Home Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
Article
Licensed
Unlicensed Requires Authentication

Transformative applications of “click” chemistry in the development of MOF architectures − a mini review

  • Abdelkarim Chaouiki EMAIL logo , Siti Fatimah , Hamid Ahchouch , Mohamed Bakhouch , Maryam Chafiq EMAIL logo , Jungho Ryu and Young Gun Ko EMAIL logo
Published/Copyright: June 28, 2024

Abstract

Metal-organic frameworks (MOFs) represent a fusion of compelling porous structures, alluring physical and chemical attributes, and extensive possibilities for application. The inherent capability of employing these organic constituents has paved the path for the construction of MOFs, permitting imaginative pre-design and post-synthetic adjustments through apt reactions. This adaptability not only enriches the structural variety of MOFs but also uncovers pathways for customizing their characteristics to align with precise application needs. In this context, click chemistry has emerged as a potent and resilient tool in the creation and modification of diverse functional materials, with a promising application in MOF structures. These MOF architectures undergo postsynthetic modifications through the application of “click” chemistry. This approach, characterized by its efficiency and selectivity, proves instrumental in tailoring and enhancing the properties of MOFs, thereby expanding their utility across a spectrum of scientific and industrial applications. Herein, we illuminate recent MOF structures achieved through the postsynthetic application of “click” chemistry. Our exploration delves into the forefront of strategies propelling the postsynthetic modification process, with a dedicated focus on the structural complexities, synthesis methodologies, and the prospective applications of these modified MOF architectures. Our intention is to actively contribute to the continuous discourse on applications of click chemistry in the development of MOF architectures, encouraging scientists to dedicate their expertise and efforts towards the advancement of these multifunctional materials.


Corresponding authors: Abdelkarim Chaouiki, Maryam Chafiq, and Young Gun Ko, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea, E-mail: (A. Chaouiki), (M. Chafiq), (Y. G. Ko)
Abdelkarim Chaouiki and Siti Fatimah contributed equally to this work.
  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: This work was supported by the Fundamental-Core National Project of the National Research Foundation (NRF) funded by the Ministry of Science and ICT, Republic of Korea (2022R1F1A1072739).

  5. Data availability: Not applicable.

References

1. Chaouiki, A.; Chafiq, M.; Ko, Y. G. The Art of Controlled Nanoscale Lattices: A Review on the Self-Assembly of Colloidal Metal-Organic Framework Particles and Their Multifaceted Architectures. Mater. Sci. Eng. R Rep. 2024, 159, 100785. https://doi.org/10.1016/j.mser.2024.100785.Search in Google Scholar

2. Zheng, Z.; Nguyen, H. L.; Hanikel, N.; Li, K. K.-Y.; Zhou, Z.; Ma, T.; Yaghi, O. M. High-yield, Green and Scalable Methods for Producing MOF-303 for Water Harvesting from Desert Air. Nat. Protoc. 2023, 18, 136–156. https://doi.org/10.1038/s41596-022-00756-w.Search in Google Scholar PubMed

3. Yuan, L.; Zhang, C.; Zou, Y.; Bao, T.; Wang, J.; Tang, C.; Du, A.; Yu, C.; Liu, C. A S‐Scheme MOF‐on‐MOF Heterostructure. Adv. Funct. Mater. 2023, 33, 2214627. https://doi.org/10.1002/adfm.202214627.Search in Google Scholar

4. Sepehrmansourie, H.; Alamgholiloo, H.; Pesyan, N. N.; Zolfigol, M. A. A MOF-On-MOF Strategy to Construct Double Z-Scheme Heterojunction for High-Performance Photocatalytic Degradation. Appl. Catal. B Environ. 2023, 321, 122082. https://doi.org/10.1016/j.apcatb.2022.122082.Search in Google Scholar

5. Chen, C.; Fei, L.; Wang, B.; Xu, J.; Li, B.; Shen, L.; Lin, H. MOF-Based Photocatalytic Membrane for Water Purification: A Review. Small 2023, 20, 2305066; https://doi.org/10.1002/smll.202305066.Search in Google Scholar PubMed

6. Wang, D.; Li, T. Toward MOF@Polymer Core–Shell Particles: Design Principles and Potential Applications. Acc. Chem. Res. 2023, 56, 462–474. https://doi.org/10.1021/acs.accounts.2c00695.Search in Google Scholar PubMed

7. Zhang, X.; Shen, Z.; Wen, Y.; He, Q.; Yao, J.; Cheng, H.; Gao, T.; Wang, X.; Zhang, H.; Jiao, H. CrP Nanocatalyst Within Porous MOF Architecture to Accelerate Polysulfide Conversion in Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2023, 15, 21040–21048. https://doi.org/10.1021/acsami.3c01427.Search in Google Scholar PubMed

8. Ejsmont, A.; Darvishzad, T.; Slowik, G.; Stelmachowski, P.; Goscianska, J. Cobalt-Based MOF-Derived Carbon Electrocatalysts with Tunable Architecture for Enhanced Oxygen Evolution Reaction. J. Colloid Interface Sci. 2024, 653, 1326–1338. https://doi.org/10.1016/j.jcis.2023.09.172.Search in Google Scholar PubMed

9. Mohtasham, H.; Rostami, M.; Gholipour, B.; Sorouri, A. M.; Ehrlich, H.; Ganjali, M. R.; Rostamnia, S.; Rahimi-Nasrabadi, M.; Salimi, A.; Luque, R. Nano-Architecture of MOF (ZIF-67)-Based Co3O4 NPs@ N-Doped Porous Carbon Polyhedral Nanocomposites for Oxidative Degradation of Antibiotic Sulfamethoxazole from Wastewater. Chemosphere 2023, 310, 136625. https://doi.org/10.1016/j.chemosphere.2022.136625.Search in Google Scholar PubMed

10. Guo, Z.; Ren, P.; Yang, F.; Wu, T.; Zhang, L.; Chen, Z.; Huang, S.; Ren, F. MOF-Derived Co/C and MXene Co-Decorated Cellulose-Derived Hybrid Carbon Aerogel with a Multi-Interface Architecture Toward Absorption-Dominated Ultra-Efficient Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2023, 15, 7308–7318. https://doi.org/10.1021/acsami.2c22447.Search in Google Scholar PubMed

11. Sepehrmansourie, H.; Alamgholiloo, H.; Zolfigol, M. A.; Pesyan, N. N.; Rasooll, M. M. Nanoarchitecting a Dual Z-Scheme Zr-MOF/Ti-MOF/g-C3n4 Heterojunction for Boosting Gomberg–Buchmann–Hey Reactions Under Visible Light Conditions. ACS Sustain. Chem. Eng. 2023, 11, 3182–3193. https://doi.org/10.1021/acssuschemeng.2c04810.Search in Google Scholar

12. Song, L.; Jin, X.; Zada, A.; Hu, D.; Li, Z.; Yan, R.; Qu, Y.; Jing, L. Modifying MOF-Derived Hollow BiVO4 Architecture with Copper Tetraphenylphorphyrin as High-Efficiency Wide-Visible-Light Z-Scheme Heterojunction Photocatalyst for 2-Chlorophenol Degradation. J. Environ. Chem. Eng. 2023, 11, 110069. https://doi.org/10.1016/j.jece.2023.110069.Search in Google Scholar

13. Hira, S. A.; Nagappan, S.; Yusuf, M.; Chen, A.; Lee, J.-M.; Park, K. H. L-Cysteine Anchored Co-MOF Derived Cobalt-Nitrogen-Carbon Hierarchical Architecture as an Efficient Sensor for the Electrochemical Detection of Catecholamine. Microchem. J. 2023, 190, 108748. https://doi.org/10.1016/j.microc.2023.108748.Search in Google Scholar

14. Xu, X.; Li, D.; Li, L.; Yang, Z.; Lei, Z.; Xu, Y. Architectural Design and Microstructural Engineering of Metal-Organic Framework-Derived Nanomaterials for Electromagnetic Wave Absorption. Small Struct. 2023, 4, 2200219. https://doi.org/10.1002/sstr.202200219.Search in Google Scholar

15. Lüder, L.; Nirmalraj, P. N.; Neels, A.; Rossi, R. M.; Calame, M. Sensing of KCl, NaCl, and Pyocyanin with a MOF-Decorated Electrospun Nitrocellulose Matrix. ACS Appl. Nano Mater. 2023, 6, 2854–2863. https://doi.org/10.1021/acsanm.2c05252.Search in Google Scholar

