Home BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
Article
Licensed
Unlicensed Requires Authentication

BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation

  • Baneesh Patial

    Baneesh Patial, a dedicated academic and researcher, holds a Masters from Thapar University Patiala (India) and is currently pursuing a Ph.D. at NIT Jalandhar (India). With diverse experience, including a tenure as a chemist at IOLCP Barnala (India) and four years of teaching experience, Baneesh embodies a passion for both practical application and education. Their expertise lies in biosensors and photocatalysis, reflecting a commitment to cutting-edge research. Beyond academia, Baneesh actively contributes to advancing scientific understanding and technological innovation, seeking solutions at the intersection of chemistry and technology. As a driven professional, they aim to pioneer advancements that positively impact society.

    ORCID logo
    , Ajay Bansal

    Ajay Bansal, an accomplished academic leader, holds an M.Tech from IIT Delhi and a Ph.D. from Panjab University. Currently a revered Professor at NIT Jalandhar, his influence extends as Vice President at the Indian Institute of Chemical Engineers in Kolkata. Ajay’s research spans diverse areas from trickle bed reactors to photonanocatalysis, emphasizing innovative solutions in wastewater treatment, solid waste management, and renewable energy. With an impressive portfolio of 75 research publications, his expertise and commitment to advancing multiphase flow and advanced oxidation processes underscore his dedication to shaping the forefront of sustainable technology and environmental conservation.

    ORCID logo EMAIL logo
    , Renu Gupta

    Renu Gupta is a distinguished academic and the Head of the Centre of Energy Environment at NIT Jalandhar, India. Holding a Master’s in Engineering from Panjab University and a Ph.D. from NIT Jalandhar, her expertise lies in Advanced Oxidation Processes, Heterogeneous Catalysis, and Renewable Energy. As a Professor, Renu has not only contributed significantly to research but also played a pivotal role in shaping the academic landscape. Her commitment to advancing sustainable practices in energy and the environment is evident in her extensive body of work. Renu Gupta stands as a beacon of knowledge and leadership in the field of energy and environmental studies.

    and Susheel K. Mittal

    Susheel K. Mittal, a distinguished academic, earned his M. Sc. (Hons School) and Ph.D. in Chemistry from Guru Nanak Dev University in 1986. Presently the Vice Chancellor at PTU Jalandhar (India), he is a Chartered Chemist (CChem), a Fellow of the Royal Society of Chemistry (FRSC) in London, UK, and serves on the Advisory/Editorial Boards of esteemed international and national journals. He has an impressive record of quality research, and innovation in the domains of his research interests including monitoring and prediction of particulate pollution in the ambient air during crop residue burning and their effects on Human health, development of whole cell-based biosensors, and ion-sensitive field-effect transistor (ISFETS) as chemical sensors. With 12 sponsored research projects and one from the Royal Academy of Engineering, UK, Susheel Mittal boasts over 135 peer-reviewed research papers in premier international and national journals.

Published/Copyright: May 13, 2024

Abstract

The novel semiconductor photocatalytic material bismuth vanadate (BiVO4) is gaining significant attention in research due to its unique characteristics, which include a low band gap, good responsiveness to visible light, and non-toxic nature. However, intrinsic constraints such as poor photogenerated charge transfer, slow water oxidation kinetics, and fast electron–hole pair recombination limit the photocatalytic activity of BiVO4. Building heterojunctions has shown to be an effective strategy for enhancing charge separation and impeding electron–hole pair recombination over the last few decades. This review covers the state-of-the-art developments in heterojunction nanomaterials based on BiVO4 for photocatalysis. It explores heterojunction design, clarifies reaction mechanisms, and highlights the current developments in applications including photocatalytic water splitting and organic matter degradation. Finally, it offers a preview of the development paths and opportunities for BiVO4-based heterojunction nanomaterials in the future. This comprehensive assessment of BiVO4-based heterojunctions provides insightful knowledge to researchers in materials science, chemistry, and environmental engineering that will drive advances and breakthroughs in these important fields.


Corresponding author: Ajay Bansal, Department of Chemical Engineering, Dr. B R Ambedkar National Institute of Technology, Jalandhar, Punjab, 144008, India; and Centre for Energy & Environment, Dr. B R Ambedkar National Institute of Technology, Jalandhar, Punjab, 144008, India, E-mail:

About the authors

Baneesh Patial

Baneesh Patial, a dedicated academic and researcher, holds a Masters from Thapar University Patiala (India) and is currently pursuing a Ph.D. at NIT Jalandhar (India). With diverse experience, including a tenure as a chemist at IOLCP Barnala (India) and four years of teaching experience, Baneesh embodies a passion for both practical application and education. Their expertise lies in biosensors and photocatalysis, reflecting a commitment to cutting-edge research. Beyond academia, Baneesh actively contributes to advancing scientific understanding and technological innovation, seeking solutions at the intersection of chemistry and technology. As a driven professional, they aim to pioneer advancements that positively impact society.

Ajay Bansal

Ajay Bansal, an accomplished academic leader, holds an M.Tech from IIT Delhi and a Ph.D. from Panjab University. Currently a revered Professor at NIT Jalandhar, his influence extends as Vice President at the Indian Institute of Chemical Engineers in Kolkata. Ajay’s research spans diverse areas from trickle bed reactors to photonanocatalysis, emphasizing innovative solutions in wastewater treatment, solid waste management, and renewable energy. With an impressive portfolio of 75 research publications, his expertise and commitment to advancing multiphase flow and advanced oxidation processes underscore his dedication to shaping the forefront of sustainable technology and environmental conservation.

Renu Gupta

Renu Gupta is a distinguished academic and the Head of the Centre of Energy Environment at NIT Jalandhar, India. Holding a Master’s in Engineering from Panjab University and a Ph.D. from NIT Jalandhar, her expertise lies in Advanced Oxidation Processes, Heterogeneous Catalysis, and Renewable Energy. As a Professor, Renu has not only contributed significantly to research but also played a pivotal role in shaping the academic landscape. Her commitment to advancing sustainable practices in energy and the environment is evident in her extensive body of work. Renu Gupta stands as a beacon of knowledge and leadership in the field of energy and environmental studies.

Susheel K. Mittal

Susheel K. Mittal, a distinguished academic, earned his M. Sc. (Hons School) and Ph.D. in Chemistry from Guru Nanak Dev University in 1986. Presently the Vice Chancellor at PTU Jalandhar (India), he is a Chartered Chemist (CChem), a Fellow of the Royal Society of Chemistry (FRSC) in London, UK, and serves on the Advisory/Editorial Boards of esteemed international and national journals. He has an impressive record of quality research, and innovation in the domains of his research interests including monitoring and prediction of particulate pollution in the ambient air during crop residue burning and their effects on Human health, development of whole cell-based biosensors, and ion-sensitive field-effect transistor (ISFETS) as chemical sensors. With 12 sponsored research projects and one from the Royal Academy of Engineering, UK, Susheel Mittal boasts over 135 peer-reviewed research papers in premier international and national journals.

