Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
Abstract
A protonated form of 1,2-bis(4-pyridyl)ethylene (HBpe+), produced through proton transfer or pH adjustments, plays a significant role in forming unique supramolecular structures. In contrast, non-protonated forms of the molecule (Bpe) are extensively studied in metal-organic complexes. In this review, we examine the fascinating world of HBpe+ as a monodentate ligand in the realm of coordination chemistry. It discusses how protonated ligands influence the assembly of supramolecular structures, as well as their properties and functions. Structures such as 1:1 adduct, coordination polymers, and metal clusters are often formed as a result. In these assemblies, HBpe+ engages in a variety of interactions that influence its supramolecular behavior. The interactions include coordination complexes with metal ions, hydrogen bonds, aromatic ring stacking, and double bond stacking (π⋯π stacking). The flexibility and conformation of the ligand have a significant impact on the overall structure and stability of complexes. It opens the door to developing functional materials by unraveling the unique attributes and role of HBpe+ in supramolecular assembly. With these insights, it is possible to explore the functional properties of HBpe+ through controlled assembly processes in order to create innovative and functional materials.
Funding source: WBDST
Award Identifier / Grant number: 203(Sanc.)/ST/P/S&T/15G-32/2017
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: This work is financially supported by WBDST, Project Sanction No. 203(Sanc.)/ST/P/S&T/15G-32/2017.
-
Data availability: Cif files are downloaded from CCDC search (CSD version 5.39) by using CCDC software.
References
1. Desiraju, G. R. Crystal engineering: solid state supramolecular synthesis. Curr. Opin. Solid State Mater. Sci. 1997, 2, 451–454. https://doi.org/10.1016/S1359-0286(97)80088-5.Suche in Google Scholar
2. Desiraju, G. R. Crystal engineering: a holistic view. Angew. Chem. Int. Ed. 2007, 46, 8342–8356. https://doi.org/10.1002/anie.200700534.Suche in Google Scholar PubMed
3. Aakeröy, C. B., Beatty, A. M. Crystal engineering of hydrogen-bonded assemblies – a progress report. Aust. J. Chem. 2001, 54, 409–421. https://doi.org/10.1071/CH01133.Suche in Google Scholar
4. Ejarque, D., Calvet, T., Font-Bardia, M., Pons, J. Amide-driven secondary building unit structural transformations between Zn(II) coordination polymers. Cryst. Growth Des. 2022, 22, 5012–5026. https://doi.org/10.1021/acs.cgd.2c00520.Suche in Google Scholar PubMed PubMed Central
5. Phuengphai, P., Youngme, S., Mutikainen, I., Gamez, P., Reedijk, J. A series of related 2D coordination polymers based on [copper(II)-4, 4′-Bpy-carboxylato] building blocks. Polyhedron 2012, 42, 10–17. https://doi.org/10.1016/j.poly.2012.04.014.Suche in Google Scholar
6. Lu, W. G., Jiang, L., Feng, X. L., Lu, T. B. Three 3D coordination polymers constructed by Cd(II) and Zn(II) with imidazole-4,5-dicarboxylate and 4,4′-bipyridyl building blocks. Cryst. Growth Des. 2006, 6, 564–571. https://doi.org/10.1021/cg0505158.Suche in Google Scholar
7. Tao, J., Chen, X. M., Huang, R. B., Zheng, L. S. Hydrothermal syntheses and crystal structures of two rectangular grid coordination polymers based on unique prismatic [M8(Ip)8(4,4′-Bipy)8] building blocks [M=Ni(II) or Cd(II), Ip=isophthalate, Bipy=bipyridine]. J. Solid State Chem. 2003, 170, 130–134. https://doi.org/10.1016/S0022-4596(02)00053-1.Suche in Google Scholar
