Home Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
Article
Licensed
Unlicensed Requires Authentication

Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review

  • Debabrata Singha ORCID logo , Pritha Datta , Sasthi Charan Halder , Atish Dipankar Jana ORCID logo EMAIL logo and Nilasish Pal ORCID logo EMAIL logo
Published/Copyright: February 16, 2024

Abstract

A protonated form of 1,2-bis(4-pyridyl)ethylene (HBpe+), produced through proton transfer or pH adjustments, plays a significant role in forming unique supramolecular structures. In contrast, non-protonated forms of the molecule (Bpe) are extensively studied in metal-organic complexes. In this review, we examine the fascinating world of HBpe+ as a monodentate ligand in the realm of coordination chemistry. It discusses how protonated ligands influence the assembly of supramolecular structures, as well as their properties and functions. Structures such as 1:1 adduct, coordination polymers, and metal clusters are often formed as a result. In these assemblies, HBpe+ engages in a variety of interactions that influence its supramolecular behavior. The interactions include coordination complexes with metal ions, hydrogen bonds, aromatic ring stacking, and double bond stacking (ππ stacking). The flexibility and conformation of the ligand have a significant impact on the overall structure and stability of complexes. It opens the door to developing functional materials by unraveling the unique attributes and role of HBpe+ in supramolecular assembly. With these insights, it is possible to explore the functional properties of HBpe+ through controlled assembly processes in order to create innovative and functional materials.


Corresponding authors: Atish Dipankar Jana, Centre for Research in Nano Science and Crystal Engineering, Sibani Mandal Mahavidyalaya, Namkhana 743357, West Bengal, India; and Institute of Astronomy, Space and Earth Science, P 177, CIT Road, Scheme 7m, Kolkata 700054, West Bengal, India, E-mail: ; and Nilasish Pal, Department of Chemistry, Seth Anandram Jaipuria College, 10, Raja Nabakrishna Street, Kolkata 700005, West Bengal, India, E-mail:

Funding source: WBDST

Award Identifier / Grant number: 203(Sanc.)/ST/P/S&T/15G-32/2017

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work is financially supported by WBDST, Project Sanction No. 203(Sanc.)/ST/P/S&T/15G-32/2017.

  5. Data availability: Cif files are downloaded from CCDC search (CSD version 5.39) by using CCDC software.

References

1. Desiraju, G. R. Crystal engineering: solid state supramolecular synthesis. Curr. Opin. Solid State Mater. Sci. 1997, 2, 451–454. https://doi.org/10.1016/S1359-0286(97)80088-5.Search in Google Scholar

2. Desiraju, G. R. Crystal engineering: a holistic view. Angew. Chem. Int. Ed. 2007, 46, 8342–8356. https://doi.org/10.1002/anie.200700534.Search in Google Scholar PubMed

3. Aakeröy, C. B., Beatty, A. M. Crystal engineering of hydrogen-bonded assemblies – a progress report. Aust. J. Chem. 2001, 54, 409–421. https://doi.org/10.1071/CH01133.Search in Google Scholar

4. Ejarque, D., Calvet, T., Font-Bardia, M., Pons, J. Amide-driven secondary building unit structural transformations between Zn(II) coordination polymers. Cryst. Growth Des. 2022, 22, 5012–5026. https://doi.org/10.1021/acs.cgd.2c00520.Search in Google Scholar PubMed PubMed Central

5. Phuengphai, P., Youngme, S., Mutikainen, I., Gamez, P., Reedijk, J. A series of related 2D coordination polymers based on [copper(II)-4, 4′-Bpy-carboxylato] building blocks. Polyhedron 2012, 42, 10–17. https://doi.org/10.1016/j.poly.2012.04.014.Search in Google Scholar

6. Lu, W. G., Jiang, L., Feng, X. L., Lu, T. B. Three 3D coordination polymers constructed by Cd(II) and Zn(II) with imidazole-4,5-dicarboxylate and 4,4′-bipyridyl building blocks. Cryst. Growth Des. 2006, 6, 564–571. https://doi.org/10.1021/cg0505158.Search in Google Scholar