16. Chu, H.; Sun, D.; Cui, P. Highly Water-Stable Zn5 Cluster-Based Metal-Organic Framework for Efficient Gas Storage and Organic Dye Adsorption. Inorg. Chem. 2022, 61, 19642–19648. https://doi.org/10.1021/acs.inorgchem.2c03603.Search in Google Scholar PubMed

17. Jia, T.; Gu, Y.; Li, F. Progress and Potential of Metal-Organic Frameworks (MOFs) for Gas Storage and Separation: A Review. J. Environ. Chem. Eng. 2022, 10, 108300; https://doi.org/10.1016/j.jece.2022.108300.Search in Google Scholar

18. Wang, P.; Teng, Y.; Zhu, J.; Bao, W.; Han, S.; Li, Y.; Zhao, Y.; Xie, H. Review on the Synergistic Effect Between Metal-Organic Frameworks and Gas Hydrates for CH4 Storage and CO2 Separation Applications. Renew. Sustain. Energy Rev. 2022, 167, 112807. https://doi.org/10.1016/j.rser.2022.112807.Search in Google Scholar

19. Li, Y.; Wang, Y.; Fan, W.; Sun, D. Flexible Metal-Organic Frameworks for Gas Storage and Separation. Dalton Trans. 2022, 51, 4608–4618. https://doi.org/10.1039/d1dt03842g.Search in Google Scholar PubMed

20. Shao, K.; Wen, H.; Liang, C.; Xiao, X.; Gu, X.; Chen, B.; Qian, G.; Li, B. Engineering Supramolecular Binding Sites in a Chemically Stable Metal-Organic Framework for Simultaneous High C2H2 Storage and Separation. Angew. Chem. Int. Ed. 2022, 61, e202211523. https://doi.org/10.1002/anie.202211523.Search in Google Scholar PubMed

21. Huang, Y.; Zhang, X.; Liu, S.; Wang, R.; Guo, J.; Chen, Y.; Ma, X. Wireless Food-Freshness Monitoring and Storage-Time Prediction Based on Ammonia-Sensitive MOF@SnS2 PN Heterostructure and Machine Learning. Chem. Eng. J. 2023, 458, 141364. https://doi.org/10.1016/j.cej.2023.141364.Search in Google Scholar

22. Chafiq, M.; Chaouiki, A.; Suhartono, T.; Ko, Y. G. Albumin Protein Encapsulation into a ZIF-8 Framework with Co-LDH-Based Hierarchical Architectures for Robust Catalytic Reduction. J. Mater. Chem. A 2023, 11, 23984–23998. https://doi.org/10.1039/d3ta03623e.Search in Google Scholar

23. Thangasamy, P.; Shanmuganathan, S.; Subramanian, V. A NiCo-MOF Nanosheet Array Based Electrocatalyst for the Oxygen Evolution Reaction. Nanoscale Adv. 2020, 2, 2073–2079. https://doi.org/10.1039/d0na00112k.Search in Google Scholar PubMed PubMed Central

24. Cheng, P.; Wang, X.; Markus, J.; Wahab, M. A.; Chowdhury, S.; Xin, R.; Alshehri, S. M.; Bando, Y.; Yamauchi, Y.; Kaneti, Y. V. Carbon Nanotube-Decorated Hierarchical Porous Nickel/Carbon Hybrid Derived from Nickel-Based Metal-Organic Framework for Enhanced Methyl Blue Adsorption. J. Colloid Interface Sci. 2023, 638, 220–230. https://doi.org/10.1016/j.jcis.2023.01.075.Search in Google Scholar PubMed

25. Shen, Y.; Tissot, A.; Serre, C. Recent Progress on MOF-Based Optical Sensors for VOC Sensing. Chem. Sci. 2022, 13, 13978–14007. https://doi.org/10.1039/d2sc04314a.Search in Google Scholar PubMed PubMed Central

26. Jo, Y.; Jo, Y. K.; Lee, J.; Jang, H. W.; Hwang, I.; Yoo, D. J. MOF‐Based Chemiresistive Gas Sensors: Toward New Functionalities. Adv. Mater. 2023, 35, 2206842. https://doi.org/10.1002/adma.202206842.Search in Google Scholar PubMed

27. Qin, P.; Okur, S.; Jiang, Y.; Heinke, L. A MOF-Based Electronic Nose for Carbon Dioxide Sensing with Enhanced Affinity and Selectivity by Ionic-Liquid Embedment. J. Mater. Chem. A 2022, 10, 25347–25355. https://doi.org/10.1039/d2ta06324g.Search in Google Scholar

28. Qin, P.; Day, B. A.; Okur, S.; Li, C.; Chandresh, A.; Wilmer, C. E.; Heinke, L. VOC Mixture Sensing with a MOF Film Sensor Array: Detection and Discrimination of Xylene Isomers and Their Ternary Blends. ACS Sens. 2022, 7, 1666–1675. https://doi.org/10.1021/acssensors.2c00301.Search in Google Scholar PubMed

29. Leelasree, T.; Aggarwal, H. MOF Sensors for Food Safety: Ultralow Detection of Putrescine and Cadaverine in Protein Rich Foods. J. Mater. Chem. C 2022, 10, 2121–2127. https://doi.org/10.1039/d1tc05422h.Search in Google Scholar

30. Li, Z.; Liu, J.; Feng, L.; Pan, Y.; Tang, J.; Li, H.; Cheng, G.; Li, Z.; Shi, J.; Xu, Y.; Liu, W. Monolithic MOF-Based Metal–Insulator–Metal Resonator for Filtering and Sensing. Nano Lett. 2023, 23, 637–644. https://doi.org/10.1021/acs.nanolett.2c04428.Search in Google Scholar PubMed

31. Wei, Y.; Hui, Y.; Lu, X.; Liu, C.; Zhang, Y.; Fan, Y.; Chen, W. One-Pot Preparation of NiMn Layered Double Hydroxide-MOF Material for Highly Sensitive Electrochemical Sensing of Glucose. J. Electroanal. Chem. 2023, 933, 117276. https://doi.org/10.1016/j.jelechem.2023.117276.Search in Google Scholar

32. Daniel, M.; Mathew, G.; Anpo, M.; Neppolian, B. MOF Based Electrochemical Sensors for the Detection of Physiologically Relevant Biomolecules: An Overview. Coord. Chem. Rev. 2022, 468, 214627. https://doi.org/10.1016/j.ccr.2022.214627.Search in Google Scholar

33. Moharramnejad, M.; Ehsani, A.; Shahi, M.; Gharanli, S.; Saremi, H.; Malekshah, R. E.; Basmenj, Z. S.; Salmani, S.; Mohammadi, M. MOF as Nanoscale Drug Delivery Devices: Synthesis and Recent Progress in Biomedical Applications. J. Drug Deliv. Sci. Technol. 2023, 81, 104285; https://doi.org/10.1016/j.jddst.2023.104285.Search in Google Scholar

34. Mallakpour, S.; Nikkhoo, E.; Hussain, C. M. Application of MOF Materials as Drug Delivery Systems for Cancer Therapy and Dermal Treatment. Coord. Chem. Rev. 2022, 451, 214262. https://doi.org/10.1016/j.ccr.2021.214262.Search in Google Scholar

35. Khan, S.; Falahati, M.; Cho, W. C.; Vahdani, Y.; Siddique, R.; Sharifi, M.; Jaragh-Alhadad, L. A.; Haghighat, S.; Zhang, X.; Ten Hagen, T. L.; Bai, Q. Core-Shell Inorganic NPs@MOF Nanostructures for Targeted Drug Delivery and Multimodal Imaging-Guided Combination Tumor Treatment. Adv. Colloid Interface Sci. 2023, 321, 103007; https://doi.org/10.1016/j.cis.2023.103007.Search in Google Scholar PubMed

36. Zhao, X.; He, S.; Li, B.; Liu, B.; Shi, Y.; Cong, W.; Gao, F.; Li, J.; Wang, F.; Liu, K.; Sheng, C.; Su, J.; Hu, H.-G. DUCNP@Mn-MOF/FOE as a Highly Selective and Bioavailable Drug Delivery System for Synergistic Combination Cancer Therapy. Nano Lett. 2023, 23, 863–871. https://doi.org/10.1021/acs.nanolett.2c04042.Search in Google Scholar PubMed