Acknowledgments

The authors express their gratitude to Dr. B.R. Ambedkar NIT Jalandhar for providing invaluable resources and departmental facilities.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interests.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Zhu, P.; Luo, D.; Liu, M.; Duan, M.; Lin, J.; Wu, X. Flower-globular BiOI/BiVO4/g-C3n4 with a Dual Z-Scheme Heterojunction for Highly Efficient Degradation of Antibiotics under Visible Light. Sep. Purif. Technol. 2022, 297, 121503. https://doi.org/10.1016/j.seppur.2022.121503.Search in Google Scholar

2. Song, L.; Jin, X.; Zada, A.; Hu, D.; Li, Z.; Yan, R.; Qu, Y.; Jing, L. Derived Hollow BiVO4 Architecture with Copper Tetraphenylphorphyrin as High-Efficiency Wide-Visible-Light Z-Scheme Heterojunction Photocatalyst for 2-Chlorophenol Degradation. J. Environ. Chem. Eng. 2023, 11, 110069. https://doi.org/10.1016/j.jece.2023.110069.Search in Google Scholar

3. Duan, Z.; Zhao, X.; Chen, L. BiVO4/Cu0.4V2O5 Composites as a Novel Z-Scheme Photocatalyst for Visible-Light-Driven CO2 conversion. J. Environ. Chem. Eng. 2021, 9, 104628. https://doi.org/10.1016/j.jece.2020.104628.Search in Google Scholar

4. Nguyen, T. D.; Hong, S. S. Facile Solvothermal Synthesis of Monoclinic-Tetragonal Heterostructured BiVO4 for Photodegradation of Rhodamine B. Catal. Commun. 2020, 136, 105920. https://doi.org/10.1016/j.catcom.2019.105920.Search in Google Scholar

5. Bai, S.; Han, J.; Zhang, K.; Zhao, Y.; Luo, R.; Li, D.; Chen, A. rGO Decorated Semiconductor Heterojunction of BiVO4/NiO to Enhance PEC Water Splitting Efficiency. Int. J. Hydrogen Energy 2022, 47, 4375–4385. https://doi.org/10.1016/j.ijhydene.2021.11.122.Search in Google Scholar

6. Mane, P.; Bagal, I. V.; Bae, H.; Kadam, A. N.; Burungale, V.; Heo, J.; Ryu, S. W.; Ha, J. S. Recent Trends and Outlooks on Engineering of BiVO4 Photoanodes toward Efficient Photoelectrochemical Water Splitting and CO2 Reduction: A Comprehensive Review. Int. J. Hydrogen Energy 2022, 47, 39796–39828. https://doi.org/10.1016/j.ijhydene.2022.09.146.Search in Google Scholar

7. Wang, L.; Zhang, J.; Li, Y.; Shi, Y.; Huang, J.; Mei, Q.; Wang, L.; Ding, F.; Bai, B.; Wang, Q. Heterostructured CoFe1.5Cr0.5S3O/COFs/BiVO4 Photoanode Boosts Charge Extraction for Efficient Photoelectrochemical Water Splitting. Appl. Catal. B Environ.Applied Catalysis B: Environmental 2023, 336. https://doi.org/10.1016/j.apcatb.2023.122921.Search in Google Scholar

8. Yin, D.; Ning, X.; Zhang, Q.; Du, P.; Lu, X. Dual Modification of BiVO4 Photoanode for Synergistically Boosting Photoelectrochemical Water Splitting. J. Colloid Interface Sci. 2023, 64, 238–244. https://doi.org/10.1016/j.jcis.2023.04.173.Search in Google Scholar PubMed

9. Liu, X.; Tang, L.; Zhou, G.; Wang, J.; Song, M.; Hang, Y.; Ma, C.; Han, S.; Yan, M.; Lu, Z. In Situ Formation of BiVO4/MoS2 Heterojunction: Enhanced Photogenerated Carrier Transfer Rate Through Electron Transport Channels Constructed by Graphene Oxide. Mater. Res. Bull. 2023, 157, 112040. https://doi.org/10.1016/j.materresbull.2022.112040.Search in Google Scholar

10. Shi, Y.; Zhao, Q.; Guan, B.; Li, J.; Gao, G.; Zhi, J. Onion-like Carbon with Controllable Carbon Atom Hybridization Embedded in BiVO4 Photoanode for Enhanced Photoelectrochemical Water Splitting. Appl. Surf. Sci. 2023, 614, 156120. https://doi.org/10.1016/j.apsusc.2022.156120.Search in Google Scholar

11. Wang, Q.; Xue, B.; Tan, M.; Li, N.; Zhou, H.; Du, H.; Yang, G.; Zhu, H.; Li, Q. Visible-Light-Driven Ag3VO4-BiVO4/C3N4 with Continuous Type II Heterojunctions for Effective Removal of Cr(VI). J. Environ. Chem. Eng. 2023, 11, 109245. https://doi.org/10.1016/j.jece.2022.109245.Search in Google Scholar

12. Zhong, X.; Li, Y.; Wu, H.; Xie, R. Recent Progress in BiVO4-Based Heterojunction Nanomaterials for Photocatalytic Applications. Mater. Sci. Eng. B 2023, 289, 116278. https://doi.org/10.1016/j.mseb.2023.116278.Search in Google Scholar

13. Gu, J.; Ban, C.; Meng, J.; Li, Q.; Long, X.; Zhou, X.; Liu, N.; Li, Z. Construction of Dual Z-Scheme UNiMOF/BiVO4/S-C3n4 Photocatalyst for Visible-Light Photocatalytic Tetracycline Degradation and Cr(VI) Reduction. Appl. Surf. Sci. 2023, 611 (PA), 155575. https://doi.org/10.1016/j.apsusc.2022.155575.Search in Google Scholar

14. Qi, X.; Zhu, X.; Wu, J.; Wu, Q.; Li, X.; Gu, M. Controlled Synthesis of BiVO4 with Multiple Morphologies via an Ethylenediamine-Assisted Hydrothermal Method. Mater. Res. Bull. 2014, 59, 435–441. https://doi.org/10.1016/j.materresbull.2014.08.004.Search in Google Scholar

15. Chen, X.; Dong, Q.; Chen, S.; Zhang, Z.; Zhang, X.; Di, Y.; Jiang, A.; Zhang, D.; Li, T. Halloysite Nanotubes Supported BiVO4/BaSnO3 p–n Heterojunction Photocatalysts for the Enhanced Degradation of Methylene Blue under Visible Light. Colloids Surf. A Physicochem. Eng. Asp. 2023, 664, 131143. https://doi.org/10.1016/j.colsurfa.2023.131143.Search in Google Scholar

16. Ganeshbabu, M.; Kannan, N.; Venkatesh, P. S.; Paulraj, G.; Jeganathan, K.; MubarakAli, D. Synthesis and Characterization of BiVO4 Nanoparticles for Environmental Applications. RSC Adv. 2020, 10, 18315–18322. https://doi.org/10.1039/d0ra01065k.Search in Google Scholar PubMed PubMed Central

17. Kalanur, S. S.; Lee, Y. J.; Seo, H. A Versatile Synthesis Strategy and Band Insights of Monoclinic Clinobisvanite BiVO4 Thin Films for Enhanced Photoelectrochemical Water Splitting Activity. Appl. Surf. Sci. 2021, 562, 150078. https://doi.org/10.1016/j.apsusc.2021.150078.Search in Google Scholar

18. Kitsiou, V.; Filippidis, N.; Mantzavinos, D.; Poulios, I. Heterogeneous and Homogeneous Photocatalytic Degradation of the Insecticide Imidacloprid in Aqueous Solutions. Appl. Catal. B Environ. 2009, 86 (1–2), 27–35. https://doi.org/10.1016/j.apcatb.2008.07.018.Search in Google Scholar

19. Chen, H.; Meng, F.; Li, S.; Xie, T.; Wang, D.; Lin, Y. Efficient Activation of Peroxymonosulfate by Z-Scheme NiCo2O4/BiVO4 Heterojunctions for Rapid Degradation of Tetracycline Under Visible Light Irradiation. J. Water Process. Eng. 2023, 56, 104282. https://doi.org/10.1016/j.jwpe.2023.104282.Search in Google Scholar

20. Dang, M.; Tan, G.; Wang, M.; Zhang, B.; Wang, Y.; Lv, L.; Ren, H.; Xia, A. Enhanced Photocatalytic Performance of G-C3n4-BiVO4-Ag Heterojunction Induced by Interfacial Electric Fields and Schottky Junction. J. Alloys Compd. 2022, 897, 163214. https://doi.org/10.1016/j.jallcom.2021.163214.Search in Google Scholar

21. Li, H.; Gong, H.; Jin, Z. Phosphorus Modified Ni-MOF–74/BiVO4 S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Appl. Catal. B Environ. 2022, 307, 121166. https://doi.org/10.1016/j.apcatb.2022.121166.Search in Google Scholar

22. Yin, X.; Sun, X.; Mao, Y.; Wang, R.; Li, D.; Xie, W.; Liu, Z.; Liu, Z. Synergistically Enhanced Photocatalytic Degradation of Tetracycline Hydrochloride by Z-Scheme Heterojunction MT-BiVO4microsphere/P-doped G-C3N4 Nanosheet Composite. J. Environ. Chem. Eng. 2023, 11, 109412. https://doi.org/10.1016/j.jece.2023.109412.Search in Google Scholar