8. Roesky, H. W., Andruh, M. The interplay of coordinative, hydrogen bonding and π–π stacking interactions in sustaining supramolecular solid-state architectures. A study case of bis(4-pyridyl)- and bis(4-pyridyl-N-oxide) tectons. Coord. Chem. Rev. 2003, 236, 91–119. https://doi.org/10.1016/S0010-8545(02)00218-7.Suche in Google Scholar
9. Gable, R. W., Hoskins, B. F., Robson, R. A new type of interpenetration involving enmeshed independent square grid sheets. The structure of diaquabis-(4,4′-bipyridine)zinc hexafluorosilicate. J. Chem. Soc., Chem. Commun. 1990, 3, 1677–1678. https://doi.org/10.1039/C39900001677.Suche in Google Scholar
10. Zaworotko, M. J. Superstructural diversity in two dimensions: crystal engineering of laminated solids. Chem. Commun. 2001, 1–9. https://doi.org/10.1039/b007127g.Suche in Google Scholar
11. Ding, B., Yi, L., Cheng, P., Liao, D., Yan, S. Synthesis and characterization of a 3D coordination polymer based on trinuclear triangular Cu II as secondary building units. Inorg. Chem. 2006, 45, 5799–5803. https://doi.org/10.1021/ic060030o.Suche in Google Scholar PubMed
12. Casarin, M., Corvaja, C., Di Nicola, C., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C., Piccinelli, F. One-dimensional and two-dimensional coordination polymers from self-assembling of trinuclear triangular Cu(II) secondary building units. Inorg. Chem. 2005, 44, 6265–6276. https://doi.org/10.1021/ic050678l.Suche in Google Scholar PubMed
13. Biswas, C., Drew, M. G. B., Escudero, D., Frontera, A., Ghosh, A. Anion–π, lone-pair–π, π–π and hydrogen-bonding interactions in a CuII complex of 2-picolinate and protonated 4,4′-bipyridine: crystal structure and theoretical studies. Eur. J. Inorg. Chem. 2009, 2009, 2238–2246. https://doi.org/10.1002/ejic.200900110.Suche in Google Scholar
14. Zhang, X., Wang, W., Hu, Z., Wang, G., Uvdal, K. Coordination polymers for energy transfer: preparations, properties, sensing applications, and perspectives. Coord. Chem. Rev. 2015, 284, 206–235. https://doi.org/10.1016/j.ccr.2014.10.006.Suche in Google Scholar
15. Cabaleiro-Lago, E. M., Rodríguez-Otero, J. On the nature of σ–σ, σ–π, and π–π stacking in extended systems. ACS Omega 2018, 3, 9348–9359. https://doi.org/10.1021/acsomega.8b01339.Suche in Google Scholar PubMed PubMed Central
16. Sengupta, S., Goswami, A., Ganguly, S., Bala, S., Bhunia, M. K., Mondal, R. Influence of chloro⋯chloro interaction and π–π stacking in 3D supramolecular framework construction. CrystEngComm 2011, 13, 6136–6149. https://doi.org/10.1039/c1ce05345k.Suche in Google Scholar
17. Das, A., Jana, A. D., Seth, S. K., Dey, B., Choudhury, S. R., Kar, T., Mukhopadhyay, S., Jiten Singh, N., Hwang, I. C., Kim, K. S. Intriguing π+–π interaction in crystal packing. J. Phys. Chem. B 2010, 114, 4166–4170. https://doi.org/10.1021/jp910129u.Suche in Google Scholar PubMed
18. Martinez, C. R., Iverson, B. L. Rethinking the term “pi-stacking”. Chem. Sci. 2012, 3, 2191. https://doi.org/10.1039/c2sc20045g.Suche in Google Scholar
19. Grimme, S. Do special noncovalent π–π stacking interactions really exist? Angew. Chem. Int. Ed. 2008, 47, 3430–3434. https://doi.org/10.1002/anie.200705157.Suche in Google Scholar PubMed
20. Xu, L., Miao, X., Ying, X., Deng, W. Two-dimensional self-assembled molecular structures formed by the competition of van Der Waals forces and dipole-dipole interactions. J. Phys. Chem. C 2012, 116, 1061–1069. https://doi.org/10.1021/jp210000e.Suche in Google Scholar
