Startseite Mercury removal from water: insights from MOFs and their composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mercury removal from water: insights from MOFs and their composites

  • Kashaf Ul Khair , Khalil Ahmad ORCID logo EMAIL logo , Muhammad Kashif , Khalida Naseem ORCID logo , Khizar Qureshi und Hammad Majeed
Veröffentlicht/Copyright: 5. August 2024

Abstract

Mercury pollution is disturbing, human health by causing many serious types of diseases. Therefore, elimination of mercury from water bodies is very important that is gaining attention among researchers, and researchers are setting priority measures to make mercury free water. One such measure is the use of MOFs and their composites which are extensively applied for the removal of Hg from water, because of displaying majestical characteristics like high water stability, tunable porosity and surface area as well as easy to synthesize. In this review, we discussed the elimination of Hg ions using MOFs and their composites. We also discussed how MOFs and their composites can be modified that can be more reliable and efficient for removal of pollutants from water particularly mercury ions. Furthermore, we explored the challenges in the application of MOFs and present measures to boost the application range of MOFs. In the same way we also discussed potential of MOFs and their composites to overcome difficulties and research directions for the elimination of Hg (II) ions from water bodies. We expect that this review will offer inclusive and clear understanding to researchers about MOFs and their composite for practical applications to remove mercury from water bodies.


Corresponding author: Khalil Ahmad, Department of Chemistry, Emerson University Multan (EUM), Multan, 60000, Punjab, Pakistan, E-mail:

Acknowledgments

All authors are thankful to Emerson University Multan (EUM), and University of Management and Technology (UMT) Sialkot Campus for providing facilities to complete this work.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: Not declared.

  5. Data availability: Not applicable.

References

1. Baquero, F.; Martínez, J.-L.; Cantón, R. Antibiotics and Antibiotic Resistance in Water Environments. Curr. Opin. Biotechnol. 2008, 19, 260–265; https://doi.org/10.1016/j.copbio.2008.05.006.Suche in Google Scholar PubMed

2. Forgacs, E.; Cserháti, T.; Oros, G. Removal of Synthetic Dyes from Wastewaters: A Review. Environ. Int. 2004, 30, 953–971; https://doi.org/10.1016/j.envint.2004.02.001.Suche in Google Scholar PubMed

3. Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manag. 2011, 92, 407–418; https://doi.org/10.1016/j.jenvman.2010.11.011.Suche in Google Scholar PubMed

4. Fallatah, A. M.; Shah, H. U. R.; Ahmad, K.; Ashfaq, M.; Rauf, A.; Muneer, M.; Ibrahim, M. M.; El-Bahy, Z. M.; Shahzad, A.; Babras, A. Rational Synthesis and Characterization of Highly Water Stable MOF@ GO Composite for Efficient Removal of Mercury (Hg2+) from Water. Heliyon 2022, 8; https://doi.org/10.1016/j.heliyon.2022.e10936.Suche in Google Scholar PubMed PubMed Central

5. Järup, L. Hazards of Heavy Metal Contamination. Br. Med. Bull. 2003, 68, 167–182; https://doi.org/10.1093/bmb/ldg032.Suche in Google Scholar PubMed

6. Nriagu, J. O.; Pacyna, J. M. Quantitative Assessment of Worldwide Contamination of Air, Water and Soils by Trace Metals. Nature 1988, 333, 134–139; https://doi.org/10.1038/333134a0.Suche in Google Scholar PubMed

7. Mandal, B. K.; Suzuki, K. T. Arsenic Round the World: A Review. Talanta 2002, 58, 201–235; https://doi.org/10.1016/s0039-9140(02)00268-0.Suche in Google Scholar

8. Daglar, H.; Altintas, C.; Erucar, I.; Heidari, G.; zare, e. N.; Moradi, O.; Srivastava, V.; Iftekhar, S.; Keskin, S.; Sillanpää, M. Metal-organic Framework-Based Materials for the Abatement of Air Pollution and Decontamination of Wastewater. Chemosphere 2022, 303, 135082; https://doi.org/10.1016/j.chemosphere.2022.135082.Suche in Google Scholar PubMed

9. Gude, V. G. Wastewater Treatment in Microbial Fuel Cells–An Overview. J. Clean. Prod. 2016, 122, 287–307; https://doi.org/10.1016/j.jclepro.2016.02.022.Suche in Google Scholar

10. Ishii, S. I.; Suzuki, S.; Norden-Krichmar, T. M.; Wu, A.; Yamanaka, Y.; Nealson, K. H.; Bretschger, O. Identifying the Microbial Communities and Operational Conditions for Optimized Wastewater Treatment in Microbial Fuel Cells. Water Res. 2013, 47, 7120–7130; https://doi.org/10.1016/j.watres.2013.07.048.Suche in Google Scholar PubMed

11. Joseph, J.; Iftekhar, S.; Srivastava, V.; Fallah, Z.; Zare, E. N.; Sillanpää, M. Iron-based Metal-Organic Framework: Synthesis, Structure and Current Technologies for Water Reclamation with Deep Insight into Framework Integrity. Chemosphere 2021, 284, 131171; https://doi.org/10.1016/j.chemosphere.2021.131171.Suche in Google Scholar PubMed

12. Parveen, S.; Naseem, H. A.; Ahmad, K.; Shah, H.-U.-R.; Aziz, T.; Ashfaq, M.; Rauf, A. Design, Synthesis and Spectroscopic Characterizations of Medicinal Hydrazide Derivatives and Metal Complexes of Malonic Ester. Curr. Bioact. Compd. 2023, 19, 31–46; https://doi.org/10.2174/1573407218666211222124947.Suche in Google Scholar

13. Reddy, K. R.; Xie, T.; Dastgheibi, S. Removal of Heavy Metals from Urban Stormwater Runoff Using Different Filter Materials. J. Environ. Chem. Eng. 2014, 2, 282–292; https://doi.org/10.1016/j.jece.2013.12.020.Suche in Google Scholar

14. Shah, H. U. R.; Ahmad, K.; Ashfaq, M.; Oku, H. Free Radical Scavenging, Antibacterial Potentials and Spectroscopic Characterizations of Benzoyl Thiourea Derivatives and Their Metal Complexes. J. Mol. Struct. 2023, 1272, 134162.10.1016/j.molstruc.2022.134162Suche in Google Scholar

15. Huang, Y.; Zhang, N.; Jiang, Y.; Guo, W.; Li, C. Biological Toxicity of Heavy Metals to Caenorhabditis Elegans. Chin. J. Schistosomiasis Control 2015b, 27, 290–294.Suche in Google Scholar

16. Khan, N. A.; Najam, T.; Shah, S. S. A.; Hussain, E.; Ali, H.; Hussain, S.; Shaheen, A.; Ahmad, K.; Ashfaq, M. Development of Mn-PBA on GO Sheets for Adsorptive Removal of Ciprofloxacin from Water: Kinetics, Isothermal, Thermodynamic and Mechanistic Studies. Mater. Chem. Phys. 2020, 245, 122737; https://doi.org/10.1016/j.matchemphys.2020.122737.Suche in Google Scholar