23. Channei, D.; Thammaacheep, P.; Kerdphon, S.; Jannoey, P.; Khanitchaidecha, W.; Nakaruk, A. Domestic Microwave-Assisted Synthesis of Pd Doped-BiVO4 Photocatalysts. Inorg. Chem. Commun. 2023, 150, 110478. https://doi.org/10.1016/j.inoche.2023.110478.Search in Google Scholar

24. Chen, J.; Ren, Q.; Xu, C.; Chen, B.; Chen, S.; Ding, Y.; Jin, Z.; Guo, W.; Jia, X. Efficient Degradation of Imidacloprid in Wastewater by a Novel p–n Heterogeneous Ag2O/BiVO4/Diatomite Composite Under Hydrogen Peroxide. J. Ind. Eng. Chem. 2023, 123, 187–200. https://doi.org/10.1016/j.jiec.2023.03.034.Search in Google Scholar

25. Chen, K.; Zhang, L.; Huang, X.; Zhang, F.; Zhu, G.; Wang, Q. Synergistic Effect of Atom Doping and Heterojunction: Promoted Photoelectrochemical Water Splitting Performance of Zr-CoF2/BiVO4. J. Alloys Compd. 2023, 963, 171262. https://doi.org/10.1016/j.jallcom.2023.171262.Search in Google Scholar

26. Kang, B.; Bilal Hussain, M.; Cheng, X.; Peng, C.; Wang, Z. Green Electrodeposition Synthesis of NiFe-LDH/MoOx/BiVO4 for Efficient Photoelectrochemical Water Splitting. J. Colloid Interface Sci. 2022, 626, 146–155. https://doi.org/10.1016/j.jcis.2022.06.095.Search in Google Scholar PubMed

27. Wang, S.; Zhao, L.; Huang, W.; Zhao, H.; Chen, J.; Cai, Q.; Jiang, X.; Lu, C.; Shi, W. Solvothermal Synthesis of CoO/BiVO4 p–n Heterojunction with Micro-nano Spherical Structure for Enhanced Visible Light Photocatalytic Activity Towards Degradation of Tetracycline. Mater. Res. Bull. 2021, 135, 111161. https://doi.org/10.1016/j.materresbull.2020.111161.Search in Google Scholar

28. Somdee, A.; Wannapop, S.; Pijarn, N.; Bovornratanaraks, T. Enhanced Charge Carrier Density of a p–n BiOCl/BiVO4 Heterostructure by Ni Doping for Photoelectrochemical Applications. J. Alloys Compd. 2023, 937, 168434. https://doi.org/10.1016/j.jallcom.2022.168434.Search in Google Scholar

29. Wang, T.; Cai, J.; Zheng, J.; Fang, K.; Hussain, I.; Husein, D. Z. Facile Synthesis of Activated Biochar/BiVO4 Heterojunction Photocatalyst to Enhance Visible Light Efficient Degradation for Dye and Antibiotics: Applications and Mechanisms. J. Mater. Res. Technol. 2022, 19, 5017–5036. https://doi.org/10.1016/j.jmrt.2022.06.177.Search in Google Scholar

30. Yang, Q.; Tan, G.; Zhang, B.; Feng, S.; Bi, Y.; Wang, Z.; Xia, A.; Ren, H.; Liu, W. Cs0.33WO3/(t-m)-BiVO4 Double Z-type Heterojunction Photothermal Synergistic Enhanced Full-Spectrum Degradation of Antibiotics. Chem. Eng. J. 2023, 458. https://doi.org/10.1016/j.cej.2023.141378.Search in Google Scholar

31. Tan, M.; Fu, Y.; Zhang, K.; Liu, Y.; Zhang, C.; Hao, D.; Wang, Q.; Du, H. Visible-Light-Responsive BiVO4/NH2-MIL-125(Ti) Z-Scheme Heterojunctions with Enhanced Photoelectrocatalytic Degradation of Phenol. J. Alloys Compd. 2023, 936, 168345. https://doi.org/10.1016/j.jallcom.2022.168345.Search in Google Scholar

32. Tian, Y.; Que, D.; Guan, R.; Shi, W. Y. SiO2 Template-Modified and Cu-Doped BiVO4 with High Visible-Light Photocatalytic Performance: Preparation and First-Principles Study. Mater. Today Commun. 2022, 32, 103954. https://doi.org/10.1016/j.mtcomm.2022.103954.Search in Google Scholar

33. Regmi, C.; Kshetri, Y. K.; Pandey, R. P.; Kim, T. H.; Gyawali, G.; Lee, S. W. Understanding the Multifunctionality in Cu-Doped BiVO4 Semiconductor Photocatalyst. J. Environ. Sci. 2019, 75, 84–97. https://doi.org/10.1016/j.jes.2018.03.005.Search in Google Scholar PubMed

34. Chang, J. S.; Phuan, Y. W.; Chong, M. N.; Ocon, J. D. Exploration of a Novel Type II 1D-ZnO Nanorods/BiVO4 Heterojunction Photocatalyst for Water Depollution. J. Ind. Eng. Chem. 2020, 83, 303–314. https://doi.org/10.1016/j.jiec.2019.12.002.Search in Google Scholar

35. Zheng, Z.; Zu, X.; Zhang, Y.; Zhou, W. Rational Design of Type-II Nano-Heterojunctions for Nanoscale Optoelectronics. Mater. Today Phys. 2020, 15, 100262. https://doi.org/10.1016/j.mtphys.2020.100262.Search in Google Scholar

36. Kuila, A.; Saravanan, P.; Routu, S.; Gopinath, P.; Jang, M.; Wang, C. Improved Charge Carrier Dynamics Through a Type II Staggered Ce MOF/mc BiVO4 N-N Heterojunction for Enhanced Visible Light Utilisation. Appl. Surf. Sci. 2021, 553, 149556. https://doi.org/10.1016/j.apsusc.2021.149556.Search in Google Scholar

37. Lv, Y. R.; Liu, C. J.; He, R. K.; Li, X.; Xu, Y. H. BiVO4/TiO2 Heterojunction with Enhanced Photocatalytic Activities and Photoelectochemistry Performances Under Visible Light Illumination. Mater. Res. Bull. 2019, 117, 35–40. https://doi.org/10.1016/j.materresbull.2019.04.032.Search in Google Scholar

38. Quang, N. D.; Van, P. C.; Majumder, S.; Jeong, J. R.; Kim, D.; Kim, C. Optimization of Photogenerated Charge Transport Using Type-II Heterojunction Structure of CoP/BiVO4:WO3 for High Efficient Solar-Driver Water Splitting. J. Alloys Compd. 2022, 899, 163292. https://doi.org/10.1016/j.jallcom.2021.163292.Search in Google Scholar

39. Rehman, F.; Alam, N.; Sohail, M.; Ahmad, M.; Siddiqui, M. I.; Imran Irshad, M.; Mumtaz, A. Boosting the Photoexcited Charge Collection and Transportation via BiVO4/Fe-TiO2 NRs in Type-II Heterojunction for Efficient Photoelectrochemical Water Splitting. J. Photochem. Photobiol. Chem. 2023, 444, 114956. https://doi.org/10.1016/j.jphotochem.2023.114956.Search in Google Scholar

40. Ding, J. R.; Kim, K. S. 1-D WO3@BiVO4 Heterojunctions with Highly Enhanced Photoelectrochemical Performance. Chem. Eng. J. 2018, 334, 1650–1656. https://doi.org/10.1016/j.cej.2017.11.130.Search in Google Scholar

41. Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-scheme Heterojunction Photocatalyst. Chem 2020, 6, 1543–1559. https://doi.org/10.1016/j.chempr.2020.06.010.Search in Google Scholar

42. Li, Q.; Wang, M.; He, J.; Wang, Y. In Situ Synthesis of Core-Shell like BiVO4/BiOCl Heterojunction with Excellent Visible-Light Photocatalytic Activity. Opt. Mater. 2023, 144, 114266. https://doi.org/10.1016/j.optmat.2023.114266.Search in Google Scholar

