scholar PubMed

146. Wang, K.; Shi, X.; Lu, A.; Ma, X.; Zhang, Z.; Lu, Y.; Wang, H. High Nitrogen-Doped Carbon/Mn3O4 Hybrids Synthesized from Nitrogen-Rich Coordination Polymer Particles as Supercapacitor Electrodes. Dalton Trans. 2015, 44, 151–157; https://doi.org/10.1039/c4dt02456g.Search in Google Scholar PubMed

147. Wang, S.; Kang, Z.; Li, S.; Tu, J.; Zhu, J.; Jiao, S. High Specific Capacitance Based on N-Doped Microporous Carbon in Emim Alxcly Ionic Liquid Electrolyte. J. Electrochem. Soc. 2017, 164, A3319–A3325; https://doi.org/10.1149/2.1741713jes.Search in Google Scholar

148. Wang, S.; Wang, T.; Shi, Y.; Liu, G.; Li, J. Mesoporous Co3O4@Carbon Composites Derived from Microporous Cobalt-Based Porous Coordination Polymers for Enhanced Electrochemical Properties in Supercapacitors. RSC Adv. 2016, 6, 18465–18470; https://doi.org/10.1039/c5ra25920g.Search in Google Scholar

149. Wu, M.-S.; Wang, C.; Jow, J.-J. Self-Assembly of One-Dimensional Nitrogen-Doped Hollow Carbon Nanoparticle Chains Derived from Zinc Hexacyanoferrate Coordination Polymer for Lithium-Ion Capacitors. Electrochim. Acta 2016, 222, 856–861; https://doi.org/10.1016/j.electacta.2016.11.047.Search in Google Scholar

150. Xue, Y.; Li, Y.; Luo, G.; Shi, K.; Liu, E.; Zhou, J. Using a Dynamic Inhibition Concept to Achieve Content-Controllable Synthesis of N-Coordinated Cu Atoms as Reversible Active Site Toward Super Li-Ion Capacitors. Adv. Energy Mater. 2020, 10, 2002644; https://doi.org/10.1002/aenm.202002644.Search in Google Scholar

151. Yang, H.; Ning, P.; Cao, H.; Yuan, M.; Feng, J.; Yue, J.; Liu, Z.; Xu, G.; Li, Y. Selectively Anchored Vanadate Host for Self-Boosting Catalytic Synthesis of Ultra-Fine Vanadium Nitride/Nitrogen-Doped Hierarchical Carbon Hybrids as Superior Electrode Materials. Electrochim. Acta 2020, 332, 135387; https://doi.org/10.1016/j.electacta.2019.135387.Search in Google Scholar

152. Yu, C.; Li, H.; Luo, J.; Zheng, M.; Zhong, W.; Yang, W. Metal-Organic Coordination Polymer/Multi-Walled Carbon Nanotubes Composites to Prepare N-Doped Hierarchical Porous Carbon for High Performance Supercapacitors. Electrochim. Acta 2018, 284, 69–79; https://doi.org/10.1016/j.electacta.2018.07.176.Search in Google Scholar

153. Zhang, X. H.; Zhang, Z. J.; Xie, D. H.; Chen, X. Y. Synthesis and Supercapacitor Application of Nanoporous Carbon by the Direct Carbonization of Aluminium Salicylate Coordination Polymer. J. Alloys Compd. 2014, 607, 23–31; https://doi.org/10.1016/j.jallcom.2014.04.074.Search in Google Scholar

154. Jiang, H. L.; Liu, B.; Lan, Y. Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F. Q.; Xu, Q. From Metal-Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake. J. Am. Chem. Soc. 2011, 133, 11854–11857; https://doi.org/10.1021/ja203184k.Search in Google Scholar PubMed

155. Tang, J.; Yamauchi, Y. Carbon Materials: MOF Morphologies in Control. Nat. Chem. 2016, 8, 638–639; https://doi.org/10.1038/nchem.2548.Search in Google Scholar PubMed

156. Yu, M.; Zhang, L.; He, X.; Yu, H.; Han, J.; Wu, M. 3D Interconnected Porous Carbons from Mof-5 for Supercapacitors. Mater. Lett. 2016, 172, 81–84; https://doi.org/10.1016/j.matlet.2016.02.144.Search in Google Scholar

157. Li, Y.; Kim, J.; Wang, J.; Liu, N. L.; Bando, Y.; Alshehri, A. A.; Yamauchi, Y.; Hou, C. H.; Wu, K. C. High Performance Capacitive Deionization Using Modified ZIF-8-Derived, N-Doped Porous Carbon With Improved Conductivity. Nanoscale 2018, 10, 14852–14859; https://doi.org/10.1039/c8nr02288g.Search in Google Scholar PubMed