17. Li, J.; Chen, C.; Zhang, S.; Wang, X. Surface Functional Groups and Defects on Carbon Nanotubes Affect Adsorption–Desorption Hysteresis of Metal Cations and Oxoanions in Water. Environ. Sci.: Nano 2014, 1, 488–495; https://doi.org/10.1039/c4en00044g.Suche in Google Scholar

18. Naseem, K.; Ahmad, K.; Anwar, A.; Farooqi, Z. H.; Najeeb, J.; Iftikhar, M. A.; Hassan, W.; Batool, A. U.; Haider, S.; Akhtar, M. S. Raphanus Caudatus Biomass Powder as Potential Adsorbent for the Removal of Crystal Violet and Rhodamine B Dye from Wastewater. Z. Phys. Chem. 2023, 237, 1863–1883; https://doi.org/10.1515/zpch-2023-0259.Suche in Google Scholar

19. Baquero, F.; Martínez, J.-L.; Cantón, R. Antibiotics and Antibiotic Resistance in Water Environments. Curr. Opin. Biotechnol. 2008, 19, 260–265; https://doi.org/10.1016/j.copbio.2008.05.006.Suche in Google Scholar PubMed

20. Sun, Y.; Shao, D.; Chen, C.; Yang, S.; Wang, X. Highly Efficient Enrichment of Radionuclides on Graphene Oxide-Supported Polyaniline. Environ. Sci. Technol. 2013, 47, 9904–9910; https://doi.org/10.1021/es401174n.Suche in Google Scholar PubMed

21. Sun, Y.; Wu, Z.-Y.; Wang, X.; Ding, C.; Cheng, W.; Yu, S.-H.; Wang, X. Macroscopic and Microscopic Investigation of U (VI) and Eu (III) Adsorption on Carbonaceous Nanofibers. Environ. Sci. Technol. 2016, 50, 4459–4467; https://doi.org/10.1021/acs.est.6b00058.Suche in Google Scholar PubMed

22. Wen, T.; Wu, X.; Tan, X.; Wang, X.; Xu, A. One-pot Synthesis of Water-Swellable Mg–Al Layered Double Hydroxides and Graphene Oxide Nanocomposites for Efficient Removal of as (V) from Aqueous Solutions. ACS Appl. Mater. Interfaces 2013, 5, 3304–3311; https://doi.org/10.1021/am4003556.Suche in Google Scholar PubMed

23. Wu, X.; Tan, X.; Yang, S.; Wen, T.; Guo, H.; Wang, X.; Xu, A. Coexistence of Adsorption and Coagulation Processes of Both Arsenate and NOM from Contaminated Groundwater by Nanocrystallined Mg/Al Layered Double Hydroxides. Water Res. 2013, 47, 4159–4168; https://doi.org/10.1016/j.watres.2012.11.056.Suche in Google Scholar PubMed

24. Meunier, N.; Drogui, P.; Montané, C.; Hausler, R.; Mercier, G.; Blais, J.-F. Comparison between Electrocoagulation and Chemical Precipitation for Metals Removal from Acidic Soil Leachate. J. Hazard Mater. 2006, 137, 581–590; https://doi.org/10.1016/j.jhazmat.2006.02.050.Suche in Google Scholar PubMed

25. Roman-Ross, G.; Cuello, G.; Turrillas, X.; Fernandez-Martinez, A.; Charlet, L. Arsenite Sorption and Co-precipitation with Calcite. Chem. Geol. 2006, 233, 328–336; https://doi.org/10.1016/j.chemgeo.2006.04.007.Suche in Google Scholar

26. Tonini, D. R.; Gauvin, D. A.; Soffel, R. W.; Freeman, W. P. Achieving Low Mercury Concentrations in Chlor‐alkali Wastewaters. Environ. Prog. 2003, 22, 167–173; https://doi.org/10.1002/ep.670220314.Suche in Google Scholar

27. Akin, I.; Arslan, G.; Tor, A.; Cengeloglu, Y.; Ersoz, M. Removal of Arsenate [As (V)] and Arsenite [As (III)] from Water by SWHR and BW-30 Reverse Osmosis. Desalination 2011, 281, 88–92; https://doi.org/10.1016/j.desal.2011.07.062.Suche in Google Scholar

28. Hoch, L. B.; Mack, E. J.; Hydutsky, B. W.; Hershman, J. M.; Skluzacek, J. M.; Mallouk, T. E. Carbothermal Synthesis of Carbon-Supported Nanoscale Zero-Valent Iron Particles for the Remediation of Hexavalent Chromium. Environ. Sci. Technol. 2008, 42, 2600–2605; https://doi.org/10.1021/es702589u.Suche in Google Scholar PubMed

29. Mbuk, R. O.; Ato, R.; Nkpa, N. N. The Role of Paraquat (1, 1,-dimethyl-4, 4-bipyridinium Chloride) and Glyphosate (N-Phosphonomethyl glycine) in Translocation of Metal Ions to Subsurface Soils. Pak. J. Anal. Environ. Chem. 2009, 10, 19–24.Suche in Google Scholar

30. Babel, S.; Kurniawan, T. A. Low-cost Adsorbents for Heavy Metals Uptake from Contaminated Water: A Review. J. Hazard Mater. 2003, 97, 219–243; https://doi.org/10.1016/s0304-3894(02)00263-7.Suche in Google Scholar PubMed

31. Bailey, S. E.; Olin, T. J.; Bricka, R. M.; Adrian, D. D. A Review of Potentially Low-Cost Sorbents for Heavy Metals. Water Res. 1999, 33, 2469–2479; https://doi.org/10.1016/s0043-1354(98)00475-8.Suche in Google Scholar

32. Huang, X.; Kainat, I.; Hasan, M.; Zafar, A.; Tariq, T.; Ahmad, K.; Hassan, S. G.; Javed, H. U.; Shu, X.; Ghorbanpour, M. Investigation of Pretreatment Parameters for Bioethanol Production from Spirogyra Using ZnO Nanoparticles. Biomass Convers. Biorefin. 2023, 1–11.10.1007/s13399-023-05024-9Suche in Google Scholar

33. Tan, X.; Fan, Q.; Wang, X.; Grambow, B. Eu (III) Sorption to TiO2 (Anatase and Rutile): Batch, XPS, and EXAFS Studies. Environ. Sci. Technol. 2009, 43, 3115–3121; https://doi.org/10.1021/es803431c.Suche in Google Scholar PubMed

34. Chen, C.; Yang, X.; Wei, J.; Tan, X.; Wang, X. Eu (III) Uptake on Rectorite in the Presence of Humic Acid: A Macroscopic and Spectroscopic Study. J. Colloid Interface Sci. 2013, 393, 249–256; https://doi.org/10.1016/j.jcis.2012.10.032.Suche in Google Scholar PubMed

35. Quintero, M. A.; Pournara, A. D.; Godsel, R.; Li, Z.; Panuganti, S.; Zhou, X.; Wolverton, C.; Kanatzidis, M. G. Metal Sulfide Ion Exchangers: High Acid Stability of Na2 X Mg2 Y–X Sn4–Y S8 (NMS) and Topotactic Conversion to 2D Solid Acids with Semiconducting Character. Inorg. Chem. 2023, 62, 15971–15982; https://doi.org/10.1021/acs.inorgchem.3c02064.Suche in Google Scholar PubMed