43. Kaowphong, S.; Choklap, W.; Chachvalvutikul, A.; Chandet, N. A Novel CuInS2/m-BiVO4 p–n Heterojunction Photocatalyst with Enhanced Visible-Light Photocatalytic Activity. Colloids Surf. A Physicochem. Eng. Asp. 2019, 579, 123639. https://doi.org/10.1016/j.colsurfa.2019.123639.Search in Google Scholar

44. Lin, J.; Sun, T.; Li, M.; Yang, J.; Shen, J.; Zhang, Z.; Wang, Y.; Zhang, X.; Wang, X. More Efficiently Enhancing Photocatalytic Activity by Embedding Pt Within Anatase–Rutile TiO2 Heterophase Junction Than Exposing Pt on the Outside Surface. J. Catal. 2019, 372, 8–18. https://doi.org/10.1016/j.jcat.2019.02.019.Search in Google Scholar

45. Shen, S.; Zhang, H.; Xu, A.; Zhao, Y. Y.; Lin, Z.; Wang, Z.; Zhong, W.; Feng, S. Construction of NiSe2/BiVO4 Schottky Junction Derived from Work Function Discrepancy for Boosting Photocatalytic Activity. J. Alloys Compd. 2021, 875, 160071. https://doi.org/10.1016/j.jallcom.2021.160071.Search in Google Scholar

46. Liu, Y.; Zeng, H.; Chai, Y.; Yuan, R.; Liu, H. Ti3C2/BiVO4 Schottky Junction as a Signal Indicator for Ultrasensitive Photoelectrochemical Detection of VEGF165. Chem. Commun. 2019, 55, 13729–13732. https://doi.org/10.1039/c9cc07108c.Search in Google Scholar PubMed

47. Zhou, C.; Wang, S.; Zhao, Z.; Shi, Z.; Yan, S.; Zou, Z. A Facet-dependent Schottky-Junction Electron Shuttle in a BiVO4{010}–Au–Cu2O Z-Scheme Photocatalyst for Efficient Charge Separation. Adv. Funct. Mater. 2018, 28, 1–10. https://doi.org/10.1002/adfm.201801214.Search in Google Scholar

48. Yu, J.; Wang, S.; Low, J.; Xiao, W. Enhanced Photocatalytic Performance of Direct Z-Scheme G-C3n4-TiO2 Photocatalysts for the Decomposition of Formaldehyde in Air. Phys. Chem. Chem. Phys. 2013, 15, 16883–16890. https://doi.org/10.1039/c3cp53131g.Search in Google Scholar PubMed

49. Patial, B.; Bansal, A.; Gupta, R.; Mittal, S. K. Hydrothermal Synthesis of (M-T) BiVO4/g-C3n4 Heterojunction for Enhancement in Photocatalytic Degradation of Imidacloprid. J. Environ. Chem. Eng. 2023, 11, 111138. https://doi.org/10.1016/j.jece.2023.111138.Search in Google Scholar

50. Zhou, G.; Meng, L.; Ning, X.; Yin, W.; Hou, J.; Xu, Q.; Yi, J.; Wang, S.; Wang, X. Switching Charge Transfer of G-C3N4/BiVO4 Heterojunction from Type II to Z-Scheme via Interfacial Vacancy Engineering for Improved Photocatalysis. Int. J. Hydrogen Energy 2022, 47, 8749–8760. https://doi.org/10.1016/j.ijhydene.2021.12.226.Search in Google Scholar

51. Wang, Q.; Li, J.; Xiao, L.; Wang, Y.; Du, H. Constructing Z-Scheme Fe3N/BiVO4 Heterojunction via Electrostatic Self-Assembly toward High Visible-Light Photocatalytic Hydrogen Evolution. J. Alloys Compd. 2023, 935, 168062. https://doi.org/10.1016/j.jallcom.2022.168062.Search in Google Scholar

52. Zhang, X.; Chen, Z.; Li, X.; Wu, Y.; Zheng, J.; Li, Y.; Wang, D.; Yang, Q.; Duan, A.; Fan, Y. Promoted Electron Transfer in Fe2+/Fe3+ Co-Doped BiVO4/Ag3PO4 S-Scheme Heterojunction for Efficient Photo-Fenton Oxidation of Antibiotics. Sep. Purif. Technol. 2023, 310, 123116. https://doi.org/10.1016/j.seppur.2023.123116.Search in Google Scholar

53. Zhao, Z.; Bian, J.; Zhao, L.; Wu, H.; Xu, S.; Sun, L.; Li, Z.; Zhang, Z.; Jing, L. Construction of 2D Zn-MOF/BiVO4 S-Scheme Heterojunction for Efficient Photocatalytic CO2 Conversion under Visible Light Irradiation. Chin. J. Catal. 2022, 43, 1331–1340. https://doi.org/10.1016/S1872-2067(21)64005-6.Search in Google Scholar

54. Guo, W.; Luo, H.; Jiang, Z.; Shangguan, W. In-situ Pressure-Induced BiVO4/Bi0.6Y0.4VO4 S-Scheme Heterojunction for Enhanced Photocatalytic Overall Water Splitting Activity. Chin. J. Catal. 2022, 43, 316–328. https://doi.org/10.1016/S1872-2067(21)63846-9.Search in Google Scholar

55. Han, T.; Shi, H.; Chen, Y. Facet-Dependent CuO/{010}BiVO4 S-Scheme Photocatalyst Enhanced Peroxymonosulfate Activation for Efficient Norfloxacin Removal. J. Mater. Sci. Technol. 2024, 174, 30–43. https://doi.org/10.1016/j.jmst.2023.03.053.Search in Google Scholar

56. Yue, X.; Cheng, L.; Fan, J.; Xiang, Q. 2D/2D BiVO4/CsPbBr3 S-Scheme Heterojunction for Photocatalytic CO2 Reduction: Insights into Structure Regulation and Fermi Level Modulation. Appl. Catal. B Environ. 2022, 304, 120979. https://doi.org/10.1016/j.apcatb.2021.120979.Search in Google Scholar

57. Liu, F.; Wang, Y.; Xu, D.; Sun, F.; Zhang, S.; Wang, W.; Li, X.; Yu, W.; Yu, H.; Dong, X. Full-Spectrum-Responsive 1D/2D BiVO4:Er3+,Yb3+/BiOCl Core-Shell S-Scheme Heterostructure with Boosted Charge Transport and Redox Capacity for the Efficient Removal of Organic Pollutants. Ceram. Int. 2023, 49, 13371–13385. https://doi.org/10.1016/j.ceramint.2022.12.212.Search in Google Scholar

58. Geng, J.; Guo, S.; Zou, Z.; Yuan, Z.; Zhang, D.; Yan, X.; Ning, X.; Fan, X. 0D/2D CeO2/BiVO4 S-Scheme Photocatalyst for Production of Solar Fuels from CO2. Fuel 2023, 333. https://doi.org/10.1016/j.fuel.2022.126417.Search in Google Scholar

59. LI, H. B.; Zhang, J.; Huang, G. Y.; Fu, S.; Ma, C.; Wang, B.Y; Huang, Q.; Liao, H. Hydrothermal Synthesis and Enhanced Photocatalytic Activity of Hierarchical Flower-like Fe-Doped BiVO4. Trans. Nonferrous Metals Soc. China 2017, 27, 868–875. https://doi.org/10.1016/S1003-6326(17)60102-X.Search in Google Scholar

60. Fu, Q.; Meng, Y.; Yao, Y.; Shen, H.; Xie, B.; Ni, Z.; Xia, S. Construction of Facet Orientation-Supported Z-Scheme Heterojunction of BiVO4(110)-Fe2O3 and its Photocatalytic Degradation of Tetracycline. J. Environ. Chem. Eng. 2023, 11, 111060. https://doi.org/10.1016/j.jece.2023.111060.Search in Google Scholar

61. Wang, M.; Zheng, H.; Liu, Q.; Niu, C.; Che, Y.; Dang, M. High Performance B Doped BiVO4 Photocatalyst with Visible Light Response by Citric Acid Complex Method. Spectrochim. Acta Mol. Biomol. Spectrosc. 2013, 114, 74–79. https://doi.org/10.1016/j.saa.2013.05.032.Search in Google Scholar PubMed