37. Fan, Z.-S.; Kaneti, Y. V.; Chowdhury, S.; Wang, X.; Karim, M. R.; Alnaser, I. A.; Zhang, F.-B. Weak Base-Modulated Synthesis of Bundle-Like Carbon Superstructures from Metal-Organic Framework for High-Performance Supercapacitors. Chem. Eng. J. 2023, 462, 142094. https://doi.org/10.1016/j.cej.2023.142094.Search in Google Scholar

38. Yin, C.; Xu, L.; Pan, Y.; Pan, C. Metal-Organic Framework as Anode Materials for Lithium-Ion Batteries with High Capacity and Rate Performance. ACS Appl. Energy Mater. 2020, 3, 10776–10786. https://doi.org/10.1021/acsaem.0c01822.Search in Google Scholar

39. Chafiq, M.; Chaouiki, A.; Ko, Y. G. Advances in COFs for Energy Storage Devices: Harnessing the Potential of Covalent Organic Framework Materials. Energy Storage Mater. 2023, 63, 103014; https://doi.org/10.1016/j.ensm.2023.103014.Search in Google Scholar

40. Shekhawat, A.; Samanta, R.; Barman, S. MOF-Derived Porous Fe3O4/RuO2-C Composite for Efficient Alkaline Overall Water Splitting. ACS Appl. Energy Mater. 2022, 5, 6059–6069. https://doi.org/10.1021/acsaem.2c00471.Search in Google Scholar

41. Manoj, D.; Rajendran, S.; Hoang, T. K.; Soto-Moscoso, M. The Role of MOF Based Nanocomposites in the Detection of Phenolic Compounds for Environmental Remediation-A Review. Chemosphere 2022, 300, 134516. https://doi.org/10.1016/j.chemosphere.2022.134516.Search in Google Scholar PubMed

42. Gao, L.; Gao, T.; Zhang, Y.; Hu, T. A Bifunctional 3D Porous Zn-MOF: Fluorescence Recognition of Fe3+ and Adsorption of Congo Red/Methyl Orange Dyes in Aqueous Medium. Dyes Pigments 2022, 197, 109945. https://doi.org/10.1016/j.dyepig.2021.109945.Search in Google Scholar

43. Couzon, N.; Ferreira, M.; Duval, S.; El-Achari, A.; Campagne, C.; Loiseau, T.; Volkringer, C. Microwave-Assisted Synthesis of Porous Composites MOF–Textile for the Protection Against Chemical and Nuclear Hazards. ACS Appl. Mater. Interfaces 2022, 14, 21497–21508. https://doi.org/10.1021/acsami.2c03247.Search in Google Scholar PubMed

44. Hammi, N.; Chen, S.; Primo, A.; Royer, S.; Garcia, H.; El Kadib, A. Shaping MOF Oxime Oxidation Catalysts as Three-Dimensional Porous Aerogels Through Structure-Directing Growth Inside Chitosan Microspheres. Green Chem. 2022, 24, 4533–4543. https://doi.org/10.1039/d2gc00097k.Search in Google Scholar

45. Jiang, H.-L.; Feng, D.; Liu, T.-F.; Li, J.-R.; Zhou, H.-C. Pore Surface Engineering with Controlled Loadings of Functional Groups via Click Chemistry in Highly Stable Metal-Organic Frameworks. J. Am. Chem. Soc. 2012, 134, 14690–14693. https://doi.org/10.1021/ja3063919.Search in Google Scholar PubMed

46. Kong, X.; Deng, H.; Yan, F.; Kim, J.; Swisher, J. A.; Smit, B.; Yaghi, O. M.; Reimer, J. A. Mapping of Functional Groups in Metal-Organic Frameworks. Science 2013, 341, 882–885. https://doi.org/10.1126/science.1238339.Search in Google Scholar PubMed

47. Ji, Z.; Wang, H.; Canossa, S.; Wuttke, S.; Yaghi, O. M. Pore Chemistry of Metal-Organic Frameworks. Adv. Funct. Mater. 2020, 30, 2000238. https://doi.org/10.1002/adfm.202000238.Search in Google Scholar

48. Chen, Z.; Xiang, S.; Arman, H. D.; Li, P.; Tidrow, S.; Zhao, D.; Chen, B. A Microporous Metal-Organic Framework with Immobilized –OH Functional Groups within the Pore Surfaces for Selective Gas Sorption. Eur. J. Inorg. Chem. 2010, 2010, 3745–3749. https://doi.org/10.1002/ejic.201000349.Search in Google Scholar

49. Deng, H.; Doonan, C. J.; Furukawa, H.; Ferreira, R. B.; Towne, J.; Knobler, C. B.; Wang, B.; Yaghi, O. M. Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science 2010, 327, 846–850. https://doi.org/10.1126/science.1181761.Search in Google Scholar PubMed

50. Akiyama, G.; Matsuda, R.; Sato, H.; Hori, A.; Takata, M.; Kitagawa, S. Effect of Functional Groups in MIL-101 on Water Sorption Behavior. Microporous Mesoporous Mater. 2012, 157, 89–93. https://doi.org/10.1016/j.micromeso.2012.01.015.Search in Google Scholar

51. Zhao, X.; Sun, D.; Yuan, S.; Feng, S.; Cao, R.; Yuan, D.; Wang, S.; Dou, J.; Sun, D. Comparison of the Effect of Functional Groups on Gas-Uptake Capacities by Fixing the Volumes of Cages A and B and Modifying the Inner Wall of Cage C in Rht-type MOFs. Inorg. Chem. 2012, 51, 10350–10355. https://doi.org/10.1021/ic3015207.Search in Google Scholar PubMed

52. Chafiq, M.; Chaouiki, A.; Ryu, J.; Ko, Y. G. Beyond Conventional: Role of Chiral Metal-Organic Frameworks in Asymmetric Scenarios. Nano Today 2024, 56, 102227. https://doi.org/10.1016/j.nantod.2024.102227.Search in Google Scholar

53. Chowdhury, S.; Torad, N. L.; Godara, M.; El-Amir, A. A.; Gumilar, G.; Ashok, A.; Karim, M. R.; Alnaser, I. A.; Chaikittisilp, W.; Ray, N.; Yamauchi, Y.; Valentino Kaneti, Y. Hierarchical Bimetallic Metal-Organic Frameworks with Controllable Assembling Sub-Units and Interior Architectures for Enhanced Ammonia Detection. Chem. Eng. J. 2024, 480, 147990. https://doi.org/10.1016/j.cej.2023.147990.Search in Google Scholar

54. Chafiq, M.; Chaouiki, A.; Ko, Y. G. Recent Advances in Multifunctional Reticular Framework Nanoparticles: A Paradigm Shift in Materials Science Road to a Structured Future. Nano-Micro Lett. 2023, 15, 213. https://doi.org/10.1007/s40820-023-01180-9.Search in Google Scholar PubMed PubMed Central

55. Chaouiki, A.; Chafiq, M.; Suhartono, T.; Ko, Y. G. Unveiling the In-Situ Formation Mechanism of Nano-Fir Tree-Like Architecture: Yolk-Shell Structure Enables the Development of an Advanced Multifunctional Template. Chem. Eng. J. 2023, 470, 144355; https://doi.org/10.1016/j.cej.2023.144355.Search in Google Scholar

56. Gómez-Oliveira, E. P.; Reinares-Fisac, D.; Aguirre-Díaz, L. M.; Esteban-Betegón, F.; Pintado-Sierra, M.; Gutiérrez-Puebla, E.; Iglesias, M.; Ángeles Monge, M.; Gándara, F. Framework Adaptability and Concerted Structural Response in a Bismuth Metal-Organic Framework Catalyst. Angew. Chem. Int. Ed. 2022, 61, e202209335. https://doi.org/10.1002/anie.202209335.Search in Google Scholar PubMed PubMed Central

57. Ullman, A. M.; Brown, J. W.; Foster, M. E.; Léonard, F.; Leong, K.; Stavila, V.; Allendorf, M. D. Transforming MOFs for Energy Applications Using the Guest@MOF Concept. Inorg. Chem. 2016, 55, 7233–7249. https://doi.org/10.1021/acs.inorgchem.6b00909.Search in Google Scholar PubMed

58. Roy, D.; Kumar, P.; Soni, A.; Nemiwal, M. A Versatile and Microporous Zn-Based MOFs as a Recyclable and Sustainable Heterogeneous Catalyst for Various Organic Transformations: A Review (2015-present). Tetrahedron 2023, 138, 133408; https://doi.org/10.1016/j.tet.2023.133408.Search in Google Scholar