36. Li, J.; Fan, Q.; Wu, Y.; Wang, X.; Chen, C.; Tang, Z.; Wang, X. Magnetic Polydopamine Decorated with Mg–Al LDH Nanoflakes as a Novel Bio-Based Adsorbent for Simultaneous Removal of Potentially Toxic Metals and Anionic Dyes. J. Mater. Chem. A 2016, 4, 1737–1746; https://doi.org/10.1039/c5ta09132b.Suche in Google Scholar

37. Li, J.; Wang, X.; Zhao, G.; Chen, C.; Chai, Z.; Alsaedi, A.; Hayat, T.; Wang, X. Metal–organic Framework-Based Materials: Superior Adsorbents for the Capture of Toxic and Radioactive Metal Ions. Chem. Soc. Rev. 2018b, 47, 2322–2356; https://doi.org/10.1039/c7cs00543a.Suche in Google Scholar PubMed

38. Li, H.; Eddaoudi, M.; O’keeffe, M.; Yaghi, O. M. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. Nature 1999, 402, 276–279; https://doi.org/10.1038/46248.Suche in Google Scholar

39. Kosal, M. E.; Chou, J.-H.; Wilson, S. R.; Suslick, K. S. A Functional Zeolite Analogue Assembled from Metalloporphyrins. Nat. Mater. 2002, 1, 118–121; https://doi.org/10.1038/nmat730.Suche in Google Scholar PubMed

40. Moushi, E. E.; Stamatatos, T. C.; Wernsdorfer, W.; Nastopoulos, V.; Christou, G.; Tasiopoulos, A. J. A Family of 3D Coordination Polymers Composed of Mn19 Magnetic Units. Angew. Chem. Int. Ed. 2006, 45, 7722–7725; https://doi.org/10.1002/anie.200603498.Suche in Google Scholar PubMed

41. Yaghi, O.; Li, H.; Groy, T. Construction of Porous Solids from Hydrogen-Bonded Metal Complexes of 1, 3, 5-benzenetricarboxylic Acid. J. Am. Chem. Soc. 1996, 118, 9096–9101; https://doi.org/10.1021/ja960746q.Suche in Google Scholar

42. Maurin, G.; Serre, C.; Cooper, A.; Férey, G. The New Age of MOFs and of Their Porous-Related Solids. Chem. Soc. Rev. 2017, 46, 3104–3107; https://doi.org/10.1039/c7cs90049j.Suche in Google Scholar PubMed

43. Tranchemontagne, D. J.; Mendoza-cortés, J. L.; O’keeffe, M.; Yaghi, O. M. Secondary Building Units, Nets and Bonding in the Chemistry of Metal–Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1257–1283; https://doi.org/10.1039/b817735j.Suche in Google Scholar PubMed

44. Bradshaw, D.; Claridge, J.; Cussen, E.; Prior, T.; Rosseinsky, M. Design, Chirality, and Flexibility in Nanoporous Molecule-Based Materials. Accounts of Chemical Research 2005, 38, 273–282; https://doi.org/10.1021/ar0401606.Suche in Google Scholar PubMed

45. Douvali, A.; Tsipis, A. C.; Eliseeva, S. V.; Petoud, S.; Papaefstathiou, G. S.; Malliakas, C. D.; Papadas, I.; Armatas, G. S.; Margiolaki, I.; Kanatzidis, M. G.; Lazarides, T.; Manos, M. J. Turn‐on Luminescence Sensing and Real‐time Detection of Traces of Water in Organic Solvents by a Flexible Metal–Organic Framework. Angew. Chem. 2015, 127, 1671–1676; https://doi.org/10.1002/ange.201410612.Suche in Google Scholar

46. Horike, S.; Shimomura, S.; Kitagawa, S. Soft Porous Crystals. Nat. Chem. 2009, 1, 695–704; https://doi.org/10.1038/nchem.444.Suche in Google Scholar PubMed

47. Kumar, P.; Deep, A.; Kim, K.-H. Metal Organic Frameworks for Sensing Applications. TrAC, Trends Anal. Chem. 2015, 73, 39–53; https://doi.org/10.1016/j.trac.2015.04.009.Suche in Google Scholar

48. Zheng, S.; Wu, T.; Zhang, J.; Chow, M.; Nieto, R. A.; Feng, P.; Bu, X. Porous Metal Carboxylate Boron Imidazolate Frameworks (MC-BIFs). Angew. Chem. 2010, 49, 5362; https://doi.org/10.1002/anie.201001675.Suche in Google Scholar PubMed PubMed Central

49. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851; https://doi.org/10.1021/ja8057953.Suche in Google Scholar PubMed

50. Howarth, A. J.; Katz, M. J.; Wang, T. C.; Platero-Prats, A. E.; Chapman, K. W.; Hupp, J. T.; Farha, O. K. High Efficiency Adsorption and Removal of Selenate and Selenite from Water Using Metal–Organic Frameworks. J. Am. Chem. Soc. 2015, 137, 7488–7494; https://doi.org/10.1021/jacs.5b03904.Suche in Google Scholar PubMed

51. Yee, K.-K.; Reimer, N.; Liu, J.; Cheng, S.-Y.; Yiu, S.-M.; Weber, J.; Stock, N.; Xu, Z. Effective Mercury Sorption by Thiol-Laced Metal–Organic Frameworks: In Strong Acid and the Vapor Phase. J. Am. Chem. Soc. 2013, 135, 7795–7798; https://doi.org/10.1021/ja400212k.Suche in Google Scholar PubMed

52. Morris, W.; Briley, W. E.; Auyeung, E.; Cabezas, M. D.; Mirkin, C. A. Nucleic Acid–Metal Organic Framework (MOF) Nanoparticle Conjugates. J. Am. Chem. Soc. 2014, 136, 7261–7264; https://doi.org/10.1021/ja503215w.Suche in Google Scholar PubMed

53. Desai, A. V.; Manna, B.; Karmakar, A.; Sahu, A.; Ghosh, S. K. A Water‐stable Cationic Metal–Organic Framework as a Dual Adsorbent of Oxoanion Pollutants. Angew. Chem. 2016, 128, 7942–7946; https://doi.org/10.1002/ange.201600185.Suche in Google Scholar

54. Fei, H.; Bresler, M. R.; Oliver, S. R. A New Paradigm for Anion Trapping in High Capacity and Selectivity: Crystal-To-Crystal Transformation of Cationic Materials. J. Am. Chem. Soc. 2011, 133, 11110–11113; https://doi.org/10.1021/ja204577p.Suche in Google Scholar PubMed

55. Li, J.; Liu, Y.; Wang, X.; Zhao, G.; Ai, Y.; Han, B.; Wen, T.; Hayat, T.; Alsaedi, A.; Wang, X. Experimental and Theoretical Study on Selenate Uptake to Zirconium Metal–Organic Frameworks: Effect of Defects and Ligands. Chem. Eng. J. 2017, 330, 1012–1021; https://doi.org/10.1016/j.cej.2017.08.038.Suche in Google Scholar