21. Morawietz, T., Singraber, A., Dellago, C., Behler, J. How van Der Waals interactions determine the unique properties of water. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 8368–8373. https://doi.org/10.1073/pnas.1602375113.Suche in Google Scholar PubMed PubMed Central
22. Holstein, B. R. The van Der Waals interaction. Am. J. Phys. 2001, 69, 441–449. https://doi.org/10.1119/1.1341251.Suche in Google Scholar
23. Wang, J., Román-Pérez, G., Soler, J. M., Artacho, E., Fernández-Serra, M.-V. Density, structure, and dynamics of water: the effect of van Der Waals interactions. J. Chem. Phys. 2011, 134, 024516. https://doi.org/10.1063/1.3521268.Suche in Google Scholar PubMed
24. Lin, I. C., Seitsonen, A. P., Coutinho-Neto, M. D., Tavernelli, I., Rothlisberger, U. Importance of van Der Waals interactions in liquid water. J. Phys. Chem. B 2009, 113, 1127–1131. https://doi.org/10.1021/jp806376e.Suche in Google Scholar PubMed
25. Desiraju, G., Steiner, T. Distinction between the weak hydrogen bond and the van Der Waals interaction. Chem. Commun. 1998, 891–892. https://doi.org/10.1039/a708099i.Suche in Google Scholar
26. Wang, Y., Cao, H., Zheng, B., Zhou, R., Duan, J. Solvent- and PH-dependent formation of four zinc porous coordination polymers: framework isomerism and gas separation. Cryst. Growth Des. 2018, 18, 7674–7682. https://doi.org/10.1021/acs.cgd.8b01433.Suche in Google Scholar
27. Wang, F. K., Yang, S. Y., Dong, H. Z. Solvent dependent zinc(II) coordination polymers with 1,3,5-benzenetricarboxylic acid and the selective photocatalytic degradation for organic dyes. J. Mol. Struct. 2021, 1227, 129540. https://doi.org/10.1016/j.molstruc.2020.129540.Suche in Google Scholar
28. Li, C. P., Du, M. Role of solvents in coordination supramolecular systems. Chem. Commun. 2011, 47, 5958–5972. https://doi.org/10.1039/c1cc10935a.Suche in Google Scholar PubMed
29. Contreras-Pereda, N., Hayati, P., Suárez-García, S., Esrafili, L., Retailleau, P., Benmansour, S., Novio, F., Morsali, A., Ruiz-Molina, D. Delamination of 2D coordination polymers: the role of solvent and ultrasound. Ultrason. Sonochem. 2019, 55, 186–195. https://doi.org/10.1016/j.ultsonch.2019.02.014.Suche in Google Scholar PubMed
30. Yang, J., Li, G. D., Cao, J. J., Yue, Q., Li, G. H., Chen, J. S. Structural variation from 1D to 3D: effects of ligands and solvents on the construction of lead(II)-organic coordination polymers. Chem. Eur. J. 2007, 13, 3248–3261. https://doi.org/10.1002/chem.200600730.Suche in Google Scholar PubMed
31. Rancan, M., Armelao, L. Exploiting dimensional variability in coordination polymers: solvent promotes reversible conversion between 3D and chiral 1D architectures. Chem. Commun. 2015, 51, 12947–12949. https://doi.org/10.1039/c5cc04349b.Suche in Google Scholar PubMed
32. Yuan, F., Xie, J., Hu, H. M., Yuan, C. M., Xu, B., Yang, M. L., Dong, F. X., Xue, G. L. Effect of PH/metal ion on the structure of metal-organic frameworks based on novel bifunctionalized ligand 4′-carboxy-4,2′:6′,4″-terpyridine. CrystEngComm 2013, 15, 1460–1467. https://doi.org/10.1039/c2ce26171e.Suche in Google Scholar
33. Li, N., Feng, R., Zhu, J., Chang, Z., Bu, X. H. Conformation versatility of ligands in coordination polymers: from structural diversity to properties and applications. Coord. Chem. Rev. 2018, 375, 558–586. https://doi.org/10.1016/j.ccr.2018.05.016.Suche in Google Scholar