59. Kirubavathy, S. J. Biosensors Based on Metal-Organic Framework (MOF): Paving the Way to Point-of-Care Diagnosis. In Electrochemical Applications of Metal-Organic Frameworks, 1st ed.; Elsevier (S&T): Amsterdam, 2022; pp. 255–267.10.1016/B978-0-323-90784-2.00004-6Search in Google Scholar

60. Fang, G.; Kang, R.; Chong, Y.; Wang, L.; Wu, C.; Ge, C. MOF-Based DNA Hydrolases Optimized by Atom Engineering for the Removal of Antibiotic-Resistant Genes from Aquatic Environment. Appl. Catal. B Environ. 2023, 320, 121931. https://doi.org/10.1016/j.apcatb.2022.121931.Search in Google Scholar

61. Zavakhina, M. S.; Samsonenko, D. G.; Dybtsev, D. N.; Fedin, V. P. Chiral MOF Incorporating Chiral Guests: Structural Studies and Enantiomer-Dependent Luminescent Properties. Polyhedron 2019, 162, 311–315. https://doi.org/10.1016/j.poly.2019.02.008.Search in Google Scholar

62. Chen, N.; Li, M.-X.; Yang, P.; He, X.; Shao, M.; Zhu, S.-R. Chiral Coordination Polymers with SHG-Active and Luminescence: An Unusual Homochiral 3D MOF Constructed from Achiral Components. Cryst. Growth Des. 2013, 13, 2650–2660. https://doi.org/10.1021/cg400426m.Search in Google Scholar

63. Lu, Y.; Zhang, H.; Chan, J. Y.; Ou, R.; Zhu, H.; Forsyth, M.; Marijanovic, E. M.; Doherty, C. M.; Marriott, P. J.; Holl, M. M. B.; Wang, H. Homochiral MOF–Polymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules. Angew. Chem. 2019, 131, 17084–17091. https://doi.org/10.1002/ange.201910408.Search in Google Scholar

64. Zhang, S.-Y.; Li, D.; Guo, D.; Zhang, H.; Shi, W.; Cheng, P.; Wojtas, L.; Zaworotko, M. J. Synthesis of a Chiral Crystal Form of MOF-5, CMOF-5, by Chiral Induction. J. Am. Chem. Soc. 2015, 137, 15406–15409. https://doi.org/10.1021/jacs.5b11150.Search in Google Scholar PubMed

65. Zhang, C.; Yan, Z.; Dong, X.; Han, Z.; Li, S.; Fu, T.; Zhu, Y.; Zheng, Y.; Niu, Y.; Zang, S. Enantiomeric MOF Crystals Using Helical Channels as Palettes with Bright White Circularly Polarized Luminescence. Adv. Mater. 2020, 32, 2002914. https://doi.org/10.1002/adma.202002914.Search in Google Scholar PubMed

66. Das, S.; Xu, S.; Ben, T.; Qiu, S. Chiral Recognition and Separation by Chirality-Enriched Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2018, 57, 8629–8633. https://doi.org/10.1002/anie.201804383.Search in Google Scholar PubMed

67. Gupta, V.; Mandal, S. K. Design and Construction of a Chiral Cd(II)-MOF from Achiral Precursors: Synthesis, Crystal Structure and Catalytic Activity Toward C–C and C–N Bond Forming Reactions. Inorg. Chem. 2019, 58, 3219–3226. https://doi.org/10.1021/acs.inorgchem.8b03307.Search in Google Scholar PubMed

68. Ariga, K.; Mori, T.; Kitao, T.; Uemura, T. Supramolecular Chiral Nanoarchitectonics. Adv. Mater. 2020, 32, 1905657. https://doi.org/10.1002/adma.201905657.Search in Google Scholar PubMed

69. Suttipat, D.; Butcha, S.; Assavapanumat, S.; Maihom, T.; Gupta, B.; Perro, A.; Sojic, N.; Kuhn, A.; Wattanakit, C. Chiral Macroporous MOF Surfaces for Electroassisted Enantioselective Adsorption and Separation. ACS Appl. Mater. Interfaces 2020, 12, 36548–36557. https://doi.org/10.1021/acsami.0c09816.Search in Google Scholar PubMed

70. Xu, Z.; Zhang, J.; Pan, T.; Li, H.; Huo, F.; Zheng, B.; Zhang, W. Encapsulation of Hydrophobic Guests within Metal-Organic Framework Capsules for Regulating Host–Guest Interaction. Chem. Mater. 2020, 32, 3553–3560. https://doi.org/10.1021/acs.chemmater.0c00684.Search in Google Scholar

71. Schneider, C.; Ukaj, D.; Koerver, R.; Talin, A. A.; Kieslich, G.; Pujari, S. P.; Zuilhof, H.; Janek, J.; Allendorf, M. D.; Fischer, R. A. High Electrical Conductivity and High Porosity in a Guest@ MOF Material: Evidence of TCNQ Ordering within Cu3BTC2 Micropores. Chem. Sci. 2018, 9, 7405–7412. https://doi.org/10.1039/c8sc02471e.Search in Google Scholar PubMed PubMed Central

72. Li, G.; Yang, S.-L.; Liu, W.-S.; Guo, M.-Y.; Liu, X.-Y.; Bu, R.; Gao, E.-Q. Photoinduced Versus Spontaneous Host–Guest Electron Transfer Within a MOF and Chromic/Luminescent Response. Inorg. Chem. Front. 2021, 8, 4828–4837. https://doi.org/10.1039/d1qi01079d.Search in Google Scholar

73. Yang, S.; Karve, V. V.; Justin, A.; Kochetygov, I.; Espin, J.; Asgari, M.; Trukhina, O.; Sun, D. T.; Peng, L.; Queen, W. L. Enhancing MOF Performance Through the Introduction of Polymer Guests. Coord. Chem. Rev. 2021, 427, 213525. https://doi.org/10.1016/j.ccr.2020.213525.Search in Google Scholar

74. Chaudhari, A. K.; Tan, J.-C. Mechanochromic MOF Nanoplates: Spatial Molecular Isolation of Light-Emitting Guests in a Sodalite Framework Structure. Nanoscale 2018, 10, 3953–3960. https://doi.org/10.1039/c7nr09730a.Search in Google Scholar PubMed

75. Chapman, K. W.; Sava, D. F.; Halder, G. J.; Chupas, P. J.; Nenoff, T. M. Trapping Guests Within a Nanoporous Metal-Organic Framework through Pressure-Induced Amorphization. J. Am. Chem. Soc. 2011, 133, 18583–18585. https://doi.org/10.1021/ja2085096.Search in Google Scholar PubMed

76. Noh, T. H.; Lee, H.; Jang, J.; Jung, O. Organization and Energy Transfer of Fused Aromatic Hydrocarbon Guests Within Anion-Confining Nanochannel MOFs. Angew. Chem. Int. Ed. 2015, 54, 9284–9288. https://doi.org/10.1002/anie.201503588.Search in Google Scholar PubMed

77. Gutiérrez, M.; Zhang, Y.; Tan, J.-C. Confinement of Luminescent Guests in Metal-Organic Frameworks: Understanding Pathways from Synthesis and Multimodal Characterization to Potential Applications of LG@MOF Systems. Chem. Rev. 2022, 122, 10438–10483. https://doi.org/10.1021/acs.chemrev.1c00980.Search in Google Scholar PubMed PubMed Central

78. Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Room Temperature Synthesis of Metal-Organic Frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64, 8553–8557. https://doi.org/10.1016/j.tet.2008.06.036.Search in Google Scholar

79. Homan, R. A.; Hendricks, D. S.; Rayder, T. M.; Thein, U. S.; Fossum, K. J.; Claudio Vázquez, A. P.; Yan, J.; Grimm, R. L.; Burdette, S. C.; MacDonald, J. C. A Strategy for Trapping Molecular Guests in MOF-5 Utilizing Surface-Capping Groups. Cryst. Growth Des. 2019, 19, 6331–6338. https://doi.org/10.1021/acs.cgd.9b00818.Search in Google Scholar

80. Yaghi, O. M.; Li, G.; Li, H. Selective Binding and Removal of Guests in a Microporous Metal-Organic Framework. Nature 1995, 378, 703–706. https://doi.org/10.1038/378703a0.Search in Google Scholar