56. Mon, M.; Lloret, F.; Ferrando‐Soria, J.; Martí‐Gastaldo, C.; Armentano, D.; Pardo, E. Selective and Efficient Removal of Mercury from Aqueous Media with the Highly Flexible Arms of a BioMOF. Angew. Chem. 2016, 128, 11333–11338; https://doi.org/10.1002/ange.201606015.Suche in Google Scholar

57. Wang, S.; Alekseev, E. V.; Diwu, J.; Casey, W. H.; Phillips, B. L.; Depmeier, W.; Albrecht‐Schmitt, T. E. NDTB‐1: A Supertetrahedral Cationic Framework that Removes TcO4− from Solution. Angew. Chem. 2010, 122, 1075–1078; https://doi.org/10.1002/ange.200906397.Suche in Google Scholar

58. Abdollahi, N.; Razavi, S. A. A.; Morsali, A.; Hu, M.-L. High Capacity Hg (II) and Pb (II) Removal Using MOF-Based Nanocomposite: Cooperative Effects of Pore Functionalization and Surface-Charge Modulation. J. Hazard Mater. 2020, 387, 121667; https://doi.org/10.1016/j.jhazmat.2019.121667.Suche in Google Scholar PubMed

59. Ke, F.; Qiu, l.-G.; Yuan, Y.-P.; Peng, F.-M.; Jiang, X.; Xie, A.-J.; Shen, Y.-H.; Zhu, J.-F. Thiol-functionalization of Metal-Organic Framework by a Facile Coordination-Based Postsynthetic Strategy and Enhanced Removal of Hg2+ from Water. J. Hazard Mater. 2011, 196, 36–43; https://doi.org/10.1016/j.jhazmat.2011.08.069.Suche in Google Scholar PubMed

60. Hasankola, Z. S.; Rahimi, R.; Shayegan, H.; Moradi, E.; Safarifard, V. Removal of Hg2+ Heavy Metal Ion Using a Highly Stable Mesoporous Porphyrinic Zirconium Metal-Organic Framework. Inorg. Chim. Acta. 2020, 501, 119264.10.1016/j.ica.2019.119264Suche in Google Scholar

61. Lin, G.; Zeng, B.; Liu, X.; Li, J.; Zhang, B.; Zhang, L. Enhanced Performance of Functionalized MOF Adsorbents for Efficient Removal of Anthropogenic Hg (II) from Water. J. Clean. Prod. 2022, 381, 134766; https://doi.org/10.1016/j.jclepro.2022.134766.Suche in Google Scholar

62. Kuppler, R. J.; Timmons, D. J.; Fang, Q.-R.; Li, J.-R.; Makal, T. A.; Young, M. D.; Yuan, D.; Zhao, D.; Zhuang, W.; Zhou, H.-C. Potential Applications of Metal-Organic Frameworks. Coord. Chem. Rev. 2009, 253, 3042–3066; https://doi.org/10.1016/j.ccr.2009.05.019.Suche in Google Scholar

63. Ramanayaka, S.; Vithanage, M.; Sarmah, A.; An, T.; Kim, K.-H.; Ok, Y. S. Performance of Metal–Organic Frameworks for the Adsorptive Removal of Potentially Toxic Elements in a Water System: A Critical Review. RSC Adv. 2019, 9, 34359–34376; https://doi.org/10.1039/c9ra06879a.Suche in Google Scholar PubMed PubMed Central

64. Dhaka, S.; Kumar, R.; Deep, A.; Kurade, M. B.; Ji, S.-W.; Jeon, B.-H. Metal–organic Frameworks (MOFs) for the Removal of Emerging Contaminants from Aquatic Environments. Coord. Chem. Rev. 2019, 380, 330–352; https://doi.org/10.1016/j.ccr.2018.10.003.Suche in Google Scholar

65. Wen, J.; Fang, Y.; Zeng, G. Progress and Prospect of Adsorptive Removal of Heavy Metal Ions from Aqueous Solution Using Metal–Organic Frameworks: A Review of Studies from the Last Decade. Chemosphere 2018, 201, 627–643; https://doi.org/10.1016/j.chemosphere.2018.03.047.Suche in Google Scholar PubMed

66. Fu, L.; Wang, S.; Lin, G.; Zhang, L.; Liu, Q.; Fang, J.; Wei, C.; Liu, G. Post-Functionalization of UiO-66-NH2 by 2, 5-Dimercapto-1, 3, 4-thiadiazole for the High Efficient Removal of Hg (II) in Water. J. Hazard Mater. 2019, 368, 42–51; https://doi.org/10.1016/j.jhazmat.2019.01.025.Suche in Google Scholar PubMed

67. Ahmad, K.; Ashfaq, M.; Shah, S. S. A.; Hussain, E.; Naseem, H. A.; Parveen, S.; Ayub, A. Effect of Metal Atom in Zeolitic Imidazolate Frameworks (ZIF-8 & 67) for Removal of Pb2+ & Hg2+ from Water. Food Chem. Toxicol. 2021, 149, 112008; https://doi.org/10.1016/j.fct.2021.112008.Suche in Google Scholar PubMed

68. Jian, M.; Yang, X.; Huang, C.; Tang, C.; Zhang, X.; Liu, R.; Li, H. High-Efficient Removal of Mercury in Water by the Flexible NH2-MIL-53 (Al): Exploiting the Gate Opening Effect. Chem. Eng. J. 2024, 149022.10.1016/j.cej.2024.149022Suche in Google Scholar

69. Luo, X.; Shen, T.; Ding, L.; Zhong, W.; Luo, J.; Luo, S. Novel Thymine-Functionalized MIL-101 Prepared by Post-synthesis and Enhanced Removal of Hg2+ from Water. J. Hazard Mater. 2016, 306, 313–322; https://doi.org/10.1016/j.jhazmat.2015.12.034.Suche in Google Scholar PubMed

70. Tadjarodi, A.; Abbaszadeh, A. A Magnetic Nanocomposite Prepared from Chelator-Modified Magnetite (Fe 3 O 4) and HKUST-1 (MOF-199) for Separation and Preconcentration of Mercury (II). Microchim. Acta 2016, 183, 1391–1399; https://doi.org/10.1007/s00604-016-1770-2.Suche in Google Scholar

71. Zhang, Z.; Liu, J.; Wang, Z.; Yang, Y. Efficient Capture of Gaseous Elemental Mercury Based on Novel Copper-Based Metal–Organic Frameworks. Fuel 2021b, 289, 119791; https://doi.org/10.1016/j.fuel.2020.119791.Suche in Google Scholar

72. Lin, D.; Liu, X.; Huang, R.; Qi, W.; Su, R.; He, Z. One-pot Synthesis of Mercapto Functionalized Zr-MOFs for the Enhanced Removal of Hg 2+ Ions from Water. Chem. Commun. 2019, 55, 6775–6778; https://doi.org/10.1039/c9cc03481a.Suche in Google Scholar PubMed