62. Lotfi, S., Ouardi, M.El, Ahsaine, H. A., Assani, A. Recent Progress on the Synthesis, Morphology and Photocatalytic Dye Degradation of BiVO4 Photocatalysts: A Review. Catal. Rev. – Sci. Eng. 2022, 66(1), 214–258; https://doi.org/10.1080/01614940.2022.2057044.Search in Google Scholar

63. Li, X.; Chen, T.; Qiu, Y.; Zhu, Z.; Zhang, H.; Yin, D. Magnetic Dual Z-Scheme G-C3N4/BiVO4/CuFe2O4 Heterojunction as an Efficient Visible-Light-Driven Peroxymonosulfate Activator for Levofloxacin Degradation. Chem. Eng. J. 2023, 452, 139659. https://doi.org/10.1016/j.cej.2022.139659.Search in Google Scholar

64. Gao, Y.; Sun, L.; Bian, J.; Zhang, Z.; Li, Z.; Jing, L. Accelerated Charge Transfer of G-C3N4/BiVO4 Z-Scheme 2D Heterojunctions by Controllably Introducing Phosphate Bridges and Ag Nanocluster Co-catalysts for Selective CO2 Photoreduction to CO. Appl. Surf. Sci. 2023, 610, 155360. https://doi.org/10.1016/j.apsusc.2022.155360.Search in Google Scholar

65. Wang, G.; Cheng, H. Boosting Catalytic Efficiency via BiVO4 Surface Heterojunction-Induced Interfacial Z-Scheme NiFe2O4/{0 1 0}BiVO4 Composite. Sep. Purif. Technol. 2023, 318, 123949. https://doi.org/10.1016/j.seppur.2023.123949.Search in Google Scholar

66. Lin, Z.; Ye, S.; Xu, Y.; Lin, X.; Qin, Z.; Bao, J.; Peng, H. Construction of a Novel Efficient Z-Scheme BiVO4/EAQ Heterojunction for the Photocatalytic Inactivation of Antibiotic-Resistant Pathogens: Performance and Mechanism. Chem. Eng. J. 2023, 453, 139747. https://doi.org/10.1016/j.cej.2022.139747.Search in Google Scholar

67. Hu, C.; Cao, J.; Jia, X.; Sun, H.; Lin, H.; Chen, S. Difunctional Ni2P Decorated Novel Z-Scheme BiVO4/g-C3n4 Heterojunction for Achieving Highly Efficient CO2 Reduction and Tetracycline Oxidation. Appl. Catal. B Environ. 2023, 337, 122957. https://doi.org/10.1016/j.apcatb.2023.122957.Search in Google Scholar

68. Lv, M.; Wang, H.; Shi, H. Physicochemical and Engineering Aspects Construction of Z-Scheme BiVO4/NaNbO3 Piezo-Photocatalyst with Improved Carrier Separation for Efficient Removal of Tetracycline. Colloids Surf. A Physicochem. Eng. Asp. 2023, 679, 132579. https://doi.org/10.1016/j.colsurfa.2023.132579.Search in Google Scholar

69. Yang, R.; Liang, B.; Zheng, S.; Hu, C.; Xu, Y.; Ma, Y.; Bai, Y.; Dai, K.; Tang, Y.; Zhang, C.; Chang, M. 3D Hierarchical Structure Collaborating with 2D/2D Interface Interaction in BiVO4/ZnCr-LDH Heterojunction with Superior Visible-Light Photocatalytic Removal Efficiency for Tetracycline Hydrochloride. Arab. J. Chem. 2023, 16, 104397. https://doi.org/10.1016/j.arabjc.2022.104397.Search in Google Scholar

70. Hu, C.; Tian, M.; Wu, L.; Chen, L. Enhanced Photocatalytic Degradation of Paraben Preservative over Designed G-C3N4/BiVO4 S-Scheme System and Toxicity Assessment. Ecotoxicol. Environ. Saf. 2022, 231, 113175. https://doi.org/10.1016/j.ecoenv.2022.113175.Search in Google Scholar PubMed

71. Wang, B.; Zhang, T.; Zhong, J.; Li, J. Enhanced Photocatalytic Performance of Persimmon Cake like Oxygen Vacancies Enriched NiO/BiVO4 Heterojunctions Benefited from S-Scheme Interfacial Charge Pairs Separation and Transfer Mechanism. Sep. Purif. Technol. 2023, 326, 124860. https://doi.org/10.1016/j.seppur.2023.124860.Search in Google Scholar

72. Xu, Z.; Qin, C.; Zhong, J.; Huang, S.; Li, M.; Zhang, S.; Yang, H.; Ma, L. In-situ Preparation of S-Scheme BiOI/BiVO4 Heterojunctions with Enhanced Photocatalytic Performance. Solid State Sci. 2022, 129, 106908. https://doi.org/10.1016/j.solidstatesciences.2022.106908.Search in Google Scholar

73. Zhu, Z.; Han, Q.; Yu, D.; Sun, J.; Liu, B. A Novel p–n Heterojunction of BiVO4/TiO2/GO Composite for Enhanced Visible-Light-Driven Photocatalytic Activity. Mater. Lett. 2017, 209, 379–383. https://doi.org/10.1016/j.matlet.2017.08.045.Search in Google Scholar

74. Wei, P.; Wen, Y.; Lin, K.; Li, X. 2D/3D WO3/BiVO4 Heterostructures for Efficient Photoelectrocatalytic Water Splitting. Int. J. Hydrogen Energy 2021, 46, 27506–27515. https://doi.org/10.1016/j.ijhydene.2021.06.007.Search in Google Scholar

75. Yang, L.; Wang, R.; Chu, D.; Chen, Z.; Zhong, F.; Xu, X.; Deng, C.; Yu, H.; Lv, J. BiVO4 Photoelectrodes for Unbiased Solar Water Splitting Devices Enabled by Electrodepositing of Cu2O Simultaneously as Photoanode and Photocathode. J. Alloys Compd. 2023, 945, 169336. https://doi.org/10.1016/j.jallcom.2023.169336.Search in Google Scholar

76. Wu, L.; Wang, M.; Han, T.; Yang, B.; Geng, L.; Jin, J. Fabrication of Fe2O3/BiVO4 Heterojunction by Doping Method to Improve the Solar Water Splitting Performance of BiVO4. J. Alloys Compd. 2023, 949, 169822. https://doi.org/10.1016/j.jallcom.2023.169822.Search in Google Scholar

77. Chen, M.; Chang, X.; Li, C.; Wang, H.; Jia, L. Ni-Doped BiVO4 Photoanode for Efficient Photoelectrochemical Water Splitting. J. Colloid Interface Sci. 2023, 640, 162–169. https://doi.org/10.1016/j.jcis.2023.02.096.Search in Google Scholar PubMed

78. Sun, Y.; Li, H.; Hu, Y.; Wang, J.; Li, A.; Corvini, P. F. X. Single-atomic Ruthenium Coupling with NiFe Layered Double Hydroxide In-Situ Growth on BiVO4 Photoanode for Boosting Photoelectrochemical Water Splitting. Appl. Catal. B Environ. 2024, 340, 123269. https://doi.org/10.1016/j.apcatb.2023.123269.Search in Google Scholar

79. Jeong, Y. J.; Hong, S. Y.; Cho, I. S. All-solution-processed BiVO4/SnO2 Nanorods-Axial-Heterostructure with Improved Charge Collection Properties for Solar Water-Splitting. Ceram. Int. 2022, 48, 33101–33107. https://doi.org/10.1016/j.ceramint.2022.07.244.Search in Google Scholar

80. Yuan, H.; Zhang, Y.; Su, Y.; Hu, N.; Yang, J.; Zeng, M.; Yang, Z.; Zhang, Y. A Novel BiVO4/DLC Heterojunction for Efficient Photoelectrochemical Water Splitting. Chem. Eng. J. 2023, 459, 141637. https://doi.org/10.1016/j.cej.2023.141637.Search in Google Scholar