81. Allendorf, M. D.; Medishetty, R.; Fischer, R. A. Guest Molecules as a Design Element for Metal-Organic Frameworks. MRS Bull. 2016, 41, 865–869. https://doi.org/10.1557/mrs.2016.244.Search in Google Scholar

82. Balestri, D.; Mazzeo, P. P.; Perrone, R.; Fornari, F.; Bianchi, F.; Careri, M.; Bacchi, A.; Pelagatti, P. Deciphering the Supramolecular Organization of Multiple Guests inside a Microporous MOF to Understand Their Release Profile. Angew. Chem. 2021, 133, 10282–10290. https://doi.org/10.1002/ange.202017105.Search in Google Scholar

83. Allendorf, M. D.; Foster, M. E.; Léonard, F.; Stavila, V.; Feng, P. L.; Doty, F. P.; Leong, K.; Ma, E. Y.; Johnston, S. R.; Talin, A. A. Guest-Induced Emergent Properties in Metal-Organic Frameworks. J. Phys. Chem. Lett. 2015, 6, 1182–1195. https://doi.org/10.1021/jz5026883.Search in Google Scholar PubMed

84. Cram, D. J.; Cram, J. M. Design of Complexes Between Synthetic Hosts and Organic Guests. Acc. Chem. Res. 1978, 11, 8–14. https://doi.org/10.1021/ar50121a002.Search in Google Scholar

85. Valtchev, V.; Majano, G.; Mintova, S.; Pérez-Ramírez, J. Tailored Crystalline Microporous Materials by Post-Synthesis Modification. Chem. Soc. Rev. 2013, 42, 263–290. https://doi.org/10.1039/c2cs35196j.Search in Google Scholar PubMed

86. Deria, P.; Mondloch, J. E.; Karagiaridi, O.; Bury, W.; Hupp, J. T.; Farha, O. K. Beyond Post-Synthesis Modification: Evolution of Metal-Organic Frameworks via Building Block Replacement. Chem. Soc. Rev. 2014, 43, 5896–5912. https://doi.org/10.1039/c4cs00067f.Search in Google Scholar PubMed

87. Shultz, A. M.; Sarjeant, A. A.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. Post-Synthesis Modification of a Metal-Organic Framework to Form Metallosalen-Containing MOF Materials. J. Am. Chem. Soc. 2011, 133, 13252–13255. https://doi.org/10.1021/ja204820d.Search in Google Scholar PubMed

88. Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties. Chem. Rev. 2019, 119, 3296–3348. https://doi.org/10.1021/acs.chemrev.8b00644.Search in Google Scholar PubMed PubMed Central

89. Zhou, T.; Du, Y.; Borgna, A.; Hong, J.; Wang, Y.; Han, J.; Zhang, W.; Xu, R. Post-Synthesis Modification of a Metal-Organic Framework to Construct a Bifunctional Photocatalyst for Hydrogen Production. Energy Environ. Sci. 2013, 6, 3229–3234. https://doi.org/10.1039/c3ee41548a.Search in Google Scholar

90. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5.10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5Search in Google Scholar

91. Hou, J.; Liu, X.; Shen, J.; Zhao, G.; Wang, P. G. The Impact of Click Chemistry in Medicinal Chemistry. Expet Opin. Drug Discov. 2012, 7, 489–501. https://doi.org/10.1517/17460441.2012.682725.Search in Google Scholar PubMed

92. Levandowski, B. J.; Raines, R. T. Click Chemistry with Cyclopentadiene. Chem. Rev. 2021, 121, 6777–6801. https://doi.org/10.1021/acs.chemrev.0c01055.Search in Google Scholar PubMed PubMed Central

93. El-Sagheer, A. H.; Brown, T. Click Chemistry with DNA. Chem. Soc. Rev. 2010, 39, 1388–1405. https://doi.org/10.1039/b901971p.Search in Google Scholar PubMed

94. Devaraj, N. K.; Finn, M. G. Introduction: Click Chemistry. Chem. Rev. 2021, 121, 6697–6698. https://doi.org/10.1021/acs.chemrev.1c00469.Search in Google Scholar PubMed

95. Binder, W. H.; Sachsenhofer, R. ‘Click’ Chemistry in Polymer and Material Science: An Update. Macromol. Rapid Commun. 2008, 29, 952–981. https://doi.org/10.1002/marc.200800089.Search in Google Scholar

96. Binder, W. H.; Sachsenhofer, R. ‘Click’ Chemistry in Polymer and Materials Science. Macromol. Rapid Commun. 2007, 28, 15–54. https://doi.org/10.1002/marc.200600625.Search in Google Scholar

97. Xi, W.; Scott, T. F.; Kloxin, C. J.; Bowman, C. N. Click Chemistry in Materials Science. Adv. Funct. Mater. 2014, 24, 2572–2590. https://doi.org/10.1002/adfm.201302847.Search in Google Scholar

98. Mahouche, S.; Mekni, N.; Abbassi, L.; Lang, P.; Perruchot, C.; Jouini, M.; Mammeri, F.; Turmine, M.; Romdhane, H. B.; Chehimi, M. M. Tandem Diazonium Salt Electroreduction and Click Chemistry as a Novel, Efficient Route for Grafting Macromolecules to Gold Surface. Surf. Sci. 2009, 603, 3205–3211. https://doi.org/10.1016/j.susc.2009.09.004.Search in Google Scholar

99. Zhang, Z.-B.; Wu, J.-J.; Su, Y.; Zhou, J.; Gao, Y.; Yu, H.-Y.; Gu, J.-S. Layer-by-Layer Assembly of Graphene Oxide on Polypropylene Macroporous Membranes via Click Chemistry to Improve Antibacterial and Antifouling Performance. Appl. Surf. Sci. 2015, 332, 300–307. https://doi.org/10.1016/j.apsusc.2015.01.193.Search in Google Scholar

100. Zheng, S.; Yang, Q.; Mi, B. Novel Antifouling Surface with Improved Hemocompatibility by Immobilization of Polyzwitterions onto Silicon via Click Chemistry. Appl. Surf. Sci. 2016, 363, 619–626. https://doi.org/10.1016/j.apsusc.2015.12.081.Search in Google Scholar

101. Ji, N. I. E.; Jian-Ping, L. I.; Huan, D.; Hong-Cheng, P. A. N. Progress on Click Chemistry and its Application in Chemical Sensors. Chin. J. Anal. Chem. 2015, 43, 609–617. https://doi.org/10.1016/s1872-2040(15)60819-2.Search in Google Scholar

102. Hong, T.; Liu, W.; Li, M.; Chen, C. Click Chemistry at the Microscale. Analyst 2019, 144, 1492–1512. https://doi.org/10.1039/c8an01497c.Search in Google Scholar PubMed

103. Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click Chemistry for Drug Development and Diverse Chemical–Biology Applications. Chem. Rev. 2013, 113, 4905–4979. https://doi.org/10.1021/cr200409f.Search in Google Scholar PubMed

104. Dong, R.; Yang, X.; Wang, B.; Ji, X. Mutual Leveraging of Proximity Effects and Click Chemistry in Chemical Biology. Med. Res. Rev. 2023, 43, 319–342. https://doi.org/10.1002/med.21927.Search in Google Scholar PubMed

105. Gao, X.; Hannoush, R. N. A Decade of Click Chemistry in Protein Palmitoylation: Impact on Discovery and New Biology. Cell Chem. Biol. 2018, 25, 236–246. https://doi.org/10.1016/j.chembiol.2017.12.002.Search in Google Scholar PubMed

106. Best, M. D. Click Chemistry and Bioorthogonal Reactions: Unprecedented Selectivity in the Labeling of Biological Molecules. Biochemistry 2009, 48, 6571–6584. https://doi.org/10.1021/bi9007726.Search in Google Scholar PubMed

107. Mamidyala, S. K.; Finn, M. G. In Situ Click Chemistry: Probing the Binding Landscapes of Biological Molecules. Chem. Soc. Rev. 2010, 39, 1252–1261. https://doi.org/10.1039/b901969n.Search in Google Scholar PubMed

108. Kolb, H. C.; Sharpless, K. B. The Growing Impact of Click Chemistry on Drug Discovery. Drug Discov. Today 2003, 8, 1128–1137. https://doi.org/10.1016/s1359-6446(03)02933-7.Search in Google Scholar PubMed