73. Moradi, E.; Rahimi, R.; Safarifard, V. Porphyrinic Zirconium-Based MOF with Exposed Pyrrole Lewis Base Site as an Efficient Fluorescence Sensing for Hg2+ Ions, DMF Small Molecule, and Adsorption of Hg2+ Ions from Water Solution. J. Solid State Chem. 2020, 286, 121277; https://doi.org/10.1016/j.jssc.2020.121277.Suche in Google Scholar

74. Shayegan, H.; Aledavoud, S. P.; Hasankola, Z. S.; Safarifard, V. Removal of Hg 2 Heavy Metal Ion using a Highly Atable Metal-Organic Framework; Scieforum.net: Iran, 2019.Suche in Google Scholar

75. Zhang, X.; Shi, Q.; Shen, B.; Hu, Z.; Zhang, X. MIL-100 (Fe) Supported Mn-Based Catalyst and its Behavior in Hg0 Removal from Flue Gas. J. Hazard Mater. 2020, 381, 121003; https://doi.org/10.1016/j.jhazmat.2019.121003.Suche in Google Scholar PubMed

76. He, J.; Yee, K.-K.; Xu, Z.; Zeller, M.; Hunter, A. D.; Chui, S. S.-Y.; Che, C.-M. Thioether Side Chains Improve the Stability, Fluorescence, and Metal Uptake of a Metal–Organic Framework. Chem. Mater. 2011, 23, 2940–2947; https://doi.org/10.1021/cm200557e.Suche in Google Scholar

77. Hou, Y.-L.; Yee, K.-K.; Wong, Y.-L.; Zha, M.; He, J.; Zeller, M.; Hunter, A. D.; Yang, K.; Xu, Z. Metalation Triggers Single Crystalline Order in a Porous Solid. J. Am. Chem. Soc. 2016, 138, 14852–14855; https://doi.org/10.1021/jacs.6b09763.Suche in Google Scholar PubMed

78. He, Y.; Hou, Y.-L.; Wong, Y.-L.; Xiao, R.; Li, M.-Q.; Hao, Z.; Huang, J.; Wang, L.; Zeller, M.; He, J.; Xu, Z. Improving Stability against Desolvation and Mercury Removal Performance of Zr (IV)–carboxylate Frameworks by Using Bulky Sulfur Functions. J. Mater. Chem. A 2018, 6, 1648–1654; https://doi.org/10.1039/c7ta06118h.Suche in Google Scholar

79. Rouhani, F.; Morsali, A. Fast and Selective Heavy Metal Removal by a Novel Metal‐Organic Framework Designed with In‐Situ Ligand Building Block Fabrication Bearing Free Nitrogen. Chem.--Eur. J. 2018, 24, 5529–5537; https://doi.org/10.1002/chem.201706016.Suche in Google Scholar PubMed

80. Shao, Z.; Yu, C.; Xie, Q.; Wu, Q.; Zhao, Y.; Hou, H. Porous Functionalized MOF Self-Evolution Promoting Molecule Encapsulation and Hg 2+ Removal. Chem. Commun. 2019, 55, 13382–13385; https://doi.org/10.1039/c9cc06849j.Suche in Google Scholar PubMed

81. Peng, Y.; Huang, H.; Zhang, Y.; Kang, C.; Chen, S.; song, l.; liu, d.; Zhong, C. A Versatile MOF-Based Trap for Heavy Metal Ion Capture and Dispersion. Nat. Commun. 2018, 9, 187; https://doi.org/10.1038/s41467-017-02600-2.Suche in Google Scholar PubMed PubMed Central

82. Shao, Z.; Huang, C.; Dang, J.; Wu, Q.; Liu, Y.; Ding, J.; Hou, H. Modulation of Magnetic Behavior and Hg2+ Removal by Solvent-Assisted Linker Exchange Based on a Water-Stable 3D MOF. Chem. Mater. 2018, 30, 7979–7987; https://doi.org/10.1021/acs.chemmater.8b03621.Suche in Google Scholar

83. Rudd, N. D.; Wang, H.; Fuentes-Fernandez, E. M.; Teat, S. J.; Chen, F.; Hall, G.; Chabal, Y. J.; Li, J. Highly Efficient Luminescent Metal–Organic Framework for the Simultaneous Detection and Removal of Heavy Metals from Water. ACS Appl. Mater. Interfaces 2016, 8, 30294–30303; https://doi.org/10.1021/acsami.6b10890.Suche in Google Scholar PubMed

84. Yin, W. H.; Xiong, Y. Y.; Wu, H. Q.; Tao, Y.; Yang, L. X.; Li, J. Q.; Tong, X. L.; Luo, F. Functionalizing a Metal–Organic Framework by a Photoassisted Multicomponent Postsynthetic Modification Approach Showing Highly Effective Hg (Ii) Removal. Inorg. Chem. 2018, 57, 8722–8725; https://doi.org/10.1021/acs.inorgchem.8b01457.Suche in Google Scholar PubMed

85. Xiong, Y. Y.; Li, J. Q.; Feng, X. F.; Meng, L. N.; Zhang, L.; Meng, P. P.; Luo, M. B.; Luo, F. Using MOF-74 for Hg2+ Removal from Ultra-low Concentration Aqueous Solution. J. Solid State Chem. 2017, 246, 16–22; https://doi.org/10.1016/j.jssc.2016.10.018.Suche in Google Scholar

86. Wu, Y.; Xu, G.; Wei, F.; Song, Q.; Tang, T.; Wang, X.; Hu, Q. Determination of Hg (II) in Tea and Mushroom Samples Based on Metal-Organic Frameworks as Solid Phase Extraction Sorbents. Microporous Mesoporous Mater. 2016, 235, 204–210; https://doi.org/10.1016/j.micromeso.2016.08.010.Suche in Google Scholar

87. Huang, Y.; Zeng, X.; Guo, L.; Lan, J.; Zhang, L.; Cao, D. Heavy Metal Ion Removal of Wastewater by Zeolite-Imidazolate Frameworks. Sep. Purif. Technol. 2018, 194, 462–469; https://doi.org/10.1016/j.seppur.2017.11.068.Suche in Google Scholar

88. Saleem, H.; Rafique, U.; davies, r. P. Investigations on Post-synthetically Modified UiO-66-NH2 for the Adsorptive Removal of Heavy Metal Ions from Aqueous Solution. Microporous Mesoporous Mater. 2016, 221, 238–244; https://doi.org/10.1016/j.micromeso.2015.09.043.Suche in Google Scholar

89. Zhang, J.; Xiong, Z.; Li, C.; Wu, C. Exploring a Thiol-Functionalized MOF for Elimination of Lead and Cadmium from Aqueous Solution. J. Mol. Liq. 2016a, 221, 43–50; https://doi.org/10.1016/j.molliq.2016.05.054.Suche in Google Scholar

90. Yaghi, O. M.; O’keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular Synthesis and the Design of New Materials. Nature 2003, 423, 705–714; https://doi.org/10.1038/nature01650.Suche in Google Scholar PubMed