7. Tao, J., Chen, X. M., Huang, R. B., Zheng, L. S. Hydrothermal syntheses and crystal structures of two rectangular grid coordination polymers based on unique prismatic [M8(Ip)8(4,4′-Bipy)8] building blocks [M=Ni(II) or Cd(II), Ip=isophthalate, Bipy=bipyridine]. J. Solid State Chem. 2003, 170, 130–134. https://doi.org/10.1016/S0022-4596(02)00053-1.Search in Google Scholar

8. Roesky, H. W., Andruh, M. The interplay of coordinative, hydrogen bonding and π–π stacking interactions in sustaining supramolecular solid-state architectures. A study case of bis(4-pyridyl)- and bis(4-pyridyl-N-oxide) tectons. Coord. Chem. Rev. 2003, 236, 91–119. https://doi.org/10.1016/S0010-8545(02)00218-7.Search in Google Scholar

9. Gable, R. W., Hoskins, B. F., Robson, R. A new type of interpenetration involving enmeshed independent square grid sheets. The structure of diaquabis-(4,4′-bipyridine)zinc hexafluorosilicate. J. Chem. Soc., Chem. Commun. 1990, 3, 1677–1678. https://doi.org/10.1039/C39900001677.Search in Google Scholar

10. Zaworotko, M. J. Superstructural diversity in two dimensions: crystal engineering of laminated solids. Chem. Commun. 2001, 1–9. https://doi.org/10.1039/b007127g.Search in Google Scholar

11. Ding, B., Yi, L., Cheng, P., Liao, D., Yan, S. Synthesis and characterization of a 3D coordination polymer based on trinuclear triangular Cu II as secondary building units. Inorg. Chem. 2006, 45, 5799–5803. https://doi.org/10.1021/ic060030o.Search in Google Scholar PubMed

12. Casarin, M., Corvaja, C., Di Nicola, C., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C., Piccinelli, F. One-dimensional and two-dimensional coordination polymers from self-assembling of trinuclear triangular Cu(II) secondary building units. Inorg. Chem. 2005, 44, 6265–6276. https://doi.org/10.1021/ic050678l.Search in Google Scholar PubMed

13. Biswas, C., Drew, M. G. B., Escudero, D., Frontera, A., Ghosh, A. Anion–π, lone-pair–π, π–π and hydrogen-bonding interactions in a CuII complex of 2-picolinate and protonated 4,4′-bipyridine: crystal structure and theoretical studies. Eur. J. Inorg. Chem. 2009, 2009, 2238–2246. https://doi.org/10.1002/ejic.200900110.Search in Google Scholar

14. Zhang, X., Wang, W., Hu, Z., Wang, G., Uvdal, K. Coordination polymers for energy transfer: preparations, properties, sensing applications, and perspectives. Coord. Chem. Rev. 2015, 284, 206–235. https://doi.org/10.1016/j.ccr.2014.10.006.Search in Google Scholar

15. Cabaleiro-Lago, E. M., Rodríguez-Otero, J. On the nature of σ–σ, σ–π, and π–π stacking in extended systems. ACS Omega 2018, 3, 9348–9359. https://doi.org/10.1021/acsomega.8b01339.Search in Google Scholar PubMed PubMed Central

16. Sengupta, S., Goswami, A., Ganguly, S., Bala, S., Bhunia, M. K., Mondal, R. Influence of chloro⋯chloro interaction and π–π stacking in 3D supramolecular framework construction. CrystEngComm 2011, 13, 6136–6149. https://doi.org/10.1039/c1ce05345k.Search in Google Scholar

17. Das, A., Jana, A. D., Seth, S. K., Dey, B., Choudhury, S. R., Kar, T., Mukhopadhyay, S., Jiten Singh, N., Hwang, I. C., Kim, K. S. Intriguing π+–π interaction in crystal packing. J. Phys. Chem. B 2010, 114, 4166–4170. https://doi.org/10.1021/jp910129u.Search in Google Scholar PubMed