109. Liu, B. Bio-Orthogonal Click Chemistry for In Vivo Bioimaging. Trends Chem. 2019, 1, 763–778. https://doi.org/10.1016/j.trechm.2019.08.003.Search in Google Scholar

110. Porte, K.; Riomet, M.; Figliola, C.; Audisio, D.; Taran, F. Click and Bio-Orthogonal Reactions with Mesoionic Compounds. Chem. Rev. 2021, 121, 6718–6743. https://doi.org/10.1021/acs.chemrev.0c00806.Search in Google Scholar PubMed

111. Tornøe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002, 67, 3057–3064. https://doi.org/10.1021/jo011148j.Search in Google Scholar PubMed

112. Amblard, F.; Cho, J. H.; Schinazi, R. F. Cu(I)-Catalyzed Huisgen Azide−Alkyne 1,3-Dipolar Cycloaddition Reaction in Nucleoside, Nucleotide, and Oligonucleotide Chemistry. Chem. Rev. 2009, 109, 4207–4220. https://doi.org/10.1021/cr9001462.Search in Google Scholar PubMed PubMed Central

113. Singh, M. S.; Chowdhury, S.; Koley, S. Advances of Azide-Alkyne Cycloaddition-Click Chemistry over the Recent Decade. Tetrahedron 2016, 72, 5257–5283. https://doi.org/10.1016/j.tet.2016.07.044.Search in Google Scholar

114. Zou, J.-Y.; Gao, H.-L.; Shi, W.; Cui, J.-Z.; Cheng, P. Auxiliary Ligand-Assisted Structural Diversities of Three Metal-Organic Frameworks with Potassium 1 H-1, 2, 3-triazole-4, 5-dicarboxylic Acid: Syntheses, Crystal Structures and Luminescence Properties. CrystEngComm 2013, 15, 2682–2687. https://doi.org/10.1039/c3ce26854c.Search in Google Scholar

115. Belay, Y.; Coetzee, L.-C.; Williams, D. B. G.; Muller, A. Synthesis of Novel 1, 2, 3-Triazole Based Polycarboxylic Acid Functionalised Ligands for MOF Systems. Tetrahedron Lett. 2019, 60, 501–503. https://doi.org/10.1016/j.tetlet.2019.01.014.Search in Google Scholar

116. Sun, L.; Li, Y.; Liang, Z.; Yu, J.; Xu, R. Structures and Properties of Lanthanide Metal-Organic Frameworks Based on a 1, 2, 3-Triazole-Containing Tetracarboxylate Ligand. Dalton Trans. 2012, 41, 12790–12796. https://doi.org/10.1039/c2dt31717f.Search in Google Scholar PubMed

117. Zhao, T.; Jing, X.; Wang, J.; Wang, D.; Li, G.; Huo, Q.; Liu, Y. Assembly of Two 3D Porous Metal-Organic Frameworks Based on 1,2,3-Triazole-4,5-Dicarboxylate Exhibiting Novel Coordination Modes. Cryst. Growth Des. 2012, 12, 5456–5461. https://doi.org/10.1021/cg301041n.Search in Google Scholar

118. Yang, F.; Yang, G.-P.; Wu, Y.; Yan, Y.; Liu, J.; Gao, R.; Zhang, W.-Y.; Wang, Y.-Y. Ln(III)-MOFs (Ln = Tb, Eu, Dy, and Sm) Based on Triazole Carboxylic Ligand with Carboxylate and Nitrogen Donors with Applications as Chemical Sensors and Magnetic Materials. J. Coord. Chem. 2018, 71, 2702–2713. https://doi.org/10.1080/00958972.2018.1485018.Search in Google Scholar

119. Marmier, M.; Wise, M. D.; Holstein, J. J.; Pattison, P.; Schenk, K.; Solari, E.; Scopelliti, R.; Severin, K. Carboxylic Acid Functionalized Clathrochelate Complexes: Large, Robust, and Easy-to-Access Metalloligands. Inorg. Chem. 2016, 55, 4006–4015. https://doi.org/10.1021/acs.inorgchem.6b00276.Search in Google Scholar PubMed

120. Bian, Z.-X.; Zhang, Y.-Z.; Tian, D.; Zhang, X.; Xie, L.-H.; Zhao, M.; Xie, Y.; Li, J.-R. Co7 -Cluster-Based Metal-Organic Frameworks with Mixed Carboxylate and Pyrazolate Ligands: Construction and CO2 Adsorption and Fixation. Cryst. Growth Des. 2020, 20, 7972–7978. https://doi.org/10.1021/acs.cgd.0c01232.Search in Google Scholar

121. Shi, Z.; Tao, Y.; Wu, J.; Zhang, C.; He, H.; Long, L.; Lee, Y.; Li, T.; Zhang, Y.-B. Robust Metal-Triazolate Frameworks for CO2 Capture from Flue Gas. J. Am. Chem. Soc. 2020, 142, 2750–2754. https://doi.org/10.1021/jacs.9b12879.Search in Google Scholar PubMed

122. Li, H.-P.; Li, S.-N.; Sun, H.-M.; Hu, M.-C.; Jiang, Y.-C.; Zhai, Q.-G. Tuning the CO2 and C1/C2 Hydrocarbon Capture and Separation Performance for a Zn-F-Triazolate Framework through Functional Amine Groups. Cryst. Growth Des. 2018, 18, 3229–3235. https://doi.org/10.1021/acs.cgd.8b00389.Search in Google Scholar

123. Rosen, A. S.; Mian, M. R.; Islamoglu, T.; Chen, H.; Farha, O. K.; Notestein, J. M.; Snurr, R. Q. Tuning the Redox Activity of Metal-Organic Frameworks for Enhanced, Selective O2 Binding: Design Rules and Ambient Temperature O2 Chemisorption in a Cobalt–Triazolate Framework. J. Am. Chem. Soc. 2020, 142, 4317–4328. https://doi.org/10.1021/jacs.9b12401.Search in Google Scholar PubMed

124. Rieth, A. J.; Dincă, M. Controlled Gas Uptake in Metal-Organic Frameworks with Record Ammonia Sorption. J. Am. Chem. Soc. 2018, 140, 3461–3466. https://doi.org/10.1021/jacs.8b00313.Search in Google Scholar PubMed

125. Gao, X.; Zheng, M.; Qin, L.; Shen, K.; Zheng, H. Syntheses, Structures, and Properties of Four Metal-Organic Frameworks Based on a N-Centered Multidentate Pyridine-Carboxylate Bifunctional Ligand. Cryst. Growth Des. 2016, 16, 4711–4719. https://doi.org/10.1021/acs.cgd.6b00780.Search in Google Scholar

126. Ju, Z.; Yan, W.; Gao, X.; Shi, Z.; Wang, T.; Zheng, H. Syntheses, Characterization, and Luminescence Properties of Four Metal-Organic Frameworks Based on a Linear-Shaped Rigid Pyridine Ligand. Cryst. Growth Des. 2016, 16, 2496–2503. https://doi.org/10.1021/acs.cgd.5b00681.Search in Google Scholar

127. Pullen, S.; Clever, G. H. Mixed-Ligand Metal-Organic Frameworks and Heteroleptic Coordination Cages as Multifunctional Scaffolds – A Comparison. Acc. Chem. Res. 2018, 51, 3052–3064. https://doi.org/10.1021/acs.accounts.8b00415.Search in Google Scholar PubMed PubMed Central

128. Gao, H.-L.; Yi, L.; Zhao, B.; Zhao, X.-Q.; Cheng, P.; Liao, D.-Z.; Yan, S.-P. Synthesis and Characterization of Metal−Organic Frameworks Based on 4-Hydroxypyridine-2,6-Dicarboxylic Acid and Pyridine-2,6-Dicarboxylic Acid Ligands. Inorg. Chem. 2006, 45, 5980–5988. https://doi.org/10.1021/ic060550j.Search in Google Scholar PubMed

129. Si, G.-R.; Wu, W.; He, T.; Xu, Z.-C.; Wang, K.; Li, J.-R. Stable Bimetallic Metal-Organic Framework with Dual-Functional Pyrazolate-Carboxylate Ligand: Rational Construction and C2H2/CO2 Separation. ACS Mater. Lett. 2022, 4, 1032–1036. https://doi.org/10.1021/acsmaterialslett.2c00129.Search in Google Scholar