91. Van De Voorde, B.; Bueken, B.; Denayer, J.; De Vos, D. Adsorptive Separation on Metal–Organic Frameworks in the Liquid Phase. Chem. Soc. Rev. 2014, 43, 5766–5788; https://doi.org/10.1039/c4cs00006d.Suche in Google Scholar PubMed

92. Wu, H.; Gong, Q.; Olson, D. H.; Li, J. Commensurate Adsorption of Hydrocarbons and Alcohols in Microporous Metal Organic Frameworks. Chem. Rev. 2012, 112, 836–868; https://doi.org/10.1021/cr200216x.Suche in Google Scholar PubMed

93. Pan, Y.; Wang, J.; Guo, X.; Liu, X.; Tang, X.; Zhang, H. A New Three-Dimensional Zinc-Based Metal-Organic Framework as a Fluorescent Sensor for Detection of Cadmium Ion and Nitrobenzene. J. Colloid Interface Sci. 2018, 513, 418–426; https://doi.org/10.1016/j.jcis.2017.11.034.Suche in Google Scholar PubMed

94. Zhang, Q.; Wang, J.; Kirillov, A. M.; Dou, W.; Xu, C.; Xu, C.; Yang, L.; Fang, R.; Liu, W. Multifunctional Ln–MOF Luminescent Probe for Efficient Sensing of Fe3+, Ce3+, and Acetone. ACS Appl. Mater. Interfaces 2018, 10, 23976–23986; https://doi.org/10.1021/acsami.8b06103.Suche in Google Scholar PubMed

95. Feng, M.; Zhang, P.; Zhou, H.-C.; Sharma, V. K. Water-stable Metal-Organic Frameworks for Aqueous Removal of Heavy Metals and Radionuclides: A Review. Chemosphere 2018, 209, 783–800; https://doi.org/10.1016/j.chemosphere.2018.06.114.Suche in Google Scholar PubMed

96. Liu, B.; Vellingiri, K.; Jo, S.-H.; Kumar, P.; Ok, Y. S.; Kim, K.-H. Recent Advances in Controlled Modification of the Size and Morphology of Metal-Organic Frameworks. Nano Res. 2018, 11, 4441–4467; https://doi.org/10.1007/s12274-018-2039-3.Suche in Google Scholar

97. Zhang, X.; Shen, B.; Zhu, S.; Xu, H.; Tian, L. UiO-66 and its Br-Modified Derivates for Elemental Mercury Removal. J. Hazard Mater. 2016b, 320, 556–563; https://doi.org/10.1016/j.jhazmat.2016.08.039.Suche in Google Scholar PubMed

98. Liu, F.; Xiong, W.; Feng, X.; Shi, L.; Chen, D.; Zhang, Y. A Novel Monolith ZnS-ZIF-8 Adsorption Material for Ultraeffective Hg (II) Capture from Wastewater. J. Hazard Mater. 2019, 367, 381–389; https://doi.org/10.1016/j.jhazmat.2018.12.098.Suche in Google Scholar PubMed

99. Yang, Z.; Li, H.; Yang, J.; Feng, S.; Liu, X.; Zhao, J.; Qu, W.; Li, P.; Feng, Y.; Lee, P. H.; Shih, K. Nanosized Copper Selenide Functionalized Zeolitic Imidazolate Framework‐8 (CuSe/ZIF‐8) for Efficient Immobilization of Gas‐Phase Elemental Mercury. Adv. Funct. Mater. 2019b, 29, 1807191; https://doi.org/10.1002/adfm.201807191.Suche in Google Scholar

100. Yang, J.; Chen, H.-Q.; Shi, N.; Wang, T.; Liu, J.; Pan, W.-P. Porous Carbon with Uniformly Distributed Cobalt Nanoparticles Derived from ZIF-67 for Efficient Removal of Vapor Elemental Mercury: A Combined Experimental and DFT Study. Chem. Eng. J. 2022, 428, 132095; https://doi.org/10.1016/j.cej.2021.132095.Suche in Google Scholar

101. Shah, H. U. R.; Ahmad, K.; Naseem, H. A.; Parveen, S.; Ashfaq, M.; Rauf, A.; Aziz, T. Water Stable Graphene Oxide Metal-Organic Frameworks Composite (ZIF-67@ GO) for Efficient Removal of Malachite Green from Water. Food Chem. Toxicol. 2021, 154, 112312; https://doi.org/10.1016/j.fct.2021.112312.Suche in Google Scholar PubMed

102. Liu, T.; Che, J. X.; Hu, Y. Z.; Dong, X. W.; Liu, X. Y.; Che, C. M. Alkenyl/Thiol‐Derived Metal–Organic Frameworks (MOFs) by Means of Postsynthetic Modification for Effective Mercury Adsorption. Chem.-Eur. J. 2014, 20, 14090–14095; https://doi.org/10.1002/chem.201403382.Suche in Google Scholar PubMed

103. Li, J.; Li, X.; Alsaedi, A.; Hayat, T.; Chen, C. Synthesis of Highly Porous Inorganic Adsorbents Derived from Metal-Organic Frameworks and Their Application in Efficient Elimination of Mercury (II). J. Colloid Interface Sci. 2018a, 517, 61–71; https://doi.org/10.1016/j.jcis.2018.01.112.Suche in Google Scholar PubMed

104. Chowdhury, S. S.; Bera, B.; De, S. In-situ Synthesis of Dual Functionalized MOF by Engineering Modulator Induced Defect for Efficient Remediation of Aqueous Mercury through Adsorption. J. Environ. Chem. Eng. 2023, 11, 111332; https://doi.org/10.1016/j.jece.2023.111332.Suche in Google Scholar

105. Li, J.; Lin, G.; Tan, F.; Fu, L.; Zeng, B.; Wang, S.; Hu, T.; Zhang, L. Selective Adsorption of Mercury Ion from Water by a Novel Functionalized Magnetic Ti Based Metal-Organic Framework Composite. J. Colloid Interface Sci. 2023, 651, 659–668; https://doi.org/10.1016/j.jcis.2023.08.022.Suche in Google Scholar PubMed

106. Yang, J.; Zhu, W.; Qu, W.; Yang, Z.; Wang, J.; Zhang, M.; Li, H. Selenium Functionalized Metal–Organic Framework MIL-101 for Efficient and Permanent Sequestration of Mercury. Environ. Sci. Technol. 2019a, 53, 2260–2268; https://doi.org/10.1021/acs.est.8b06321.Suche in Google Scholar PubMed

107. Yuan, F.; Yan, D.; Zhang, J.; Zhang, X.; Xia, T. DMF Promoted Embedded of Melamine inside HKUST-1 for Efficient Hg (II) Adsorption with Regenerability. Sep. Purif. Technol. 2024, 335, 126211; https://doi.org/10.1016/j.seppur.2023.126211.Suche in Google Scholar

108. Li, Y.; Tan, M.; Liu, G.; Si, D.; Chen, N.; Zhou, D. Thiol-functionalized Metal–Organic Frameworks Embedded with Chelator-Modified Magnetite for High-Efficiency and Recyclable Mercury Removal in Aqueous Solutions. J. Mater. Chem. A 2022, 10, 6724–6730; https://doi.org/10.1039/d1ta10906e.Suche in Google Scholar