81. Singla, S.; Basu, S.; Devi, P. Solar Light Responsive 2D/2D BiVO4/SnS2 Nanocomposite for Photocatalytic Elimination of Recalcitrant Antibiotics and Photoelectrocatalytic Water Splitting with High Performance. J. Ind. Eng. Chem. 2023, 118, 119–131. https://doi.org/10.1016/j.jiec.2022.10.051.Search in Google Scholar

82. Wang, L.; Liu, Z.; Zhang, J.; Jia, Y.; Huang, J.; Mei, Q.; Wang, Q. Boosting Charge Separation of BiVO4 Photoanode Modified with 2D Metal–Organic Frameworks Nanosheets for High-Performance Photoelectrochemical Water Splitting. Chin. Chem. Lett. 2023, 34, 108007. https://doi.org/10.1016/j.cclet.2022.108007.Search in Google Scholar

83. Zhang, W.; Tian, M.; Jiao, H.; Jiang, H. Y.; Tang, J. Conformal BiVO4/WO3 Nanobowl Array Photoanode for Efficient Photoelectrochemical Water Splitting. Chin. J. Catal. 2022, 43, 2321–2331. https://doi.org/10.1016/S1872-2067(21)63927-X.Search in Google Scholar

84. Zhang, J.; Wei, X.; Zhao, J.; Zhang, Y.; Wang, L.; Huang, J.; She, H.; Wang, Q. Electronegative Cl− Modified BiVO4 Photoanode Synergized with Nickel Hydroxide Cocatalyst for High-Performance Photoelectrochemical Water Splitting. Chem. Eng. J. 2023, 454, 140081. https://doi.org/10.1016/j.cej.2022.140081.Search in Google Scholar

85. Chen, C. Y.; Pai, H.; Chen, H. M.; Yougbaré, S.; Husain, S.; Hsiao, Y. C.; Lin, L. Y. Distinguished Heterojunction and Co-catalyst Behaviors on Tungsten Doped BiVO4 for Photoelectrochemical Catalytic Water Splitting Reaction. Mater. Today Sust. 2023, 24. https://doi.org/10.1016/j.mtsust.2023.100488.Search in Google Scholar

86. Fang, W.; Lin, Y.; Xv, R.; Shang, X.; Fu, L. Band-Gap and Interface Engineering by Ni Doping and CoPi Deposition of BiVO4 Photoanode to Boost Photoelectrochemical Water Splitting. Electrochim. Acta 2023, 437. https://doi.org/10.1016/j.electacta.2022.141511.Search in Google Scholar

87. Xie, Z.; Chen, D.; Zhai, J.; Huang, Y.; Ji, H. Charge Separation via Synergy of Homojunction and Electrocatalyst in BiVO4 for Photoelectrochemical Water Splitting. Appl. Catal. B Environ. 2023, 334, 122865. https://doi.org/10.1016/j.apcatb.2023.122865.Search in Google Scholar

88. Bai, H.; Wang, F.; You, Z.; Sun, D.; Cui, J.; Fan, W. Fabrication of Zn-MOF Decorated BiVO4 Photoanode for Water Splitting. Colloids Surf. A Physicochem. Eng. Asp. 2022, 640, 128412. https://doi.org/10.1016/j.colsurfa.2022.128412.Search in Google Scholar

89. Kalanur, S. S.; Seo, H. An Experimental and Density Functional Theory Studies of Nb-Doped BiVO4 Photoanodes for Enhanced Solar Water Splitting. J. Catal. 2022, 410, 144–155. https://doi.org/10.1016/j.jcat.2022.04.019.Search in Google Scholar

90. Feng, J.; Huang, H.; Guo, W.; Xu, X.; Yao, Y.; Yu, Z.; Li, Z.; Zou, Z. Evaluating the Promotional Effects of WO3 Underlayers in BiVO4 Water Splitting Photoanodes. Chem. Eng. J. 2021, 417, 128095. https://doi.org/10.1016/j.cej.2020.128095.Search in Google Scholar

91. Majumder, S.; Su, X.; Kim, K. H. Effective Strategy of Incorporating Co3O4 as a Co-catalyst onto an Innovative BiVO4/Fe2TiO5 Core-Shell Heterojunction for Effective Photoelectrochemical Water-Splitting Application. Surface. Interfac. 2023, 39, 102936. https://doi.org/10.1016/j.surfin.2023.102936.Search in Google Scholar

92. Sudi, M. S.; Zhao, L.; Wang, Q.; Dou, Y.; Shen, X.; Wang, A.; Zhu, W. Efficient Photoelectrochemical Water Splitting of Metal-Porphyrin Decorated on BiVO4 Photoanode. Appl. Surf. Sci. 2022, 606, 154753. https://doi.org/10.1016/j.apsusc.2022.154753.Search in Google Scholar

93. Peng, Z.; Su, Y.; Ennaji, I.; Khojastehnezhad, A.; Siaj, M. Encapsulation of Few-Layered MoS2 on Electrochemical-Treated BiVO4 Nanoarray Photoanode: Simultaneously Improved Charge Separation and Hole Extraction towards Efficient Photoelectrochemical Water Splitting. Chem. Eng. J. 2023, 47, 147082. https://doi.org/10.1016/j.cej.2023.147082.Search in Google Scholar

94. Bai, W.; Zhou, Y.; Peng, G.; Wang, J.; Li, A.; Corvini, P. F. X. Engineering Efficient Hole Transport Layer Ferrihydrite-MXene on BiVO4 Photoanodes for Photoelectrochemical Water Splitting: Work Function and Conductivity Regulated. Appl. Catal. B Environ. 2022, 315, 121606. https://doi.org/10.1016/j.apcatb.2022.121606.Search in Google Scholar

95. Shaddad, M. N.; Arunachalam, P.; Hezam, M.; BinSaeedan, N. M.; Gimenez, S.; Bisquert, J.; Al-Mayouf, A. M. Facile Fabrication of Heterostructured BiPS4-Bi2S3-BiVO4 Photoanode for Enhanced Stability and Photoelectrochemical Water Splitting Performance. J. Catal. 2023, 418, 51–63. https://doi.org/10.1016/j.jcat.2022.12.032.Search in Google Scholar

96. Tavazohi, A.; Abdizadeh, H.; Golobostanfard, M. R. Hierarchical Mesoporous SnO2/BiVO4 Photoanode Decorated with Ag Nanorods for Efficient Photoelectrochemical Water Splitting. Int. J. Hydrogen Energy 2022, 47, 18992–19004. https://doi.org/10.1016/j.ijhydene.2022.04.100.Search in Google Scholar

97. Subramanyam, P.; Meena, B.; Suryakala, D.; Subrahmanyam, C. Influence of Bi–cu Microstructure on the Photoelectrochemical Performance of BiVO4 Photoanode for Efficient Water Splitting. Sol. Energy Mater. Sol. Cells 2021, 232, 111354. https://doi.org/10.1016/j.solmat.2021.111354.Search in Google Scholar

98. Yang, Y.; Wan, S.; Wang, R.; Ou, M.; Fan, X.; Zhong, Q. NiFe-bimetal-organic Framework Grafting Oxygen-Vacancy-Rich BiVO4 Photoanode for Highly Efficient Solar-Driven Water Splitting. J. Colloid Interface Sci. 2023, 629, 487–495. https://doi.org/10.1016/j.jcis.2022.08.182.Search in Google Scholar PubMed

99. Yang, X.; Jiang, P.; Yu, Q.; Jiang, H.; Xu, X. Orderly Decoupled Dynamics Modulation in Nanoporous BiVO4 Photoanodes for Solar Water Splitting. J. Alloys Compd. 2023, 931, 167428. https://doi.org/10.1016/j.jallcom.2022.167428.Search in Google Scholar

100. Yu, L.; Xue, K.; Luo, H.; Liu, C.; Liu, H.; Zhu, H.; Zhang, Y. Phase Engineering of 1 T-MoS2 on BiVO4 Photoanode with p–n Junctions: Establishing High Speed Charges Transport Channels for Efficient Photoelectrochemical Water Splitting. Chem. Eng. J. 2023, 472, 144965. https://doi.org/10.1016/j.cej.2023.144965.Search in Google Scholar