130. Wang, A.; Barcus, K.; Cohen, S. M. Quantifying Ligand Binding to the Surface of Metal-Organic Frameworks. J. Am. Chem. Soc. 2023, 145, 16821–16827. https://doi.org/10.1021/jacs.3c04892.Search in Google Scholar PubMed PubMed Central

131. Feng, J.; Li, J.; Sun, Z.; Li, G. Water-Assisted Proton Conduction in a Highly Stable 3D Lead (II) MOF Constructed by Imidazole Dicarboxylate and Oxalate Ligands. J. Solid State Chem. 2022, 307, 122746. https://doi.org/10.1016/j.jssc.2021.122746.Search in Google Scholar

132. Yu, R.-L.; Li, Q.-F.; Li, Z.-L.; Wang, X.-Y.; Xia, L.-Z. Analysis of Radioactive Iodine Trapping Mechanism by Zinc-Based Metal-Organic Frameworks with Various N-Containing Carboxylate Ligands. ACS Appl. Mater. Interfaces 2023, 15, 35082–35091. https://doi.org/10.1021/acsami.3c07032.Search in Google Scholar PubMed

133. Dincǎ, M.; Yu, A. F.; Long, J. R. Microporous Metal−Organic Frameworks Incorporating 1,4-Benzeneditetrazolate: Syntheses, Structures, and Hydrogen Storage Properties. J. Am. Chem. Soc. 2006, 128, 8904–8913. https://doi.org/10.1021/ja061716i.Search in Google Scholar PubMed

134. Demessence, A.; Long, J. R. Selective Gas Adsorption in the Flexible Metal-Organic Frameworks Cu(BDTri)L (L=DMF, DEF). Chem. Eur J. 2010, 16, 5902–5908. https://doi.org/10.1002/chem.201000053.Search in Google Scholar PubMed

135. Sumida, K.; Foo, M. L.; Horike, S.; Long, J. R. Synthesis and Structural Flexibility of a Series of Copper(II) Azolate-Based Metal-Organic Frameworks. Eur. J. Inorg. Chem. 2010, 2010, 3739–3744. https://doi.org/10.1002/ejic.201000490.Search in Google Scholar

136. Gao, W.-Y.; Cai, R.; Meng, L.; Wojtas, L.; Zhou, W.; Yildirim, T.; Shi, X.; Ma, S. Quest for a Highly Connected Robust Porous Metal-Organic Framework on the Basis of a Bifunctional Linear Linker and a Rare Heptanuclear Zinc Cluster. Chem. Commun. 2013, 49, 10516–10518. https://doi.org/10.1039/c3cc45986a.Search in Google Scholar PubMed

137. Gao, W.-Y.; Cai, R.; Pham, T.; Forrest, K. A.; Hogan, A.; Nugent, P.; Williams, K.; Wojtas, L.; Luebke, R.; Weseliński, Ł. J.; Zaworotko, M. J.; Space, B.; Chen, Y.-S.; Eddaoudi, M.; Shi, X.; Ma, S. Remote Stabilization of Copper Paddlewheel Based Molecular Building Blocks in Metal-Organic Frameworks. Chem. Mater. 2015, 27, 2144–2151. https://doi.org/10.1021/acs.chemmater.5b00084.Search in Google Scholar

138. Figueroa-Quintero, L.; Villalgordo-Hernández, D.; Delgado-Marín, J. J.; Narciso, J.; Velisoju, V. K.; Castaño, P.; Gascón, J.; Ramos-Fernández, E. V. Post-Synthetic Surface Modification of Metal-Organic Frameworks and Their Potential Applications. Small Methods 2023, 7, 2201413. https://doi.org/10.1002/smtd.202201413.Search in Google Scholar PubMed

139. Smith, K. T.; Stylianou, K. C. Multivariate Metal-Organic Frameworks Generated through Post-Synthetic Modification: Impact and Future Directions. Dalton Trans. 2023, 52, 16578–16585; https://doi.org/10.1039/d3dt01936e.Search in Google Scholar PubMed

140. Chen, T.; Zhao, D. Post-Synthetic Modification of Metal-Organic Framework-Based Membranes for Enhanced Molecular Separations. Coord. Chem. Rev. 2023, 491, 215259. https://doi.org/10.1016/j.ccr.2023.215259.Search in Google Scholar

141. Zaman, H. G.; Baloo, L.; Kutty, S. R.; Altaf, M. Post Synthetic Modification of NH2-(Zr-MOF) via Rapid Microwave-Promoted Synthesis for Effective Adsorption of Pb (II) and Cd (II). Arab. J. Chem. 2023, 16, 104122. https://doi.org/10.1016/j.arabjc.2022.104122.Search in Google Scholar

142. Obeso, J. L.; Huxley, M. T.; De Los Reyes, J. A.; Humphrey, S. M.; Ibarra, I. A.; Peralta, R. A. Low-Valent Metals in Metal-Organic Frameworks via Post-Synthetic Modification. Angew. Chem. 2023, 135, e202309025. https://doi.org/10.1002/ange.202309025.Search in Google Scholar

143. Han, G.; Studer, R. M.; Lee, M.; Rodriguez, K. M.; Teesdale, J. J.; Smith, Z. P. Post-Synthetic Modification of MOFs to Enhance Interfacial Compatibility and Selectivity of Thin-Film Nanocomposite (TFN) Membranes for Water Purification. J. Membr. Sci. 2023, 666, 121133. https://doi.org/10.1016/j.memsci.2022.121133.Search in Google Scholar

144. Liu, M.; Yang, S.; Yang, X.; Cui, C.-X.; Liu, G.; Li, X.; He, J.; Chen, G. Z.; Xu, Q.; Zeng, G. Post-Synthetic Modification of Covalent Organic Frameworks for CO2 Electroreduction. Nat. Commun. 2023, 14, 3800. https://doi.org/10.1038/s41467-023-39544-9.Search in Google Scholar PubMed PubMed Central

145. Zhang, Z.; Chen, Y.; Sun, Y.; Chen, Z.; Zhang, Z.-Y.; Liang, F.; Liu, D.; Hu, H.-C. Post-Synthetic Modification of Zeolitic Imidazolate Framework-90 via Schiff Base Reaction for Ultrahigh Iodine Capture. J. Mater. Chem. A 2023, 11, 23922–23931. https://doi.org/10.1039/d3ta04686a.Search in Google Scholar

146. El-Shahat, M.; Wassel, A. R.; Abdelhameed, R. M. Selective Photo-Oxidative Coupling of Amines to Form C–N Bonds Using Post Synthetic Modification of MIL-68-NH2 with Metal Acetylacetonate. New J. Chem. 2023, 47, 19474–19483. https://doi.org/10.1039/d3nj02852f.Search in Google Scholar

147. Liu, J.; Wang, Z.; Cheng, P.; Zaworotko, M. J.; Chen, Y.; Zhang, Z. Post-Synthetic Modifications of Metal-Organic Cages. Nat. Rev. Chem 2022, 6, 339–356. https://doi.org/10.1038/s41570-022-00380-y.Search in Google Scholar PubMed

148. Burrows, A. D.; Frost, C. G.; Mahon, M. F.; Richardson, C. Post-Synthetic Modification of Tagged Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2008, 47, 8482–8486. https://doi.org/10.1002/anie.200802908.Search in Google Scholar PubMed

149. Goto, Y.; Sato, H.; Shinkai, S.; Sada, K. “Clickable” Metal−Organic Framework. J. Am. Chem. Soc. 2008, 130, 14354–14355. https://doi.org/10.1021/ja7114053.Search in Google Scholar PubMed

150. Li, P.-Z.; Wang, X.-J.; Tan, R. H. D.; Zhang, Q.; Zou, R.; Zhao, Y. Rationally “Clicked” Post-Modification of a Highly Stable Metal-Organic Framework and its High Improvement on CO2-Selective Capture. RSC Adv. 2013, 3, 15566–15570. https://doi.org/10.1039/c3ra43246g.Search in Google Scholar

151. Li, L.; Ma, W.; Shen, S.; Huang, H.; Bai, Y.; Liu, H. A Combined Experimental and Theoretical Study on the Extraction of Uranium by Amino-Derived Metal-Organic Frameworks through Post-Synthetic Strategy. ACS Appl. Mater. Interfaces 2016, 8, 31032–31041. https://doi.org/10.1021/acsami.6b11332.Search in Google Scholar PubMed

152. Park, J.; Feng, D.; Zhou, H.-C. Structure-Assisted Functional Anchor Implantation in Robust Metal-Organic Frameworks with Ultralarge Pores. J. Am. Chem. Soc. 2015, 137, 1663–1672. https://doi.org/10.1021/ja5123528.Search in Google Scholar PubMed

153. Savonnet, M.; Bazer-Bachi, D.; Bats, N.; Perez-Pellitero, J.; Jeanneau, E.; Lecocq, V.; Pinel, C.; Farrusseng, D. Generic Postfunctionalization Route from Amino-Derived Metal−Organic Frameworks. J. Am. Chem. Soc. 2010, 132, 4518–4519. https://doi.org/10.1021/ja909613e.Search in Google Scholar PubMed

154. Morris, W.; Briley, W. E.; Auyeung, E.; Cabezas, M. D.; Mirkin, C. A. Nucleic Acid–Metal Organic Framework (MOF) Nanoparticle Conjugates. J. Am. Chem. Soc. 2014, 136, 7261–7264. https://doi.org/10.1021/ja503215w.Search in Google Scholar PubMed

155. Zhou, L.; Sun, W.; Yang, N.; Li, P.; Gong, T.; Sun, W.; Sui, Q.; Gao, E. A Facile and Versatile “Click” Approach toward Multifunctional Ionic Metal-Organic Frameworks for Efficient Conversion of CO2. ChemSusChem 2019, 12, 2202–2210. https://doi.org/10.1002/cssc.201802990.Search in Google Scholar PubMed

156. Jędrzejowski, D.; Pander, M.; Nitek, W.; Bury, W.; Matoga, D. Turning Flexibility into Rigidity: Stepwise Locking of Interpenetrating Networks in a MOF Crystal through Click Reaction. Chem. Mater. 2021, 33, 7509–7517. https://doi.org/10.1021/acs.chemmater.1c02451.Search in Google Scholar

157. Li, P.-Z.; Wang, X.-J.; Liu, J.; Lim, J. S.; Zou, R.; Zhao, Y. A Triazole-Containing Metal-Organic Framework as a Highly Effective and Substrate Size-Dependent Catalyst for CO2 Conversion. J. Am. Chem. Soc. 2016, 138, 2142–2145. https://doi.org/10.1021/jacs.5b13335.Search in Google Scholar PubMed

158. Pei, X.; Song, W.; Zhang, Z.; Zhao, Y.; Li, Z. CO2 -Responsive CuI-Ionic Liquid/Zeolitic Imidazolate Frameworks Stabilized Pickering Emulsions for Azide–Alkyne Click Reaction. ACS Appl. Nano Mater. 2023, 6, 19972–19980. https://doi.org/10.1021/acsanm.3c03775.Search in Google Scholar

159. Jose, T.; Hwang, Y.; Kim, D.-W.; Kim, M.-I.; Park, D.-W. Functionalized Zeolitic Imidazolate Framework F-ZIF-90 as Efficient Catalyst for the Cycloaddition of Carbon Dioxide to Allyl Glycidyl Ether. Catal. Today 2015, 245, 61–67. https://doi.org/10.1016/j.cattod.2014.05.022.Search in Google Scholar

160. Ma, D.; Li, B.; Liu, K.; Zhang, X.; Zou, W.; Yang, Y.; Li, G.; Shi, Z.; Feng, S. Bifunctional MOF Heterogeneous Catalysts Based on the Synergy of Dual Functional Sites for Efficient Conversion of CO2 under Mild and Co-Catalyst Free Conditions. J. Mater. Chem. A 2015, 3, 23136–23142. https://doi.org/10.1039/c5ta07026k.Search in Google Scholar

161. Tharun, J.; Bhin, K.-M.; Roshan, R.; Kim, D. W.; Kathalikkattil, A. C.; Babu, R.; Ahn, H. Y.; Won, Y. S.; Park, D.-W. Ionic Liquid Tethered Post Functionalized ZIF-90 Framework for the Cycloaddition of Propylene Oxide and CO2. Green Chem. 2016, 18, 2479–2487. https://doi.org/10.1039/c5gc02153g.Search in Google Scholar

162. Ding, M.; Jiang, H.-L. Incorporation of Imidazolium-Based Poly(Ionic Liquid)s into a Metal-Organic Framework for CO2 Capture and Conversion. ACS Catal. 2018, 8, 3194–3201. https://doi.org/10.1021/acscatal.7b03404.Search in Google Scholar

163. Liang, J.; Chen, R.-P.; Wang, X.-Y.; Liu, T.-T.; Wang, X.-S.; Huang, Y.-B.; Cao, R. Postsynthetic Ionization of an Imidazole-Containing Metal-Organic Framework for the Cycloaddition of Carbon Dioxide and Epoxides. Chem. Sci. 2017, 8, 1570–1575. https://doi.org/10.1039/c6sc04357g.Search in Google Scholar PubMed PubMed Central

164. Ding, L.-G.; Yao, B.-J.; Jiang, W.-L.; Li, J.-T.; Fu, Q.-J.; Li, Y.-A.; Liu, Z.-H.; Ma, J.-P.; Dong, Y.-B. Bifunctional Imidazolium-Based Ionic Liquid Decorated UiO-67 Type MOF for Selective CO2 Adsorption and Catalytic Property for CO2 Cycloaddition with Epoxides. Inorg. Chem. 2017, 56, 2337–2344. https://doi.org/10.1021/acs.inorgchem.6b03169.Search in Google Scholar PubMed

165. Liang, J.; Xie, Y.-Q.; Wang, X.-S.; Wang, Q.; Liu, T.-T.; Huang, Y.-B.; Cao, R. An Imidazolium-Functionalized Mesoporous Cationic Metal-Organic Framework for Cooperative CO2 Fixation into Cyclic Carbonate. Chem. Commun. 2018, 54, 342–345. https://doi.org/10.1039/c7cc08630j.Search in Google Scholar PubMed

166. Liang, J.; Xie, Y.-Q.; Wu, Q.; Wang, X.-Y.; Liu, T.-T.; Li, H.-F.; Huang, Y.-B.; Cao, R. Zinc Porphyrin/Imidazolium Integrated Multivariate Zirconium Metal-Organic Frameworks for Transformation of CO2 into Cyclic Carbonates. Inorg. Chem. 2018, 57, 2584–2593. https://doi.org/10.1021/acs.inorgchem.7b02983.Search in Google Scholar PubMed

167. Carrillo-Carrión, C.; Comaills, V.; Visiga, A. M.; Gauthier, B. R.; Khiar, N. Enzyme-Responsive Zr-Based Metal-Organic Frameworks for Controlled Drug Delivery: Taking Advantage of Clickable PEG-Phosphate Ligands. ACS Appl. Mater. Interfaces 2023, 15, 27600–27611. https://doi.org/10.1021/acsami.3c03230.Search in Google Scholar PubMed PubMed Central

168. Wang, F.; Zhang, Y.; Liu, Z.; Du, Z.; Zhang, L.; Ren, J.; Qu, X. A Biocompatible Heterogeneous MOF–Cu Catalyst for In Vivo Drug Synthesis in Targeted Subcellular Organelles. Angew. Chem. Int. Ed. 2019, 58, 6987–6992. https://doi.org/10.1002/anie.201901760.Search in Google Scholar PubMed

169. Alves, R. C.; Schulte, Z. M.; Luiz, M. T.; Bento Da Silva, P.; Frem, R. C. G.; Rosi, N. L.; Chorilli, M. Breast Cancer Targeting of a Drug Delivery System Through Postsynthetic Modification of Curcumin@N3-Bio-MOF-100 via Click Chemistry. Inorg. Chem. 2021, 60, 11739–11744. https://doi.org/10.1021/acs.inorgchem.1c00538.Search in Google Scholar PubMed

Received: 2023-12-13
Accepted: 2024-06-07
Published Online: 2024-06-28
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
  3. Advanced synthetic routes of metal organic frameworks and their diverse applications
  4. Carbon materials derived by crystalline porous materials for capacitive energy storage
  5. BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
  6. Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base
  7. Solid-phase extraction of organophosphates from polluted waters on a matrix-imprinted sorbent
  8. Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
  9. Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
  10. Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
  11. Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
  12. Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
  13. A review of carbon-based adsorbents for the removal of organic and inorganic components
  14. Mercury removal from water: insights from MOFs and their composites
  15. Organometallic complexes and reaction methods for synthesis: a review
  16. Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2023-0037/html
Scroll to top button