34. Zeng, L. W., Hu, K. Q., Mei, L., Li, F. Z., Huang, Z. W., An, S. W., Chai, Z. F., Shi, W. Q. Structural diversity of bipyridinium-based uranyl coordination polymers: synthesis, characterization, and ion-exchange application. Inorg. Chem. 2019, 58, 14075–14084. https://doi.org/10.1021/acs.inorgchem.9b02106.Suche in Google Scholar PubMed
35. Zhang, Y., Huang, Y., Zhang, J., Zhu, L., Chen, K., Hao, J. Two unprecedented aromatic guanidines supramolecular chains self-assembled by hydrogen bonding interaction. J. Mol. Struct. 2015, 1097, 145–150. https://doi.org/10.1016/j.molstruc.2015.05.024.Suche in Google Scholar
36. Coe, B. J., Curati, N. R. M. Metal complexes for molecular electronics and photonics. Comments Inorg. Chem. 2004, 25, 147–184. https://doi.org/10.1080/02603590490883634.Suche in Google Scholar
37. Zheng, Y. Z., Zheng, Z., Chen, X. M. A symbol approach for classification of molecule-based magnetic materials exemplified by coordination polymers of metal carboxylates. Coord. Chem. Rev. 2014, 258–259, 1–15. https://doi.org/10.1016/j.ccr.2013.08.031.Suche in Google Scholar
38. Maspoch, D., Ruiz-Molina, D., Veciana, J. Magnetic nanoporous coordination polymers. J. Mater. Chem. 2004, 14, 2713–2723. https://doi.org/10.1039/b407169g.Suche in Google Scholar
39. Mondal, M., Jana, S., Drew, M. G. B., Ghosh, A. Application of two Cu(II)-azido based 1D coordination polymers in optoelectronic device: structural characterization and experimental studies. Polymer 2020, 204, 122815. https://doi.org/10.1016/j.polymer.2020.122815.Suche in Google Scholar
40. Stavila, V., Talin, A. A., Allendorf, M. D. MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 2014, 43, 5994–6010. https://doi.org/10.1039/C4CS00096J.Suche in Google Scholar
41. Loukopoulos, E., Kostakis, G. E. Review: recent advances of one-dimensional coordination polymers as catalysts. J. Coord. Chem. 2018, 71, 371–410. https://doi.org/10.1080/00958972.2018.1439163.Suche in Google Scholar
42. Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y., Kitagawa, S. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis. J. Am. Chem. Soc. 2007, 129, 2607–2614. https://doi.org/10.1021/ja067374y.Suche in Google Scholar PubMed
43. Eddaoudi, M., Li, H., Yaghi, O. M. Highly porous and stable metal-organic frameworks: structure design and sorption properties. J. Am. Chem. Soc. 2000, 122, 1391–1397. https://doi.org/10.1021/ja9933386.Suche in Google Scholar
44. Semerci, F., Yeşilel, O. Z., Soylu, M. S., Keskin, S., Büyükgüngör, O. A two-dimensional photoluminescent cadmium(II) coordination polymer containing a new coordination mode of pyridine-2,3-dicarboxylate: synthesis, structure and molecular simulations for gas storage and separation applications. Polyhedron 2013, 50, 314–320. https://doi.org/10.1016/j.poly.2012.10.009.Suche in Google Scholar
45. Farrell, D. M. M., Ferguson, G., Lough, A. J., Glidewell, C. Chiral versus racemic building blocks in supra-molecular chemistry: tartrate salts of organic diamines. Acta Crystallogr. Sect. B Struct. Sci. 2002, 58, 272–288. https://doi.org/10.1107/S0108768101019632.Suche in Google Scholar PubMed
46. Farrell, D. M. M., Ferguson, G., Lough, A. J., Glidewell, C. Chiral versus racemic building blocks in supramolecular chemistry: malate salts of organic diamines. Acta Crystallogr. Sect. B Struct. Sci. 2002, 58, 530–544. https://doi.org/10.1107/S0108768102000642.Suche in Google Scholar PubMed