101. Cheng, X.; Ji, L.; Bi, Y.; Wang, W.; Gao, S.; Li, H.; Shang, N.; Gao, W.; Feng, C.; Wang, C. Uniform Deposition of Metal–Organic Coordination Networks on BiVO4 Through Chemical Bonding for Efficient Solar Water Splitting. Chem. Eng. J. 2023, 474, 145509. https://doi.org/10.1016/j.cej.2023.145509.Search in Google Scholar

102. Tayebi, M.; Lee, B. K. Recent Advances in BiVO4 Semiconductor Materials for Hydrogen Production Using Photoelectrochemical Water Splitting. Renew. Sustain. Energy Rev. 2019, 111, 332–343. https://doi.org/10.1016/j.rser.2019.05.030.Search in Google Scholar

103. Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z.; Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S.; Wang, H.; Miller, E.; Jaramillo, T. F. Technical and Economic Feasibility of Centralized Facilities for Solar Hydrogen Production via Photocatalysis and Photoelectrochemistry. Energy Environ. Sci. 2013, 6, 1983–2002. https://doi.org/10.1039/c3ee40831k.Search in Google Scholar

104. Fu, L.; Li, Z.; Shang, X. Recent Surficial Modification Strategies on BiVO4 Based Photoanodes for Photoelectrochemical Water Splitting Enhancement. Int. J. Hydrogen Energy 2024, 55, 611–624. https://doi.org/10.1016/j.ijhydene.2023.11.253.Search in Google Scholar

105. Pornrungroj, C.; Andrei, V.; Rahaman, M.; Uswachoke, C.; Joyce, H. J.; Wright, D. S.; Reisner, E. Bifunctional Perovskite-BiVO4 Tandem Devices for Uninterrupted Solar and Electrocatalytic Water Splitting Cycles. Adv. Funct. Mater. 2021, 31, 1–9. https://doi.org/10.1002/adfm.202008182.Search in Google Scholar

106. Li, X.; Jia, M.; Lu, Y.; Li, N.; Zheng, Y. Z.; Tao, X.; Huang, M. Co(OH)2/BiVO4 Photoanode in Tandem with a Carbon-Based Perovskite Solar Cell for Solar-Driven Overall Water Splitting. Electrochim. Acta 2020, 330, 135183. https://doi.org/10.1016/j.electacta.2019.135183.Search in Google Scholar

107. Pihosh, Y.; Turkevych, I.; Mawatari, K.; Uemura, J.; Kazoe, Y.; Kosar, S.; Makita, K.; Sugaya, T.; Matsui, T.; Fujita, D.; Tosa, M.; Kondo, M.; Kitamori, T. Photocatalytic Generation of Hydrogen by Core–Shell WO3/BiVO4 Nanorods with Ultimate Water Splitting Efficiency. Sci. Rep. 2015, 5, 1–2. https://doi.org/10.1038/srep11141.Search in Google Scholar PubMed PubMed Central

108. Shi, X.; Jeong, H.; Oh, S. J.; Ma, M.; Zhang, K.; Kwon, J.; Choi, I. T.; Choi, I. Y.; Kim, H. K.; Kim, J. K.; Park, J. H. Unassisted Photoelectrochemical Water Splitting Exceeding 7 % Solar-To-Hydrogen Conversion Efficiency Using Photon Recycling. Nat. Commun. 2016, 7, 1–6. https://doi.org/10.1038/ncomms11943.Search in Google Scholar PubMed PubMed Central

109. Ma, M.; E, L.; Zhao, D.; Xin, Y.; Wu, X.; Meng, Y.; Liu, Z. The p–n Heterojunction of BiVO4/Cu2O Was Decorated by Plasma Ag NPs for Efficient Photoelectrochemical Degradation of Rhodamine B. Colloids Surf. A Physicochem. Eng. Asp. 2022, 633. https://doi.org/10.1016/j.colsurfa.2021.127834.Search in Google Scholar

110. Ranjith, R.; Karmegam, N.; Alsawalha, M.; Hu, X.; Jothimani, K. Construction of G-C3N4/CdS/BiVO4 Ternary Nanocomposite with Enhanced Visible-Light-Driven Photocatalytic Activity Toward Methylene Blue Dye Degradation in the Aqueous Phase. J. Environ. Manage. 2023, 330, 117132. https://doi.org/10.1016/j.jenvman.2022.117132.Search in Google Scholar PubMed

111. Zhang, X.; Liu, Y.; Zhai, Y.; Yu, Y.; Guo, Y.; Hao, S. An Optimization Strategy for Photo-Fenton-like Catalysts: Based on Crystal Plane Engineering of BiVO4 and Electron Transfer Properties of 0D CQDs. Environ. Res. 2023, 222, 115347. https://doi.org/10.1016/j.envres.2023.115347.Search in Google Scholar PubMed

112. Jing, Q.; Liu, Z.; Cheng, X.; Li, C.; Ren, P.; Guo, K.; Yue, H.; Xie, B.; Li, T.; Wang, Z.; Shu, L. Boosting Piezo-Photocatalytic Activity of BiVO4/BiFeO3 Heterojunctions Through Built-In Polarization Field Tailoring Carrier Transfer Performances. Chem. Eng. J. 2023, 464, 142617. https://doi.org/10.1016/j.cej.2023.142617.Search in Google Scholar

113. Singla, S.; Singh, P.; Basu, S.; Devi, P. BiVO4/MoSe2 Photocatalyst for the Photocatalytic Abatement of Tetracycline and Photoelectrocatalytic Water Splitting. Mater. Chem. Phys. 2023, 295. https://doi.org/10.1016/j.matchemphys.2022.127111.Search in Google Scholar

114. Liu, M.; Zheng, L.; Deng, J.; Gao, J.; Su, K.; Sheng, X.; He, J.; Feng, D.; Guo, L.; Chen, C.; Li, Y. Construction of Ag Nanoparticle Decorated AgBr/BiVO4 Shell/core Structure Plasmonic Photocatalysts Towards High Photocatalytic Elimination of Contaminations under Visible Light. J. Alloys Compd. 2023, 931, 167584. https://doi.org/10.1016/j.jallcom.2022.167584.Search in Google Scholar

115. Qin, T.; Wei, J.; Zhou, C.; Zeng, X.; Zhou, J.; Li, Y. yun. Directional Crystal Facets Deposition Constructed BiVO4/Ag/MnO2 with Plasmon Resonance for Enhanced Photocatalytic Degradation of Antibiotics in Water. Sep. Purif. Technol. 2023, 317, 123793. https://doi.org/10.1016/j.seppur.2023.123793.Search in Google Scholar

116. Nayak, R.; Ashraf Ali, F.; Achary, P. G. R.; Nanda, B. Effective Degradation of Ciprofloxacin and Cr(VI) by Surface Plasmon Resonance Induced Photocatalyst Ag (0)/BiVO4@SiO2: Performance and Mechanism. Inorg. Chem. Commun. 2023, 147, 110206. https://doi.org/10.1016/j.inoche.2022.110206.Search in Google Scholar

117. Kaur, M.; Dhiman, M.; Sudhaik, A.; Raizada, P.; Singh, P.; Gautam, S. Fabrication of Magnetic Heterocomposite of Graphene Supported CoFe2O4/BiVO4 and Exploration of Photocatalytic and Antibacterial Activities. Mater. Today: Proc. 2023. https://doi.org/10.1016/j.matpr.2023.03.629.Search in Google Scholar

118. Wu, C.; Dai, J.; Ma, J.; Zhang, T.; Qiang, L.; Xue, J. Mechanistic Study of B-TiO2/BiVO4 S-Scheme Heterojunction Photocatalyst for Tetracycline Hydrochloride Removal and H2 Production. Sep. Purif. Technol. 2023, 312, 123398. https://doi.org/10.1016/j.seppur.2023.123398.Search in Google Scholar

119. Liu, P.; Han, D.; Wang, Z.; Gu, F. Metal–Organic Framework CAU-17 Derived Bi/BiVO4 Photocatalysts for the Visible Light-Driven Degradation of Tetracycline Hydrochloride. Catal. Commun. 2023, 177, 106657. https://doi.org/10.1016/j.catcom.2023.106657.Search in Google Scholar

120. Akhter, P.; Shafiq, I.; Ali, F.; Hassan, F.; Rehman, R.; Shezad, N.; Ahmed, A.; Jamil, F.; Hussain, M.; Park, Y. K. Montmorillonite-Supported BiVO4 Nanocomposite: Synthesis, Interface Characteristics and Enhanced Photocatalytic Activity for Dye-Contaminated Wastewater. J. Ind. Eng. Chem. 2023, 123, 238–247. https://doi.org/10.1016/j.jiec.2023.03.039.Search in Google Scholar

121. Hemmatpour, P.; Nezamzadeh-Ejhieh, A.; Ershadi, A. A Brief Study on the Eriochrome Black T Photodegradation Kinetic by CdS/BiVO4 Coupled Catalyst. Mater. Res. Bull. 2022, 151, 111830. https://doi.org/10.1016/j.materresbull.2022.111830.Search in Google Scholar

122. Gao, Y.; Liu, F.; Chi, X.; Tian, Y.; Zhu, Z.; Guan, R.; Song, J. A Mesoporous Nanofibrous BiVO4-Ni/AgVO3 Z-Scheme Heterojunction Photocatalyst with Enhanced Photocatalytic Reduction of Cr6+ and Degradation of RhB Under Visible Light. Appl. Surf. Sci. 2022, 603, 154416. https://doi.org/10.1016/j.apsusc.2022.154416.Search in Google Scholar

123. Zhou, B.; Tan, P.; Yang, L.; Zhang, Y.; Tan, X.; Pan, J. Assembly of Direct Z-Scheme ZnIn2S4/BiVO4 Composite for Enhanced Photodegradation of Tetracycline Hydrochloride. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129784. https://doi.org/10.1016/j.colsurfa.2022.129784.Search in Google Scholar

124. Yalçın, E.; Dükkancı, M. Ternary CuS@Ag/BiVO4 Composite for Enhanced Photo-Catalytic and Sono-Photocatalytic Performance Under Visible Light. J. Solid State Chem. 2022, 313. https://doi.org/10.1016/j.jssc.2022.123319.Search in Google Scholar

125. Li, X.; Fang, G.; Tian, Q.; Wu, T. Crystal Regulation of BiVO4 for Efficient Photocatalytic Degradation in G-C3N4/BiVO4 Heterojunction. Appl. Surf. Sci. 2022, 584, 1–8. https://doi.org/10.1016/j.apsusc.2022.152642.Search in Google Scholar

126. Sun, H.; Zou, C.; Liang, H. Designing Dual-Defective Photocatalyst of Z-Scheme H-BiVO4/D-NG Composite with Hollow Structures for Efficient Visible-Light Photocatalysis of Organic Pollutants. Sep. Purif. Technol. 2022, 297, 121476. https://doi.org/10.1016/j.seppur.2022.121476.Search in Google Scholar

127. Noor, M.; Sharmin, F.; Mamun, M. A. A.; Hasan, S.; Hakim, M. A.; Basith, M. A. Effect of Gd and Y Co-doping in BiVO4 Photocatalyst for Enhanced Degradation of Methylene Blue Dye. J. Alloys Compd. 2022, 895, 162639. https://doi.org/10.1016/j.jallcom.2021.162639.Search in Google Scholar

128. Zhang, L.; Meng, Y.; Dai, T.; Yao, Y.; Shen, H.; Xie, B.; Ni, Z.; Xia, S. Fabrication of a Coated BiVO4@LDHs Z-Scheme Heterojunction and Photocatalytic Degradation of Norfloxacin. Appl. Clay Sci. 2022, 219, 106435. https://doi.org/10.1016/j.clay.2022.106435.Search in Google Scholar

129. Yu, F.; Gong, F.; Yang, Q.; Wang, Y. Fabrication of a Magnetic Retrievable Dual Z-Scheme G-C3N4/BiVO4/CoFe2O4 Composite Photocatalyst with Significantly Enhanced Activity for the Degradation of Rhodamine B and Hydrogen Evolution Under Visible Light. Diamond Relat. Mater. 2022, 125, 109004. https://doi.org/10.1016/j.diamond.2022.109004.Search in Google Scholar

130. Wang, S.; Zhao, L.; Gao, L.; Yang, D.; Wen, S.; Huang, W.; Sun, Z.; Guo, J.; Jiang, X.; Lu, C. Fabrication of Ternary Dual Z-Scheme AgI/ZnIn2S4/BiVO4 Heterojunction Photocatalyst with Enhanced Photocatalytic Degradation of Tetracycline Under Visible Light. Arab. J. Chem. 2022, 15, 104159. https://doi.org/10.1016/j.arabjc.2022.104159.Search in Google Scholar

131. Bashir, S.; Jamil, A.; Khan, M. S.; Alazmi, A.; Abuilaiwi, F. A.; Shahid, M. Gd-doped BiVO4 Microstructure and its Composite with a Flat Carbonaceous Matrix to Boost Photocatalytic Performance. J. Alloys Compd. 2022, 913, 165214. https://doi.org/10.1016/j.jallcom.2022.165214.Search in Google Scholar

132. Zhu, P.; Zhang, S.; Liu, R.; Luo, D.; Yao, H.; Zhu, T.; Bai, X. Investigation of an Enhanced Z-Scheme Magnetic Recyclable BiVO4/GO/CoFe2O4 Photocatalyst with Visible-Light-Driven for Highly Efficient Degradation of Antibiotics. J. Solid State Chem. 2022, 314, 123379. https://doi.org/10.1016/j.jssc.2022.123379.Search in Google Scholar

133. Moral-Rodríguez, A. I.; Quintana, M.; Leyva-Ramos, R.; Ojeda-Galván, H. J.; Oros-Ruiz, S.; Peralta-Rodríguez, R. D.; Mendoza-Mendoza, E. Novel and Green Synthesis of BiVO4 and GO/BiVO4 Photocatalysts for Efficient Dyes Degradation Under Blue LED Illumination. Ceram. Int. 2022, 48, 1264–1276. https://doi.org/10.1016/j.ceramint.2021.09.211.Search in Google Scholar

134. Wang, J. T.; Cai, Y. L.; Liu, X. J.; Zhang, X. D.; Cai, F. Y.; Cao, H. L.; Zhong, Z.; Li, Y. F.; Lü, J. Unveiling the Visible–Light–Driven Photodegradation Pathway and Products Toxicity of Tetracycline in the System of Pt/BiVO4 Nanosheets. J. Hazard. Mater. 2022, 424, 127596. https://doi.org/10.1016/j.jhazmat.2021.127596.Search in Google Scholar PubMed

135. Ghazal, N.; Mohamed, S. A.; Hameed, M. F. O.; Obayya, S. S. A.; El Nazer, H. A.; Madkour, M. Surface and Optoelectronic Impacts of ZnO/BiVO4/MWCNT Nanoheterostructure Toward Photodegradation of Water Contaminants. Surface. Interfac. 2022, 33, 102278. https://doi.org/10.1016/j.surfin.2022.102278.Search in Google Scholar

136. Piao, M.; Sun, Y.; Wang, Y.; Teng, H. Preparation of BiVO4/RGO-TNT Nanomaterials for Efficient and Recyclable Photocatalysis of Imidacloprid Insecticide. ChemistrySelect 2022, 7, 1–7. https://doi.org/10.1002/slct.202200182.Search in Google Scholar

Received: 2024-02-09
Accepted: 2024-04-08
Published Online: 2024-05-13
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
  3. Advanced synthetic routes of metal organic frameworks and their diverse applications
  4. Carbon materials derived by crystalline porous materials for capacitive energy storage
  5. BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
  6. Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base
  7. Solid-phase extraction of organophosphates from polluted waters on a matrix-imprinted sorbent
  8. Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
  9. Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
  10. Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
  11. Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
  12. Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
  13. A review of carbon-based adsorbents for the removal of organic and inorganic components
  14. Mercury removal from water: insights from MOFs and their composites
  15. Organometallic complexes and reaction methods for synthesis: a review
  16. Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2024-0009/html
Scroll to top button