109. Huang, L.; He, M.; Chen, B.; Hu, B. A Designable Magnetic MOF Composite and Facile Coordination-Based Post-synthetic Strategy for the Enhanced Removal of Hg 2+ from Water. J. Mater. Chem. A 2015a, 3, 11587–11595; https://doi.org/10.1039/c5ta01484k.Suche in Google Scholar

110. Zeng, B.; Wang, W.; He, S.; Lin, G.; Du, W.; Chang, J.; Ding, Z. Facile Synthesis of Zinc-Based Organic Framework for Aqueous Hg (II) Removal: Adsorption Performance and Mechanism. Nano Mater. Sci. 2021, 3, 429–439; https://doi.org/10.1016/j.nanoms.2021.06.005.Suche in Google Scholar

111. Lin, G.; Wang, C.; Li, X.; Xi, Y.; Wang, W.; Zhang, L.; Chang, J. Synthesis of Coordination Polymer by 2, 2′-dithiodipropionic Acid and Selective Removal of Hg (ii)/Pb (Ii) in Wastewater. J. Taiwan Inst. Chem. Eng. 2020, 113, 315–324; https://doi.org/10.1016/j.jtice.2020.08.037.Suche in Google Scholar

112. Ke, F.; Jiang, J.; Li, Y.; Liang, J.; Wan, X.; Ko, S. Highly Selective Removal of Hg2+ and Pb2+ by Thiol-Functionalized Fe3O4@ Metal-Organic Framework Core-Shell Magnetic Microspheres. Appl. Surf. Sci. 2017, 413, 266–274; https://doi.org/10.1016/j.apsusc.2017.03.303.Suche in Google Scholar

113. Nosike, E. I.; Jiang, Z.; Miao, L.; Akakuru, O. U.; Yuan, B.; Wu, S.; Zhang, Y.; Zhang, Y.; Wu, A. A Novel Hybrid Nanoadsorbent for Effective Hg2+ Adsorption Based on Zeolitic Imidazolate Framework (ZIF-90) Assembled onto Poly Acrylic Acid Capped Fe3O4 Nanoparticles and Cysteine. J. Hazard Mater. 2020, 392, 122288; https://doi.org/10.1016/j.jhazmat.2020.122288.Suche in Google Scholar PubMed

114. Jaafar, A.; Platas-Iglesias, C.; Bilbeisi, R. A. Thiosemicarbazone Modified Zeolitic Imidazolate Framework (TSC-ZIF) for Mercury (II) Removal from Water. RSC Adv. 2021, 11, 16192–16199; https://doi.org/10.1039/d1ra02025k.Suche in Google Scholar PubMed PubMed Central

115. Wang, L.; Wang, J.; Wang, Y.; Zhou, F.; Huang, J. Thioether-functionalized Porphyrin-Based Polymers for Hg2+ Efficient Removal in Aqueous Solution. J. Hazard Mater. 2022, 429, 128303; https://doi.org/10.1016/j.jhazmat.2022.128303.Suche in Google Scholar PubMed

116. Li, J.; Lin, G.; Zeng, B.; Wang, Z.; Wang, S.; Fu, L.; Hu, T.; Zhang, L. Synthetic of Functionalized Magnetic Titanium-Based Metal–Organic Frameworks to Efficiently Remove Hg (Ⅱ) from Wastewater. J. Colloid Interface Sci. 2024, 653, 528–539; https://doi.org/10.1016/j.jcis.2023.09.030.Suche in Google Scholar PubMed

117. Adly, M. S.; El-Dafrawy, S.; Ibrahim, A. A.; El-Hakam, S.; El-Shall, M. S. Efficient Removal of Heavy Metals from Polluted Water with High Selectivity for Hg (II) and Pb (II) by a 2-Imino-4-Thiobiuret Chemically Modified MIL-125 Metal–Organic Framework. RSC Adv. 2021, 11, 13940–13950; https://doi.org/10.1039/d1ra00927c.Suche in Google Scholar PubMed PubMed Central

118. Zhang, L.; Zhang, J.; Li, X.; Wang, C.; Yu, A.; Zhang, S.; Ouyang, G.; Cui, Y. Adsorption Behavior and Mechanism of Hg (II) on a Porous Core-Shell Copper Hydroxy Sulfate@ MOF Composite. Appl. Surf. Sci. 2021a, 538, 148054; https://doi.org/10.1016/j.apsusc.2020.148054.Suche in Google Scholar

119. Li, G.-P.; Zhang, K.; Zhang, P.-F.; Liu, W.-N.; Tong, W.-Q.; Hou, L.; Wang, Y.-Y. Thiol-functionalized Pores via Post-synthesis Modification in a Metal–Organic Framework with Selective Removal of Hg (II) in Water. Inorg. Chem. 2019, 58, 3409–3415; https://doi.org/10.1021/acs.inorgchem.8b03505.Suche in Google Scholar PubMed

120. Ding, L.; Luo, X.; Shao, P.; Yang, J.; Sun, D. Thiol-functionalized Zr-Based Metal–Organic Framework for Capture of Hg (II) through a Proton Exchange Reaction. ACS Sustain. Chem. Eng. 2018, 6, 8494–8502; https://doi.org/10.1021/acssuschemeng.8b00768.Suche in Google Scholar

121. Leus, K.; Perez, J. P. H.; Folens, K.; Meledina, M.; Van Tendeloo, G.; Du Laing, G.; Van Der Voort, P. UiO-66-(SH) 2 as Stable, Selective and Regenerable Adsorbent for the Removal of Mercury from Water under Environmentally-Relevant Conditions. Faraday Discuss 2017, 201, 145–161; https://doi.org/10.1039/c7fd00012j.Suche in Google Scholar PubMed

122. Xu, W.-Q.; He, S.; Liu, S.-J.; Liu, X.-H.; Qiu, y.-x.; Liu, W.-T.; Liu, X.-J.; Jiang, L.-C.; Jiang, J.-J. Post-Synthetic Modification of a Metal-Organic Framework Based on 5-aminoisophthalic Acid for Mercury Sorption. Inorg. Chem. Commun. 2019, 108, 107515; https://doi.org/10.1016/j.inoche.2019.107515.Suche in Google Scholar

123. Li, M.-Q.; Wong, Y.-L.; Lum, T.-S.; Leung, K. S.-Y.; Lam, P. K.; Xu, Z. Dense Thiol Arrays for Metal–Organic Frameworks: Boiling Water Stability, Hg Removal beyond 2 Ppb and Facile Crosslinking. J. Mater. Chem. A 2018c, 6, 14566–14570; https://doi.org/10.1039/c8ta04020f.Suche in Google Scholar

124. Halder, S.; Mondal, J.; Ortega-Castro, J.; Frontera, A.; Roy, P. A Ni-Based MOF for Selective Detection and Removal of Hg 2+ in Aqueous Medium: A Facile Strategy. Dalton Trans. 2017, 46, 1943–1950; https://doi.org/10.1039/c6dt04722j.Suche in Google Scholar PubMed