158. Braeken, L.; Bettens, B.; Boussu, K.; Van der Meeren, P.; Cocquyt, J.; Vermant, J.; Van der Bruggen, B. Transport Mechanisms of Dissolved Organic Compounds in Aqueous Solution During Nanofiltration. J. Membr. Sci. 2006, 279, 311–319; https://doi.org/10.1016/j.memsci.2005.12.024.Search in Google Scholar

159. Ding, B.; Wang, J.; Chang, Z.; Xu, G.; Hao, X.; Shen, L.; Dou, H.; Zhang, X. Self-Sacrificial Template-Directed Synthesis of Metal-Organic Framework-Derived Porous Carbon for Energy-Storage Devices. ChemElectroChem 2016, 3, 668–674; https://doi.org/10.1002/celc.201500536.Search in Google Scholar

160. Zhu, D.; Jiang, J.; Sun, D.; Qian, X.; Wang, Y.; Li, L.; Wang, Z.; Chai, X.; Gan, L.; Liu, M. A General Strategy to Synthesize High-Level N-Doped Porous Carbons Via Schiff-Base Chemistry for Supercapacitors. J. Mater. Chem. A 2018, 6, 12334–12343; https://doi.org/10.1039/c8ta02341g.Search in Google Scholar

161. Hu, F.; Wang, J.; Hu, S.; Li, L.; Shao, W.; Qiu, J.; Lei, Z.; Deng, W.; Jian, X. Engineered Fabrication of Hierarchical Frameworks With Tuned Pore Structure and N,O-Co-Doping for High-Performance Supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 31940–31949; https://doi.org/10.1021/acsami.7b09801.Search in Google Scholar PubMed

162. Vadiyar, M. M.; Liu, X.; Ye, Z. Macromolecular Polyethynylbenzonitrile Precursor-Based Porous Covalent Triazine Frameworks for Superior High-Rate High-Energy Supercapacitors. ACS Appl. Mater. Interfaces 2019, 11, 45805–45817; https://doi.org/10.1021/acsami.9b17847.Search in Google Scholar PubMed

163. Lee, J.; Choi, J.; Kang, D.; Myung, Y.; Lee, S. M.; Kim, H. J.; Ko, Y.-J.; Kim, S.-K.; Son, S. U. Thin and Small N-Doped Carbon Boxes Obtained from Microporous Organic Networks and Their Excellent Energy Storage Performance at High Current Densities in Coin Cell Supercapacitors. ACS Sustain. Chem. Eng. 2018, 6, 3525–3532; https://doi.org/10.1021/acssuschemeng.7b03836.Search in Google Scholar

164. Woodward, R. T.; Markoulidis, F.; De Luca, F.; Anthony, D. B.; Malko, D.; McDonald, T. O.; Shaffer, M. S. P.; Bismarck, A. Carbon Foams from Emulsion-Templated Reduced Graphene Oxide Polymer Composites: Electrodes for Supercapacitor Devices. J. Mater. Chem. A 2018, 6, 1840–1849; https://doi.org/10.1039/c7ta09893f.Search in Google Scholar

165. Zhai, Y.; Dou, Y.; Zhao, D.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Carbon Materials for Chemical Capacitive Energy Storage. Adv. Mater. 2011, 23, 4828–4850; https://doi.org/10.1002/adma.201100984.Search in Google Scholar PubMed

166. Wang, G.; Qin, J.; Zhao, Y.; Wei, J. Nanoporous Carbon Spheres Derived from Metal-Phenolic Coordination Polymers for Supercapacitor and Biosensor. J. Colloid Interface Sci. 2019, 544, 241–248; https://doi.org/10.1016/j.jcis.2019.03.001.Search in Google Scholar PubMed

Received: 2023-12-17
Accepted: 2024-03-20
Published Online: 2024-04-08
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
  3. Advanced synthetic routes of metal organic frameworks and their diverse applications
  4. Carbon materials derived by crystalline porous materials for capacitive energy storage
  5. BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
  6. Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base
  7. Solid-phase extraction of organophosphates from polluted waters on a matrix-imprinted sorbent
  8. Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
  9. Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
  10. Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
  11. Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
  12. Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
  13. A review of carbon-based adsorbents for the removal of organic and inorganic components
  14. Mercury removal from water: insights from MOFs and their composites
  15. Organometallic complexes and reaction methods for synthesis: a review
  16. Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity
Downloaded on 29.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2023-0039/html
Scroll to top button