47. Zhang, J., Zhu, L. G. Different supra-molecular assemblies in two 1:1 proton-transfer compounds of sulfobenzoic acids with aromatic amines. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2007, 63, 484–487. https://doi.org/10.1107/S0108270107033008.Suche in Google Scholar PubMed
48. Ji, W., Xue, B., Bera, S., Guerin, S., Shimon, L. J. W., Ma, Q., Tofail, S. A. M., Thompson, D., Cao, Y., Wang, W., Gazit, E. Modulation of physical properties of organic cocrystals by amino acid chirality. Mater. Today 2021, 42, 29–40. https://doi.org/10.1016/j.mattod.2020.10.007.Suche in Google Scholar
49. Sun, L., Wang, Y., Yang, F., Zhang, X., Hu, W. Cocrystal engineering: a collaborative strategy toward functional materials. Adv. Mater. 2019, 31, 1–22. https://doi.org/10.1002/adma.201902328.Suche in Google Scholar PubMed
50. Ji, W., Yuan, C., Chakraborty, P., Makam, P., Bera, S., Rencus-Lazar, S., Li, J., Yan, X., Gazit, E. Coassembly-induced transformation of dipeptide amyloid-like structures into stimuli-responsive supramolecular materials. ACS Nano 2020, 14, 7181–7190. https://doi.org/10.1021/acsnano.0c02138.Suche in Google Scholar PubMed
51. Sprague-Klein, E. A., Ho-Wu, R., Nguyen, D., Coste, S. C., Wu, Y., McMahon, J. J., Seideman, T., Schatz, G. C., Van Duyne, R. P. Modulating the electron affinity of small bipyridyl molecules on single gold nanoparticles for plasmon-driven electron transfer. J. Phys. Chem. C 2021, 125, 22142–22153. https://doi.org/10.1021/acs.jpcc.1c07803.Suche in Google Scholar
52. Ma, L. F., Meng, Q. L., Li, C. P., Li, B., Wang, L. Y., Du, M., Liang, F. P. Delicate substituent effect of benzene-1,2,3-tricarboxyl tectons on structural assembly of unusual self-penetrating coordination frameworks. Cryst. Growth Des. 2010, 10, 3036–3043. https://doi.org/10.1021/cg100082f.Suche in Google Scholar
53. Li, F. F., Zhang, Q. Q., Zhao, Y. Y., Jiang, S. X., Shi, X. Y., Cui, J. Z., GaoSyntheses, H. L. Structures, and properties of six new coordination polymers constructed from N-heterocyclic multicarboxylic acids. RSC Adv. 2014, 4, 10424–10433. https://doi.org/10.1039/c4ra00180j.Suche in Google Scholar
54. Li, J., Wang, D. P., Chen, Y. G., Zhang, C. J. Monodentate coordination of 4,4′-bipyridine leading to a supramolecular network – synthesis and crystal structure of [H2bpp] [{Cu(Hbpy)2}{α-HP2W18O62}]·4H2O. Z. Anorg. Allg. Chem. 2009, 635, 2385–2387. https://doi.org/10.1002/zaac.200900339.Suche in Google Scholar
55. Ruiz-Pérez, C., Lorenzo-Luis, P., Hernández-Molina, M., Laz, M. M., Delgado, F. S., Gili, P., Julve, M. 1,2,4,5-Benzenetetracarboxylic acid and 4,4′-bipyridine as ligands in designing low-dimensional coordination polymers. Eur. J. Inorg. Chem. 2004, 2004, 3873–3879. https://doi.org/10.1002/ejic.200400217.Suche in Google Scholar
56. Wang, G. H., Li, Z. G., Jia, H. Q., Hu, N. H., Xu, J. W. Metal-organic frameworks based on the pyridine-2,3-dicarboxylate and a flexible bispyridyl ligand: syntheses, structures, and photoluminescence. CrystEngComm 2009, 11, 292–297. https://doi.org/10.1039/b809557d.Suche in Google Scholar
57. Li, Y. P., Ju, F. Y., Li, G. L., Xin, L. Y., Li, X. L., Liu, G. Z. Two zinc(II)/cadmium(II) coordination polymers constructed by semirigid carboxylic acid ligand: syntheses, structures, and photoluminescence properties. Russ. J. Coord. Chem. 2019, 45, 517–523. https://doi.org/10.1134/S1070328419070054.Suche in Google Scholar