125. Abney, C.; Gilhula, J.; Lu, K.; Lin, W. Metal‐organic Framework Templated Inorganic Sorbents for Rapid and Efficient Extraction of Heavy Metals. Adv. Mater. 2014, 26, 7993–7997; https://doi.org/10.1002/adma.201403428.Suche in Google Scholar PubMed

126. Bauer, C. A.; Timofeeva, T. V.; Settersten, T. B.; Patterson, B. D.; Liu, V. H.; Simmons, B. A.; Allendorf, M. D. Influence of Connectivity and Porosity on Ligand-Based Luminescence in Zinc Metal− Organic Frameworks. J. Am. Chem. Soc. 2007, 129, 7136–7144; https://doi.org/10.1021/ja0700395.Suche in Google Scholar PubMed

127. Bian, Y.; Xiong, N.; Zhu, G. Technology for the Remediation of Water Pollution: A Review on the Fabrication of Metal Organic Frameworks. Processes 2018, 6, 122; https://doi.org/10.3390/pr6080122.Suche in Google Scholar

128. Deng, H.; Doonan, C. J.; Furukawa, H.; Ferreira, R. B.; Towne, J.; Knobler, C. B.; Wang, B.; Yaghi, O. M. Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science 2010, 327, 846–850; https://doi.org/10.1126/science.1181761.Suche in Google Scholar PubMed

129. Moghaddam, Z. S.; Kaykhaii, M.; Khajeh, M.; Oveisi, A. R. Synthesis of UiO-66-OH Zirconium Metal-Organic Framework and its Application for Selective Extraction and Trace Determination of Thorium in Water Samples by Spectrophotometry. Spectrochim. Acta, Part A 2018, 194, 76–82; https://doi.org/10.1016/j.saa.2018.01.010.Suche in Google Scholar PubMed

130. Rada, Z. H.; Abid, H. R.; Sun, H.; Wang, S. Bifunctionalized Metal Organic Frameworks, UiO-66-NO2-N (N=-NH2,-(OH) 2,-(COOH) 2), for Enhanced Adsorption and Selectivity of CO2 and N2. J. Chem. Eng. Data 2015, 60, 2152–2161; https://doi.org/10.1021/acs.jced.5b00229.Suche in Google Scholar

131. Li, X.; Xie, S.; Hu, Y.; Xiang, J.; Wang, L.; Li, R.; Chen, M.; Wang, F.; Liu, Q.; Chen, X. AIEgen Modulated Per-Functionalized Flower-like IRMOF-3 Frameworks with Tunable Light Emission and Excellent Sensing Properties. Chem. Commun. 2021, 57, 2392–2395; https://doi.org/10.1039/d0cc08403d.Suche in Google Scholar PubMed

132. Fu, K.; Liu, X.; Lv, C.; Luo, J.; Sun, M.; Luo, S.; Crittenden, J. C. Superselective Hg (II) Removal from Water Using a Thiol-Laced MOF-Based Sponge Monolith: Performance and Mechanism. Environ. Sci. Technol. 2022, 56, 2677–2688; https://doi.org/10.1021/acs.est.1c07480.Suche in Google Scholar PubMed

133. Yan, X.; Li, P.; Song, X.; Li, J.; Ren, B.; Gao, S.; Cao, R. Recent Progress in the Removal of Mercury Ions from Water Based MOFs Materials. Coord. Chem. Rev. 2021, 443, 214034; https://doi.org/10.1016/j.ccr.2021.214034.Suche in Google Scholar

134. Huang, L.; He, M.; Chen, B.; Hu, B. A Mercapto Functionalized Magnetic Zr-MOF by Solvent-Assisted Ligand Exchange for Hg 2+ Removal from Water. J. Mater. Chem. A 2016, 4, 5159–5166; https://doi.org/10.1039/c6ta00343e.Suche in Google Scholar

135. Sohrabi, M. R. Preconcentration of Mercury (II) Using a Thiol-Functionalized Metal-Organic Framework Nanocomposite as a Sorbent. Microchim. Acta 2014, 181, 435–444; https://doi.org/10.1007/s00604-013-1133-1.Suche in Google Scholar

136. Liang, L.; Liu, L.; Jiang, F.; Liu, C.; Yuan, D.; Chen, Q.; Wu, D.; Jiang, H.-L.; Hong, M. Incorporation of In2S3 Nanoparticles into a Metal–Organic Framework for Ultrafast Removal of Hg from Water. Inorg. Chem. 2018, 57, 4891–4897; https://doi.org/10.1021/acs.inorgchem.7b03076.Suche in Google Scholar PubMed

137. Rani, L.; Kaushal, J.; Srivastav, A. L.; Mahajan, P. A Critical Review on Recent Developments in MOF Adsorbents for the Elimination of Toxic Heavy Metals from Aqueous Solutions. Environ. Sci. Pollut. Res. 2020, 27, 44771–44796; https://doi.org/10.1007/s11356-020-10738-8.Suche in Google Scholar PubMed

138. Kobielska, P. A.; Howarth, A. J.; Farha, O. K.; Nayak, S. Metal–organic Frameworks for Heavy Metal Removal from Water. Coord. Chem. Rev. 2018, 358, 92–107; https://doi.org/10.1016/j.ccr.2017.12.010.Suche in Google Scholar

139. Abd El Salam, H.; Sharara, T. A Novel Microwave Synthesis of Manganese Based MOF for Adsorptive of Cd (II), Pb (II) and Hg (II) Ions from Aqua Medium. Egypt. J. Chem. 2019, 62, 837–851.10.21608/ejchem.2019.6524.1550Suche in Google Scholar

140. Zhou, X.-P.; Xu, Z.; Zeller, M.; Hunter, A. D. Reversible Uptake of HgCl 2 in a Porous Coordination Polymer Based on the Dual Functions of Carboxylate and Thioether. Chem. Commun. 2009, 5439–5441; https://doi.org/10.1039/b910265e.Suche in Google Scholar PubMed

141. Zhao, X.; Gao, X.; Zhang, Y.-N.; Wang, M.; Gao, X.; Liu, B. Construction of Dual Sulfur Sites in Metal–Organic Framework for Enhanced Mercury (II) Removal. J. Colloid Interface Sci. 2023, 631, 191–201; https://doi.org/10.1016/j.jcis.2022.10.153.Suche in Google Scholar PubMed

Received: 2024-07-08
Accepted: 2024-07-22
Published Online: 2024-08-05
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
  3. Advanced synthetic routes of metal organic frameworks and their diverse applications
  4. Carbon materials derived by crystalline porous materials for capacitive energy storage
  5. BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
  6. Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base
  7. Solid-phase extraction of organophosphates from polluted waters on a matrix-imprinted sorbent
  8. Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
  9. Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
  10. Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
  11. Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
  12. Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
  13. A review of carbon-based adsorbents for the removal of organic and inorganic components
  14. Mercury removal from water: insights from MOFs and their composites
  15. Organometallic complexes and reaction methods for synthesis: a review
  16. Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity
Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revic-2024-0056/html
Button zum nach oben scrollen