18. Martinez, C. R., Iverson, B. L. Rethinking the term “pi-stacking”. Chem. Sci. 2012, 3, 2191. https://doi.org/10.1039/c2sc20045g.Search in Google Scholar

19. Grimme, S. Do special noncovalent π–π stacking interactions really exist? Angew. Chem. Int. Ed. 2008, 47, 3430–3434. https://doi.org/10.1002/anie.200705157.Search in Google Scholar PubMed

20. Xu, L., Miao, X., Ying, X., Deng, W. Two-dimensional self-assembled molecular structures formed by the competition of van Der Waals forces and dipole-dipole interactions. J. Phys. Chem. C 2012, 116, 1061–1069. https://doi.org/10.1021/jp210000e.Search in Google Scholar

21. Morawietz, T., Singraber, A., Dellago, C., Behler, J. How van Der Waals interactions determine the unique properties of water. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 8368–8373. https://doi.org/10.1073/pnas.1602375113.Search in Google Scholar PubMed PubMed Central

22. Holstein, B. R. The van Der Waals interaction. Am. J. Phys. 2001, 69, 441–449. https://doi.org/10.1119/1.1341251.Search in Google Scholar

23. Wang, J., Román-Pérez, G., Soler, J. M., Artacho, E., Fernández-Serra, M.-V. Density, structure, and dynamics of water: the effect of van Der Waals interactions. J. Chem. Phys. 2011, 134, 024516. https://doi.org/10.1063/1.3521268.Search in Google Scholar PubMed

24. Lin, I. C., Seitsonen, A. P., Coutinho-Neto, M. D., Tavernelli, I., Rothlisberger, U. Importance of van Der Waals interactions in liquid water. J. Phys. Chem. B 2009, 113, 1127–1131. https://doi.org/10.1021/jp806376e.Search in Google Scholar PubMed

25. Desiraju, G., Steiner, T. Distinction between the weak hydrogen bond and the van Der Waals interaction. Chem. Commun. 1998, 891–892. https://doi.org/10.1039/a708099i.Search in Google Scholar

26. Wang, Y., Cao, H., Zheng, B., Zhou, R., Duan, J. Solvent- and PH-dependent formation of four zinc porous coordination polymers: framework isomerism and gas separation. Cryst. Growth Des. 2018, 18, 7674–7682. https://doi.org/10.1021/acs.cgd.8b01433.Search in Google Scholar

27. Wang, F. K., Yang, S. Y., Dong, H. Z. Solvent dependent zinc(II) coordination polymers with 1,3,5-benzenetricarboxylic acid and the selective photocatalytic degradation for organic dyes. J. Mol. Struct. 2021, 1227, 129540. https://doi.org/10.1016/j.molstruc.2020.129540.Search in Google Scholar

28. Li, C. P., Du, M. Role of solvents in coordination supramolecular systems. Chem. Commun. 2011, 47, 5958–5972. https://doi.org/10.1039/c1cc10935a.Search in Google Scholar PubMed

29. Contreras-Pereda, N., Hayati, P., Suárez-García, S., Esrafili, L., Retailleau, P., Benmansour, S., Novio, F., Morsali, A., Ruiz-Molina, D. Delamination of 2D coordination polymers: the role of solvent and ultrasound. Ultrason. Sonochem. 2019, 55, 186–195. https://doi.org/10.1016/j.ultsonch.2019.02.014.Search in Google Scholar PubMed

30. Yang, J., Li, G. D., Cao, J. J., Yue, Q., Li, G. H., Chen, J. S. Structural variation from 1D to 3D: effects of ligands and solvents on the construction of lead(II)-organic coordination polymers. Chem. Eur. J. 2007, 13, 3248–3261. https://doi.org/10.1002/chem.200600730.Search in Google Scholar PubMed

31. Rancan, M., Armelao, L. Exploiting dimensional variability in coordination polymers: solvent promotes reversible conversion between 3D and chiral 1D architectures. Chem. Commun. 2015, 51, 12947–12949. https://doi.org/10.1039/c5cc04349b.Search in Google Scholar PubMed

32. Yuan, F., Xie, J., Hu, H. M., Yuan, C. M., Xu, B., Yang, M. L., Dong, F. X., Xue, G. L. Effect of PH/metal ion on the structure of metal-organic frameworks based on novel bifunctionalized ligand 4′-carboxy-4,2′:6′,4″-terpyridine. CrystEngComm 2013, 15, 1460–1467. https://doi.org/10.1039/c2ce26171e.Search in Google Scholar

33. Li, N., Feng, R., Zhu, J., Chang, Z., Bu, X. H. Conformation versatility of ligands in coordination polymers: from structural diversity to properties and applications. Coord. Chem. Rev. 2018, 375, 558–586. https://doi.org/10.1016/j.ccr.2018.05.016.Search in Google Scholar

34. Zeng, L. W., Hu, K. Q., Mei, L., Li, F. Z., Huang, Z. W., An, S. W., Chai, Z. F., Shi, W. Q. Structural diversity of bipyridinium-based uranyl coordination polymers: synthesis, characterization, and ion-exchange application. Inorg. Chem. 2019, 58, 14075–14084. https://doi.org/10.1021/acs.inorgchem.9b02106.Search in Google Scholar PubMed

35. Zhang, Y., Huang, Y., Zhang, J., Zhu, L., Chen, K., Hao, J. Two unprecedented aromatic guanidines supramolecular chains self-assembled by hydrogen bonding interaction. J. Mol. Struct. 2015, 1097, 145–150. https://doi.org/10.1016/j.molstruc.2015.05.024.Search in Google Scholar

36. Coe, B. J., Curati, N. R. M. Metal complexes for molecular electronics and photonics. Comments Inorg. Chem. 2004, 25, 147–184. https://doi.org/10.1080/02603590490883634.Search in Google Scholar

37. Zheng, Y. Z., Zheng, Z., Chen, X. M. A symbol approach for classification of molecule-based magnetic materials exemplified by coordination polymers of metal carboxylates. Coord. Chem. Rev. 2014, 258–259, 1–15. https://doi.org/10.1016/j.ccr.2013.08.031.Search in Google Scholar

38. Maspoch, D., Ruiz-Molina, D., Veciana, J. Magnetic nanoporous coordination polymers. J. Mater. Chem. 2004, 14, 2713–2723. https://doi.org/10.1039/b407169g.Search in Google Scholar

39. Mondal, M., Jana, S., Drew, M. G. B., Ghosh, A. Application of two Cu(II)-azido based 1D coordination polymers in optoelectronic device: structural characterization and experimental studies. Polymer 2020, 204, 122815. https://doi.org/10.1016/j.polymer.2020.122815.Search in Google Scholar

40. Stavila, V., Talin, A. A., Allendorf, M. D. MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 2014, 43, 5994–6010. https://doi.org/10.1039/C4CS00096J.Search in Google Scholar

41. Loukopoulos, E., Kostakis, G. E. Review: recent advances of one-dimensional coordination polymers as catalysts. J. Coord. Chem. 2018, 71, 371–410. https://doi.org/10.1080/00958972.2018.1439163.Search in Google Scholar

42. Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y., Kitagawa, S. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis. J. Am. Chem. Soc. 2007, 129, 2607–2614. https://doi.org/10.1021/ja067374y.Search in Google Scholar PubMed

43. Eddaoudi, M., Li, H., Yaghi, O. M. Highly porous and stable metal-organic frameworks: structure design and sorption properties. J. Am. Chem. Soc. 2000, 122, 1391–1397. https://doi.org/10.1021/ja9933386.Search in Google Scholar

44. Semerci, F., Yeşilel, O. Z., Soylu, M. S., Keskin, S., Büyükgüngör, O. A two-dimensional photoluminescent cadmium(II) coordination polymer containing a new coordination mode of pyridine-2,3-dicarboxylate: synthesis, structure and molecular simulations for gas storage and separation applications. Polyhedron 2013, 50, 314–320. https://doi.org/10.1016/j.poly.2012.10.009.Search in Google Scholar

45. Farrell, D. M. M., Ferguson, G., Lough, A. J., Glidewell, C. Chiral versus racemic building blocks in supra-molecular chemistry: tartrate salts of organic diamines. Acta Crystallogr. Sect. B Struct. Sci. 2002, 58, 272–288. https://doi.org/10.1107/S0108768101019632.Search in Google Scholar PubMed

46. Farrell, D. M. M., Ferguson, G., Lough, A. J., Glidewell, C. Chiral versus racemic building blocks in supramolecular chemistry: malate salts of organic diamines. Acta Crystallogr. Sect. B Struct. Sci. 2002, 58, 530–544. https://doi.org/10.1107/S0108768102000642.Search in Google Scholar PubMed

47. Zhang, J., Zhu, L. G. Different supra-molecular assemblies in two 1:1 proton-transfer compounds of sulfobenzoic acids with aromatic amines. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2007, 63, 484–487. https://doi.org/10.1107/S0108270107033008.Search in Google Scholar PubMed

48. Ji, W., Xue, B., Bera, S., Guerin, S., Shimon, L. J. W., Ma, Q., Tofail, S. A. M., Thompson, D., Cao, Y., Wang, W., Gazit, E. Modulation of physical properties of organic cocrystals by amino acid chirality. Mater. Today 2021, 42, 29–40. https://doi.org/10.1016/j.mattod.2020.10.007.Search in Google Scholar

49. Sun, L., Wang, Y., Yang, F., Zhang, X., Hu, W. Cocrystal engineering: a collaborative strategy toward functional materials. Adv. Mater. 2019, 31, 1–22. https://doi.org/10.1002/adma.201902328.Search in Google Scholar PubMed

50. Ji, W., Yuan, C., Chakraborty, P., Makam, P., Bera, S., Rencus-Lazar, S., Li, J., Yan, X., Gazit, E. Coassembly-induced transformation of dipeptide amyloid-like structures into stimuli-responsive supramolecular materials. ACS Nano 2020, 14, 7181–7190. https://doi.org/10.1021/acsnano.0c02138.Search in Google Scholar PubMed

51. Sprague-Klein, E. A., Ho-Wu, R., Nguyen, D., Coste, S. C., Wu, Y., McMahon, J. J., Seideman, T., Schatz, G. C., Van Duyne, R. P. Modulating the electron affinity of small bipyridyl molecules on single gold nanoparticles for plasmon-driven electron transfer. J. Phys. Chem. C 2021, 125, 22142–22153. https://doi.org/10.1021/acs.jpcc.1c07803.Search in Google Scholar

52. Ma, L. F., Meng, Q. L., Li, C. P., Li, B., Wang, L. Y., Du, M., Liang, F. P. Delicate substituent effect of benzene-1,2,3-tricarboxyl tectons on structural assembly of unusual self-penetrating coordination frameworks. Cryst. Growth Des. 2010, 10, 3036–3043. https://doi.org/10.1021/cg100082f.Search in Google Scholar

53. Li, F. F., Zhang, Q. Q., Zhao, Y. Y., Jiang, S. X., Shi, X. Y., Cui, J. Z., GaoSyntheses, H. L. Structures, and properties of six new coordination polymers constructed from N-heterocyclic multicarboxylic acids. RSC Adv. 2014, 4, 10424–10433. https://doi.org/10.1039/c4ra00180j.Search in Google Scholar

54. Li, J., Wang, D. P., Chen, Y. G., Zhang, C. J. Monodentate coordination of 4,4′-bipyridine leading to a supramolecular network – synthesis and crystal structure of [H2bpp] [{Cu(Hbpy)2}{α-HP2W18O62}]·4H2O. Z. Anorg. Allg. Chem. 2009, 635, 2385–2387. https://doi.org/10.1002/zaac.200900339.Search in Google Scholar

55. Ruiz-Pérez, C., Lorenzo-Luis, P., Hernández-Molina, M., Laz, M. M., Delgado, F. S., Gili, P., Julve, M. 1,2,4,5-Benzenetetracarboxylic acid and 4,4′-bipyridine as ligands in designing low-dimensional coordination polymers. Eur. J. Inorg. Chem. 2004, 2004, 3873–3879. https://doi.org/10.1002/ejic.200400217.Search in Google Scholar

56. Wang, G. H., Li, Z. G., Jia, H. Q., Hu, N. H., Xu, J. W. Metal-organic frameworks based on the pyridine-2,3-dicarboxylate and a flexible bispyridyl ligand: syntheses, structures, and photoluminescence. CrystEngComm 2009, 11, 292–297. https://doi.org/10.1039/b809557d.Search in Google Scholar

57. Li, Y. P., Ju, F. Y., Li, G. L., Xin, L. Y., Li, X. L., Liu, G. Z. Two zinc(II)/cadmium(II) coordination polymers constructed by semirigid carboxylic acid ligand: syntheses, structures, and photoluminescence properties. Russ. J. Coord. Chem. 2019, 45, 517–523. https://doi.org/10.1134/S1070328419070054.Search in Google Scholar

58. Corrêa, C. C., Diniz, R., Chagas, L. H., Rodrigues, B. L., Yoshida, M. I., Teles, W. M., Machado, F. C., de Oliveira, L. F. C. Transition metal complexes with squarate anion and the pyridyl-donor ligand 1,3-bis(4-pyridyl)propane (BPP): synthesis, crystal structure and spectroscopic investigation. Polyhedron 2007, 26, 989–995. https://doi.org/10.1016/j.poly.2006.09.037.Search in Google Scholar

59. Han, Z., Wang, Y., Song, X., Zhai, X., Hu, C. Molecular assemblies based on polytungstate clusters and the flexible organic ligand 1,3-bis(4-pyridyl)propane. Eur. J. Inorg. Chem. 2011, 2011, 3082–3090. https://doi.org/10.1002/ejic.201100051.Search in Google Scholar

60. Wu, L., Chigan, D., Yan, L., Chen, H. Metal organic frameworks with uni-di-and tri-nuclear Cd(II) SBU prepared from 1,3-bis(4-pyridyl)propane and different dicarboxylate ligands: syntheses, structures and luminescent properties. RSC Adv. 2017, 7, 5541–5548. https://doi.org/10.1039/C6RA26855B.Search in Google Scholar

61. Meng, F. J., Jia, H. Q., Hu, N. H., Xu, J. W. PH-controlled synthesis of two new coordination polymers modeled by pyridine-2,4-dicarboxylic acid. Inorg. Chem. Commun. 2012, 21, 186–190. https://doi.org/10.1016/j.inoche.2012.04.012.Search in Google Scholar

62. Wilson, R. E., Schnaars, D. D., Andrews, M. B., Cahill, C. L. Supramolecular interactions in PuO2Cl42– and PuCl62– complexes with protonated pyridines: synthesis, crystal structures, and Raman spectroscopy. Inorg. Chem. 2014, 53, 383–392. https://doi.org/10.1021/ic4023294.Search in Google Scholar PubMed

63. Kong, D., McBee, J. L., Clearfield, A. Crystal engineered acid−base complexes with 2D and 3D hydrogen bonding systems using a bisphosphonic acid as the building block. Cryst. Growth Des. 2005, 5, 643–649. https://doi.org/10.1021/cg0497243.Search in Google Scholar

64. Toma, O., Mercier, N., Allain, M., Botta, C. Protonated N-oxide-4,4′-bipyridine: from luminescent BiIII complexes to hybrids based on H-bonded dimers or H-bonded open 2D square supramolecular networks. CrystEngComm 2013, 15, 8565–8571. https://doi.org/10.1039/c3ce41579a.Search in Google Scholar

65. Rajakannu, P., Howlader, R., Kalita, A. C., Butcher, R. J., Murugavel, R. Role of 4,4′-bipyridine versus longer spacers 4,4′-azobipyridine, 1,2-bis(4-pyridyl)ethylene, and 1,2-bis(pyridin-3-Ylmethylene)hydrazine in the formation of thermally labile metallophosphate coordination polymers. Inorg. Chem. Front. 2015, 2, 55–66. https://doi.org/10.1039/C4QI00149D.Search in Google Scholar

66. Felloni, M., Blake, A. J., Hubberstey, P., Wilson, C., Schröder, M. Solvent control of supramolecular architectures derived from 4,4′-bipyridyl-bridged copper(II) dipicolinate complexes. Cryst. Growth Des. 2009, 9, 4685–4699. https://doi.org/10.1021/cg900552b.Search in Google Scholar

67. Nakanish, H., Jones, W., Thomas, J. M., Hursthouse, M. B., Motevalli, M. Monitoring the crystallographic course of a single-crystal → single-crystal photodimerization by X-ray diffractometry. J. Chem. Soc. Chem. Commun. 1980, 611–612. https://doi.org/10.1039/c39800000611.Search in Google Scholar

68. Schmidt, G. M. J. Photodimerization in the solid state. Pure Appl. Chem. 1971, 27, 647–678. https://doi.org/10.1351/pac197127040647.Search in Google Scholar

69. Wang, C. C., Yin, C. Crystal structure of catena-(trans-bis(1-(4-pyridyl)-2-(4-pyridinio) ethylene)dodecaoxocyclotetravanadato(V)cobalt(II), Co(C12H 11)2(V4O12). Z. Kristallogr. – New Cryst. Struct. 2008, 223, 13–15. https://doi.org/10.1524/ncrs.2008.0007.Search in Google Scholar

70. Fernández De Luis, R., Urtiaga, M. K., Mesa, J. L., Segura, J. O. G. D., Rojo, T., Arriortua, M. I. {Co(HBpe)2}(V4O12): pedal motion induced order-disorder P1̄ → C1̄ transition and disrupted C1̄ → C2/m displacive transition due to thermal instability. CrystEngComm 2011, 13, 6488–6498. https://doi.org/10.1039/c1ce05418j.Search in Google Scholar

71. Li, X. H., Xiao, H. P., Yang, S. Z. μ-1,2-Bis(4-pyridyl)ethene-κ2N:N′-bis(tetraaqua{4-[2-(4-pyridinio)-ethenyl]pyridine-κN}cobalt(II)) hexaaquacobalt(II) tetrakis(sulfate) octahydrate. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2005, 61, 112–114. https://doi.org/10.1107/S0108270104030434.Search in Google Scholar PubMed

72. Dega-Szafran, Z., Katrusiak, A., Szafran, M. Centrosymmetric dimer of quinuclidine betaine and squaric acid complex. J. Mol. Struct. 2012, 1030, 184–190. https://doi.org/10.1016/j.molstruc.2012.04.028.Search in Google Scholar

73. Flakus, H. T. Vibronic model for H/D isotopic self-organization effects in centrosymmetric dimers of hydrogen bonds. J. Mol. Struct. 2003, 646, 15–23. https://doi.org/10.1016/S0022-2860(02)00487-8.Search in Google Scholar

74. Ziffer, H., Levin, I. W. Determining centrosymmetric dimers by infrared and Raman spectroscopy. J. Org. Chem. 1969, 34, 4056–4060. https://doi.org/10.1021/jo01264a065.Search in Google Scholar PubMed

75. Liu, B., Zhou, H. F., Guan, Z. H., Hou, L., Cui, B., Wang, Y. Y. Cleavage of a C–C σ bond between two phenyl groups under mild conditions during the construction of Zn(II) organic frameworks. Green Chem. 2016, 18, 5418–5422. https://doi.org/10.1039/c6gc01686c.Search in Google Scholar

76. Wang, Y. F., Zang, L. L., Liu, J. F. Synthesis and crystal structures of two zinc(II) complexes with 4-hydroxypyridine-2,6-dicarboxylic acid. Russ. J. Coord. Chem. 2014, 40, 331–336. https://doi.org/10.1134/S1070328414050121.Search in Google Scholar

77. Paul, A. K., Karthik, R., Natarajan, S. Synthesis, structure, photochemical [2 + 2] cycloaddition, transformation, and photocatalytic studies in a family of inorganic-organic hybrid cadmium thiosulfate compounds. Cryst. Growth Des. 2011, 11, 5741–5749. https://doi.org/10.1021/cg2013655.Search in Google Scholar

78. Semerci, F., Yeşilel, O. Z., Yüksel, F., Şahin, O. One-pot synthesis of two new metal-organic networks: hydrogen bonded mononuclear Cu(II) complex and mixed-valence Cu(I,II) coordination polymer with encapsulated 14-membered unique water cluster. Inorg. Chem. Commun. 2015, 62, 29–33. https://doi.org/10.1016/j.inoche.2015.10.016.Search in Google Scholar

79. Singha, D., Sarkar, S., Pal, N., Jana, A. D. Protonation induced self-complementarity of rod-like Cu(NTA)(BpeH) units and their layered supramolecular self-assembly entrapping heptamer like water clusters. Results Chem. 2022, 4, 100421. https://doi.org/10.1016/j.rechem.2022.100421.Search in Google Scholar

80. Ghosh, D., Powell, D. R., Van Horn, J. D. The tris(malonato)chromate(III) anion with an organic cation. Acta Crystallogr., Sect. E: Struct. Rep. Online 2004, 60, 764–767. https://doi.org/10.1107/S1600536804010748.Search in Google Scholar

81. Ross, T. M., Neville, S. M., Innes, D. S., Turner, D. R., Moubaraki, B., Murray, K. S. Spin crossover in iron(III) Schiff-base 1-D chain complexes. Dalton Trans. 2010, 39, 149–159. https://doi.org/10.1039/b913234a.Search in Google Scholar PubMed

82. Huang, Y. J., Zheng, Y. Q., Wang, J. J., Zhou, L. X. A new bismuth-based coordination polymer as an efficient visible light responding photocatalyst under white LED irradiation. J. Solid State Chem. 2017, 246, 42–47. https://doi.org/10.1016/j.jssc.2016.10.028.Search in Google Scholar

83. Wenger, O. S., Henling, L. M., Day, M. W., Winkler, J. R., Gray, H. B. Photoswitchable luminescence of rhenium(I) tricarbonyl diimines. Inorg. Chem. 2004, 43, 2043–2048. https://doi.org/10.1021/ic030324z.Search in Google Scholar PubMed

84. Alghool, S., Slebodnick, C. Tetranuclear dioxomolybdenum (VI) cluster anion, hydrogen bond interaction with 1,2-di(4-pyridyl)ethylene: crystal structure and electrochemical measurement. J. Therm. Anal. Calorim. 2016, 124, 847–855. https://doi.org/10.1007/s10973-015-5211-y.Search in Google Scholar

85. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Had, M. Gaussian 09 Software Package; Gaussian, Inc.: Wallingford, CT, 2009. https://gaussian.com/glossary/g09/.Search in Google Scholar

86. Tirado-Rives, J., Jorgensen, W. L. Performance of B3LYP density functional methods for a large set of organic molecules. J. Chem. Theory Comput. 2008, 4, 297–306. https://doi.org/10.1021/ct700248k.Search in Google Scholar PubMed

87. Zhao, Y., Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor. Chem. Acc. 2008, 120, 215–241. https://doi.org/10.1007/s00214-007-0310-x.Search in Google Scholar

Received: 2023-09-18
Accepted: 2024-01-22
Published Online: 2024-02-16
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
  3. Advanced synthetic routes of metal organic frameworks and their diverse applications
  4. Carbon materials derived by crystalline porous materials for capacitive energy storage
  5. BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
  6. Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base
  7. Solid-phase extraction of organophosphates from polluted waters on a matrix-imprinted sorbent
  8. Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
  9. Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
  10. Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
  11. Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
  12. Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
  13. A review of carbon-based adsorbents for the removal of organic and inorganic components
  14. Mercury removal from water: insights from MOFs and their composites
  15. Organometallic complexes and reaction methods for synthesis: a review
  16. Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity
Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2023-0025/html
Scroll to top button