58. Corrêa, C. C., Diniz, R., Chagas, L. H., Rodrigues, B. L., Yoshida, M. I., Teles, W. M., Machado, F. C., de Oliveira, L. F. C. Transition metal complexes with squarate anion and the pyridyl-donor ligand 1,3-bis(4-pyridyl)propane (BPP): synthesis, crystal structure and spectroscopic investigation. Polyhedron 2007, 26, 989–995. https://doi.org/10.1016/j.poly.2006.09.037.Suche in Google Scholar
59. Han, Z., Wang, Y., Song, X., Zhai, X., Hu, C. Molecular assemblies based on polytungstate clusters and the flexible organic ligand 1,3-bis(4-pyridyl)propane. Eur. J. Inorg. Chem. 2011, 2011, 3082–3090. https://doi.org/10.1002/ejic.201100051.Suche in Google Scholar
60. Wu, L., Chigan, D., Yan, L., Chen, H. Metal organic frameworks with uni-di-and tri-nuclear Cd(II) SBU prepared from 1,3-bis(4-pyridyl)propane and different dicarboxylate ligands: syntheses, structures and luminescent properties. RSC Adv. 2017, 7, 5541–5548. https://doi.org/10.1039/C6RA26855B.Suche in Google Scholar
61. Meng, F. J., Jia, H. Q., Hu, N. H., Xu, J. W. PH-controlled synthesis of two new coordination polymers modeled by pyridine-2,4-dicarboxylic acid. Inorg. Chem. Commun. 2012, 21, 186–190. https://doi.org/10.1016/j.inoche.2012.04.012.Suche in Google Scholar
62. Wilson, R. E., Schnaars, D. D., Andrews, M. B., Cahill, C. L. Supramolecular interactions in PuO2Cl42– and PuCl62– complexes with protonated pyridines: synthesis, crystal structures, and Raman spectroscopy. Inorg. Chem. 2014, 53, 383–392. https://doi.org/10.1021/ic4023294.Suche in Google Scholar PubMed
63. Kong, D., McBee, J. L., Clearfield, A. Crystal engineered acid−base complexes with 2D and 3D hydrogen bonding systems using a bisphosphonic acid as the building block. Cryst. Growth Des. 2005, 5, 643–649. https://doi.org/10.1021/cg0497243.Suche in Google Scholar
64. Toma, O., Mercier, N., Allain, M., Botta, C. Protonated N-oxide-4,4′-bipyridine: from luminescent BiIII complexes to hybrids based on H-bonded dimers or H-bonded open 2D square supramolecular networks. CrystEngComm 2013, 15, 8565–8571. https://doi.org/10.1039/c3ce41579a.Suche in Google Scholar
65. Rajakannu, P., Howlader, R., Kalita, A. C., Butcher, R. J., Murugavel, R. Role of 4,4′-bipyridine versus longer spacers 4,4′-azobipyridine, 1,2-bis(4-pyridyl)ethylene, and 1,2-bis(pyridin-3-Ylmethylene)hydrazine in the formation of thermally labile metallophosphate coordination polymers. Inorg. Chem. Front. 2015, 2, 55–66. https://doi.org/10.1039/C4QI00149D.Suche in Google Scholar
66. Felloni, M., Blake, A. J., Hubberstey, P., Wilson, C., Schröder, M. Solvent control of supramolecular architectures derived from 4,4′-bipyridyl-bridged copper(II) dipicolinate complexes. Cryst. Growth Des. 2009, 9, 4685–4699. https://doi.org/10.1021/cg900552b.Suche in Google Scholar
67. Nakanish, H., Jones, W., Thomas, J. M., Hursthouse, M. B., Motevalli, M. Monitoring the crystallographic course of a single-crystal → single-crystal photodimerization by X-ray diffractometry. J. Chem. Soc. Chem. Commun. 1980, 611–612. https://doi.org/10.1039/c39800000611.Suche in Google Scholar
68. Schmidt, G. M. J. Photodimerization in the solid state. Pure Appl. Chem. 1971, 27, 647–678. https://doi.org/10.1351/pac197127040647.Suche in Google Scholar
69. Wang, C. C., Yin, C. Crystal structure of catena-(trans-bis(1-(4-pyridyl)-2-(4-pyridinio) ethylene)dodecaoxocyclotetravanadato(V)cobalt(II), Co(C12H 11)2(V4O12). Z. Kristallogr. – New Cryst. Struct. 2008, 223, 13–15. https://doi.org/10.1524/ncrs.2008.0007.Suche in Google Scholar
70. Fernández De Luis, R., Urtiaga, M. K., Mesa, J. L., Segura, J. O. G. D., Rojo, T., Arriortua, M. I. {Co(HBpe)2}(V4O12): pedal motion induced order-disorder P1̄ → C1̄ transition and disrupted C1̄ → C2/m displacive transition due to thermal instability. CrystEngComm 2011, 13, 6488–6498. https://doi.org/10.1039/c1ce05418j.Suche in Google Scholar
71. Li, X. H., Xiao, H. P., Yang, S. Z. μ-1,2-Bis(4-pyridyl)ethene-κ2N:N′-bis(tetraaqua{4-[2-(4-pyridinio)-ethenyl]pyridine-κN}cobalt(II)) hexaaquacobalt(II) tetrakis(sulfate) octahydrate. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2005, 61, 112–114. https://doi.org/10.1107/S0108270104030434.Suche in Google Scholar PubMed
72. Dega-Szafran, Z., Katrusiak, A., Szafran, M. Centrosymmetric dimer of quinuclidine betaine and squaric acid complex. J. Mol. Struct. 2012, 1030, 184–190. https://doi.org/10.1016/j.molstruc.2012.04.028.Suche in Google Scholar
73. Flakus, H. T. Vibronic model for H/D isotopic self-organization effects in centrosymmetric dimers of hydrogen bonds. J. Mol. Struct. 2003, 646, 15–23. https://doi.org/10.1016/S0022-2860(02)00487-8.Suche in Google Scholar
74. Ziffer, H., Levin, I. W. Determining centrosymmetric dimers by infrared and Raman spectroscopy. J. Org. Chem. 1969, 34, 4056–4060. https://doi.org/10.1021/jo01264a065.Suche in Google Scholar PubMed
75. Liu, B., Zhou, H. F., Guan, Z. H., Hou, L., Cui, B., Wang, Y. Y. Cleavage of a C–C σ bond between two phenyl groups under mild conditions during the construction of Zn(II) organic frameworks. Green Chem. 2016, 18, 5418–5422. https://doi.org/10.1039/c6gc01686c.Suche in Google Scholar
76. Wang, Y. F., Zang, L. L., Liu, J. F. Synthesis and crystal structures of two zinc(II) complexes with 4-hydroxypyridine-2,6-dicarboxylic acid. Russ. J. Coord. Chem. 2014, 40, 331–336. https://doi.org/10.1134/S1070328414050121.Suche in Google Scholar
77. Paul, A. K., Karthik, R., Natarajan, S. Synthesis, structure, photochemical [2 + 2] cycloaddition, transformation, and photocatalytic studies in a family of inorganic-organic hybrid cadmium thiosulfate compounds. Cryst. Growth Des. 2011, 11, 5741–5749. https://doi.org/10.1021/cg2013655.Suche in Google Scholar
78. Semerci, F., Yeşilel, O. Z., Yüksel, F., Şahin, O. One-pot synthesis of two new metal-organic networks: hydrogen bonded mononuclear Cu(II) complex and mixed-valence Cu(I,II) coordination polymer with encapsulated 14-membered unique water cluster. Inorg. Chem. Commun. 2015, 62, 29–33. https://doi.org/10.1016/j.inoche.2015.10.016.Suche in Google Scholar
79. Singha, D., Sarkar, S., Pal, N., Jana, A. D. Protonation induced self-complementarity of rod-like Cu(NTA)(BpeH) units and their layered supramolecular self-assembly entrapping heptamer like water clusters. Results Chem. 2022, 4, 100421. https://doi.org/10.1016/j.rechem.2022.100421.Suche in Google Scholar
80. Ghosh, D., Powell, D. R., Van Horn, J. D. The tris(malonato)chromate(III) anion with an organic cation. Acta Crystallogr., Sect. E: Struct. Rep. Online 2004, 60, 764–767. https://doi.org/10.1107/S1600536804010748.Suche in Google Scholar
81. Ross, T. M., Neville, S. M., Innes, D. S., Turner, D. R., Moubaraki, B., Murray, K. S. Spin crossover in iron(III) Schiff-base 1-D chain complexes. Dalton Trans. 2010, 39, 149–159. https://doi.org/10.1039/b913234a.Suche in Google Scholar PubMed
82. Huang, Y. J., Zheng, Y. Q., Wang, J. J., Zhou, L. X. A new bismuth-based coordination polymer as an efficient visible light responding photocatalyst under white LED irradiation. J. Solid State Chem. 2017, 246, 42–47. https://doi.org/10.1016/j.jssc.2016.10.028.Suche in Google Scholar
83. Wenger, O. S., Henling, L. M., Day, M. W., Winkler, J. R., Gray, H. B. Photoswitchable luminescence of rhenium(I) tricarbonyl diimines. Inorg. Chem. 2004, 43, 2043–2048. https://doi.org/10.1021/ic030324z.Suche in Google Scholar PubMed
84. Alghool, S., Slebodnick, C. Tetranuclear dioxomolybdenum (VI) cluster anion, hydrogen bond interaction with 1,2-di(4-pyridyl)ethylene: crystal structure and electrochemical measurement. J. Therm. Anal. Calorim. 2016, 124, 847–855. https://doi.org/10.1007/s10973-015-5211-y.Suche in Google Scholar
85. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Had, M. Gaussian 09 Software Package; Gaussian, Inc.: Wallingford, CT, 2009. https://gaussian.com/glossary/g09/.Suche in Google Scholar
86. Tirado-Rives, J., Jorgensen, W. L. Performance of B3LYP density functional methods for a large set of organic molecules. J. Chem. Theory Comput. 2008, 4, 297–306. https://doi.org/10.1021/ct700248k.Suche in Google Scholar PubMed
87. Zhao, Y., Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor. Chem. Acc. 2008, 120, 215–241. https://doi.org/10.1007/s00214-007-0310-x.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
- Advanced synthetic routes of metal organic frameworks and their diverse applications
- Carbon materials derived by crystalline porous materials for capacitive energy storage
- BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
- Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base
- Solid-phase extraction of organophosphates from polluted waters on a matrix-imprinted sorbent
- Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
- Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
- Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
- Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
- Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
- A review of carbon-based adsorbents for the removal of organic and inorganic components
- Mercury removal from water: insights from MOFs and their composites
- Organometallic complexes and reaction methods for synthesis: a review
- Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity
Artikel in diesem Heft
- Frontmatter
- Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
- Advanced synthetic routes of metal organic frameworks and their diverse applications
- Carbon materials derived by crystalline porous materials for capacitive energy storage
- BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
- Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base
- Solid-phase extraction of organophosphates from polluted waters on a matrix-imprinted sorbent
- Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
- Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
- Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
- Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
- Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
- A review of carbon-based adsorbents for the removal of organic and inorganic components
- Mercury removal from water: insights from MOFs and their composites
- Organometallic complexes and reaction methods for synthesis: a review
- Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity