Home Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity
Article
Licensed
Unlicensed Requires Authentication

Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity

  • Peshang Khdir Omer , Nazk M. Aziz and Rebaz Anwar Omer ORCID logo EMAIL logo
Published/Copyright: August 8, 2024

Abstract

Throughout history, metal-based coordination compounds have been used for medical purposes, including the treatment of various illnesses like cancer. Since the discovery of cisplatin in 1965, many other metal coordinating complexes have been developed and evaluated, involving metals such as platinum, iron, zinc, ruthenium, gold, silver, titanium, and copper. The goal behind these efforts is to create effective and safe medications. At the moment, there are a lot of studies talking about the use of cytostatic metal complexes, mainly on promising platinum- and non-platinum-based drugs in both preclinical and clinical trials. However, there is a lack of recent comprehensive studies that cover both the chemical and biological aspects of metal-based coordinating molecules in the context of cancer therapy. This review aims to provide a thorough analysis of the coordination chemistry of existing and innovative cytostatic substances. It will include a description of their design and synthesis, as well as a summary of the biochemical reactivity and physicochemical features of potential metal-containing complexes.


Corresponding author: Rebaz Anwar Omer, Department of Chemistry, Faculty of Science & Health, Koya University, KOY45, Kurdistan Region – F. R, Koya, Iraq; and Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil 44001, Iraq, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Ahmed, L. O.; Omer, R. A. Hydroxyapatite Biomaterials: A Comprehensive Review of Their Properties, Structures, Clinical Applications, and Producing Techniques. Rev. Inorg. Chem. 2024, 44 (4), 599–618; https://doi.org/10.1515/revic-2024-0018.Search in Google Scholar

2. Algra, A. M.; Rothwell, P. M. Effects of Regular Aspirin on Long-Term Cancer Incidence and Metastasis: a Systematic Comparison of Evidence from Observational Studies Versus Randomised Trials. Lancet Oncol. 2012, 13518–13527. https://doi.org/10.1016/s1470-2045(12)70112-2.Search in Google Scholar PubMed

3. Al-Obaidy, G. S.; Al Obaidy, G. S. A Review for the Coordination Compounds in the Human Body and Some of its Clinical and Biological Aspects. World Bull. Public Health 2022, 137–215.Search in Google Scholar

4. Banti, C. N.; Hadjikakou, S. K. Anti-proliferative and Anti-tumor Activity of Silver (I) Compounds. Metallomics 2013, 5569–5596. https://doi.org/10.1039/c3mt00046j.Search in Google Scholar PubMed

5. Barry, N. P.; Sadler, P. J. Exploration of the Medical Periodic Table: towards New Targets. Chem. Commun. 2013, 495106–495131, https://doi.org/10.1039/c3cc41143e.Search in Google Scholar PubMed

6. Biersack, B.; Ahmad, A.; Sarkar, H. F.; Schobert, R. Coinage Metal Complexes against Breast Cancer. Curr. Med. Chem. 2012, 193949–193956. https://doi.org/10.2174/092986712802002482.Search in Google Scholar PubMed

7. Boechat, N.; Kover, W. B.; Bastos, M. M.; Romeiro, N. C.; Silva, A. S.; Santos, F. C.; Valverde, A. L.; Azevedo, M. L.; Wollinger, W.; Souza, T. M.; de Souza, S. L. O.; de Frugulhetti, I. C. P. P. Design, Synthesis, and Biological Evaluation of New 3-Hydroxy-2-Oxo-3-Trifluoromethylindole as Potential HIV-1 Reverse Transcriptase Inhibitors. Med. Chem. Res. 2007, 15492–15510. https://doi.org/10.1007/s00044-007-9004-0.Search in Google Scholar

8. Bruijnincx, P. C.; Sadler, P. J. New Trends for Metal Complexes with Anticancer Activity. Curr. Opin. Chem. Biol. 2008, 12197–12206. https://doi.org/10.1016/j.cbpa.2007.11.013.Search in Google Scholar PubMed PubMed Central

9. Che, C.-M.; Sun, R. W.-Y.; Yu, W.-Y.; Ko, C.-B.; Zhu, N.; Sun, H. Gold (III) Porphyrins as a New Class of Anticancer Drugs: Cytotoxicity, DNA Binding and Induction of Apoptosis in Human Cervix Epitheloid Cancer Cells. Chem. Commun. 2003, 1718–1719. https://doi.org/10.1039/b303294a.Search in Google Scholar PubMed

10. El-Asmy, H. A.; Butler, I. S.; Mouhri, Z. S.; Jean-Claude, B. J.; Emmam, M. S.; Mostafa, S. I. Zinc (II), Ruthenium (II), Rhodium (III), Palladium (II), Silver (I), Platinum (II) and MoO22+ Complexes of 2-(2′-Hydroxy-5′-Methylphenyl)-Benzotriazole as Simple or Primary Ligand and 2, 2′-bipyridyl, 9, 10-phenanthroline or Triphenylphosphine as Secondary Ligands: Structure and Anticancer Activity. J. Mol. Struct. 2014, 1059193–1059201.10.1016/j.molstruc.2013.11.039Search in Google Scholar

11. Fries, J. F.; Bloch, D.; Spitz, P.; Mitchell, D. M. Cancer in Rheumatoid Arthritis: a Prospective Long-Term Study of Mortality. Am. J. Med. 1985, 7856–7859. https://doi.org/10.1016/0002-9343(85)90247-5.Search in Google Scholar PubMed

12. Gârban, Z.; Silaghi-Dumitrescu, R.; Gârban, G.; Avacovici, A.; Hădărugă, N.; Baltă, C.; Ghibu, G.-D.; Bischin, C.; Rada, O.-A. Metallomics Related to Gallium Compounds: Biochemical and Xenobiochemical Aspects. Maced. J. Chem. Chem. Eng. 2014, 3339–3352. https://doi.org/10.20450/mjcce.2014.131.Search in Google Scholar

13. Geldmacher, Y.; Oleszak, M.; Sheldrick, W. S. Rhodium (III) and Iridium (III) Complexes as Anticancer Agents. Inorg. Chim. Acta. 2012, 39384–40102. https://doi.org/10.1016/j.ica.2012.06.046.Search in Google Scholar

14. Gromer, S.; Arscott, L. D.; Williams, C. H.; Schirmer, R. H.; Becker, K. Human Placenta Thioredoxin Reductase: Isolation of the Selenoenzyme, Steady State Kinetics, and Inhibition by Therapeutic Gold Compounds. J. Biol. Chem. 1998, 27320096–27320101. https://doi.org/10.1074/jbc.273.32.20096.Search in Google Scholar PubMed

15. Hossain, M. S.; Roy, P. K.; Ali, R.; Zakaria, C.; Kudrat-E-Zahan, M. Selected Pharmacological Applications of 1st Row Transition Metal Complexes: A Review. Clin. Med. Res. 2017, 6177–6191.Search in Google Scholar

16. Jung, M.; Mertens, C.; Tomat, E.; Brüne, B. Iron as a Central Player and Promising Target in Cancer Progression. Int. J. Mol. Sci. 2019, 20273. https://doi.org/10.3390/ijms20020273.Search in Google Scholar PubMed PubMed Central

17. Katsaros, N.; Anagnostopoulou, A. Rhodium and its Compounds as Potential Agents in Cancer Treatment. Crit. Rev. Oncol.-Hematol. 2002, 42 (3), 297–308; https://doi.org/10.1016/s1040-8428(01)00222-0.Search in Google Scholar PubMed

18. Klug, A. The Discovery of Zinc Fingers and Their Applications in Gene Regulation and Genome Manipulation. Annu. Rev. Biochem. 2010, 79213–79231. https://doi.org/10.1146/annurev-biochem-010909-095056.Search in Google Scholar PubMed

19. Kouodom, M. N.; Boscutti, G.; Celegato, M.; Crisma, M.; Sitran, S.; Aldinucci, D.; Formaggio, F.; Ronconi, L.; Fregona, D. Rational Design of Gold (III)-dithiocarbamato Peptidomimetics for the Targeted Anticancer Chemotherapy. J. Inorg. Biochem. 2012, 117, 248–260; https://doi.org/10.1016/j.jinorgbio.2012.07.001.Search in Google Scholar PubMed

20. Krasnovskaya, O.; Naumov, A.; Guk, D.; Gorelkin, P.; Erofeev, A.; Beloglazkina, E.; Majouga, A. Copper Coordination Compounds as Biologically Active Agents. Int. J. Mol. Sci. 2020, 213965. https://doi.org/10.3390/ijms21113965.Search in Google Scholar PubMed PubMed Central

21. Kyros, L.; Banti, C.; Kourkoumelis, N.; Kubicki, M.; Sainis, I.; Hadjikakou, S. Synthesis, Characterization, and Binding Properties towards CT-DNA and Lipoxygenase of Mixed-Ligand Silver (I) Complexes with 2-Mercaptothiazole and its Derivatives and Triphenylphosphine. JBIC, J. Biol. Inorg. Chem. 2014, 19449–19464. https://doi.org/10.1007/s00775-014-1089-6.Search in Google Scholar PubMed

22. Lin, M.; Cao, Y.; Pei, H.; Chen, Y.; Wu, J.; Li, Y.; Liu, W. Titanium Isopropoxide Complexes Supported by Pyrrolyl Schiff Base Ligands: Syntheses, Structures, and Antitumor Activity. RSC Adv. 2014, 49255–49260. https://doi.org/10.1039/c3ra45823g.Search in Google Scholar

23. Lu, G.-L.; Stevenson, R. J.; Chang, J. Y.-C.; Brothers, P. J.; Ware, D. C.; Wilson, W. R.; Denny, W. A.; Tercel, M. N-Alkylated Cyclen Cobalt (III) Complexes of 1-(chloromethyl)-3-(5, 6, 7-Trimethoxyindol-2-Ylcarbonyl)-2, 3-Dihydro-1h-Pyrrolo [3, 2-f] Quinolin-5-Ol DNA Alkylating Agent as Hypoxia-Activated Prodrugs. Bioorg. Med. Chem. 2011, 194861–194867. https://doi.org/10.1016/j.bmc.2011.06.076.Search in Google Scholar PubMed

24. Mahapatra, D. K.; Bharti, S. K.; Asati, V.; Singh, S. K. Perspectives of Medicinally Privileged Chalcone Based Metal Coordination Compounds for Biomedical Applications. Eur. J. Med. Chem. 2019, 174142–174158. https://doi.org/10.1016/j.ejmech.2019.04.032.Search in Google Scholar PubMed

25. Marcon, G.; Carotti, S.; Coronnello, M.; Messori, L.; Mini, E.; Orioli, P.; Mazzei, T.; Cinellu, M. A.; Minghetti, G. Gold (III) Complexes with Bipyridyl Ligands: Solution Chemistry, Cytotoxicity, and DNA Binding Properties. J. Med. Chem. 2002, 451672–451677. https://doi.org/10.1021/jm010997w.Search in Google Scholar PubMed

26. Medici, S.; Peana, M.; Crisponi, G.; Nurchi, V. M.; Lachowicz, J. I.; Remelli, M.; Zoroddu, M. A. Silver Coordination Compounds: A New Horizon in Medicine. Coord. Chem. Rev. 2016, 327349–327359. https://doi.org/10.1016/j.ccr.2016.05.015.Search in Google Scholar

27. Meléndez, E. Titanium Complexes in Cancer Treatment. Crit. Rev. Oncol.-Hematol. 2002, 42309–42315. https://doi.org/10.1016/s1040-8428(01)00224-4.Search in Google Scholar PubMed

28. Milacic, V.; Chen, D.; Ronconi, L.; Landis-Piwowar, K. R.; Fregona, D.; Dou, Q. P. A Novel Anticancer Gold (III) Dithiocarbamate Compound Inhibits the Activity of a Purified 20S Proteasome and 26S Proteasome in Human Breast Cancer Cell Cultures and Xenografts. Cancer Res. 2006, 6610478–6610486. https://doi.org/10.1158/0008-5472.can-06-3017.Search in Google Scholar PubMed

29. Mjos, K. D.; Orvig, C. Metallodrugs in Medicinal Inorganic Chemistry. Chem. Rev. 2014, 114 (8), 4540–4563; https://doi.org/10.1021/cr400460s.Search in Google Scholar PubMed

30. Oehninger, L.; Küster, L.N.; Schmidt, C.; Muñoz‐Castro, A.; Prokop, A.; Ott, I. A Chemical–Biological Evaluation of Rhodium (I) N‐Heterocyclic Carbene Complexes as Prospective Anticancer Drugs. Chem. Eur. J. 2013, 1917871–1917880. https://doi.org/10.1002/chem.201302819.Search in Google Scholar PubMed

31. Orlowski, R. Z. The Role of the Ubiquitin-Proteasome Pathway in Apoptosis. Cell Death Differ. 1999, 6303–6313. https://doi.org/10.1038/sj.cdd.4400505.Search in Google Scholar PubMed

32. Ott, I.; Gust, R. Non Platinum Metal Complexes as Anti‐cancer Drugs. Arch. Pharmazie: An International Journal Pharmaceutical and Medicinal Chemistry 2007, 340 (3), 117–126; https://doi.org/10.1002/ardp.200600151.Search in Google Scholar PubMed

33. Pessoa, J. C.; Etcheverry, S.; Gambino, D. Vanadium Compounds in Medicine. Coord. Chem. Rev. 2015, 30124–30148. https://doi.org/10.1016/j.ccr.2014.12.002.Search in Google Scholar PubMed PubMed Central

34. Pranczk, J.; Jacewicz, D.; Wyrzykowski, D.; Chmurzynski, L. Platinum (II) and Palladium (II) Complex Compounds as Anti-cancer Drugs. Methods of Cytotoxicity Determination. Curr. Pharmaceut. Anal. 2014, 102–109. https://doi.org/10.2174/157341291001140102103324.Search in Google Scholar

35. Psomas, G. Copper (II) and Zinc (II) Coordination Compounds of Non-steroidal Anti-inflammatory Drugs: Structural Features and Antioxidant Activity. Coord. Chem. Rev. 2020, 412213259. https://doi.org/10.1016/j.ccr.2020.213259.Search in Google Scholar

36. Raducka, A.; Świątkowski, M.; Korona-Głowniak, I.; Kaproń, B.; Plech, T.; Szczesio, M.; Gobis, K.; Szynkowska-Jóźwik, M. I.; Czylkowska, A. Zinc Coordination Compounds with Benzimidazole Derivatives: Synthesis, Structure, Antimicrobial Activity and Potential Anticancer Application. Int. J. Mol. Sci. 2022, 236595. https://doi.org/10.3390/ijms23126595.Search in Google Scholar PubMed PubMed Central

37. Raman, N.; Sobha, S.; Mitu, L. Synthesis, Structure Elucidation, DNA Interaction, Biological Evaluation, and Molecular Docking of an Isatin-Derived Tyramine Bidentate Schiff Base and its Metal Complexes. Monatshefte für Chemie-Chemical Monthly 2012, 1431019–1431030. https://doi.org/10.1007/s00706-011-0699-8.Search in Google Scholar

38. Rehder, D. Vanadium. Its Role for Humans. Interrelations Between Essential Metal Ions and Human Diseases, 2013; pp 139–169.10.1007/978-94-007-7500-8_5Search in Google Scholar PubMed PubMed Central

39. Rufino-González, Y.; Ponce-Macotela, M.; García-Ramos, J. C.; Martínez-Gordillo, M. N.; Galindo-Murillo, R.; González-Maciel, A.; Reynoso-Robles, R.; Tovar-Tovar, A.; Flores-Alamo, M.; Toledano-Magaña, Y.; Ruiz-Azuara, L. Antigiardiasic Activity of Cu (II) Coordination Compounds: Redox Imbalance and Membrane Damage after a Short Exposure Time. J. Inorg. Biochem. 2019, 19583–19590. https://doi.org/10.1016/j.jinorgbio.2019.03.012.Search in Google Scholar PubMed

40. Schwietert, C. W.; McCue, J. P. Coordination Compounds in Medicinal Chemistry. Coord. Chem. Rev. 1999, 18467–18489. https://doi.org/10.1016/s0010-8545(98)00205-7.Search in Google Scholar

41. Silva, A.; Luís, D.; Santos, S.; Silva, J.; Mendo, A. S.; Coito, L.; Silva, T. F.; da Silva, M. F. C. G.; Martins, L. M.; Pombeiro, A. J.; Borralho, P. M.; Rodrigues, C. M.; Cabral, M. G.; Videira, P. A.; Monteiro, C.; Fernandes, A. R. Biological Characterization of the Antiproliferative Potential of Co (II) and Sn (IV) Coordination Compounds in Human Cancer Cell Lines: a Comparative Proteomic Approach. Drug Metabol. Drug Interact. 2013, 28, 167–176. https://doi.org/10.1515/dmdi-2013-0015.Search in Google Scholar PubMed

42. Silva, T. F.; Smoleński, P.; Martins, L. M.; Guedes da Silva, M. F. C.; Fernandes, A. R.; Luis, D.; Silva, A.; Santos, S.; Borralho, P. M.; Rodrigues, C. M.; Pombeiro, A. J. L. Cobalt and Zinc Compounds Bearing 1, 10‐Phenanthroline‐5, 6‐dione or 1, 3, 5‐Triaza‐7‐phosphaadamantane Derivatives–Synthesis, Characterization, Cytotoxicity, and Cell Selectivity Studies. Eur. J. Inorg. Chem. 2013, 20133651–20133658. https://doi.org/10.1002/ejic.201300197.Search in Google Scholar

43. Singh, V. K.; Singh, V. K.; Mishra, A.; Singh, A. A.; Prasad, G.; Singh, A. K. Recent Advancements in Coordination Compounds and Their Potential Clinical Application in the Management of Diseases: An Up-To-Date Review. Polyhedron 2023, 116485.10.1016/j.poly.2023.116485Search in Google Scholar

44. Sun, R. W.-Y.; Ma, D.-L.; Wong, E. L.-M.; Che, C.-M. Some Uses of Transition Metal Complexes as Anti-cancer and Anti-HIV Agents. Dalton Trans. 2007, 4884–4892. https://doi.org/10.1039/b705079h.Search in Google Scholar PubMed

45. Tan, S. J.; Yan, Y. K.; Lee, P. P. F.; Lim, K. H. Copper, Gold and Silver Compounds as Potential New Anti-tumor Metallodrugs. Future Med. Chem. 2010, 21591–21608. https://doi.org/10.4155/fmc.10.234.Search in Google Scholar PubMed

46. Thompson, K. H.; Orvig, C. Boon and Bane of Metal Ions in Medicine. Science 2003, 300936–300939. https://doi.org/10.1126/science.1083004.Search in Google Scholar PubMed

47. Tiekink, E. R. Gold Derivatives for the Treatment of Cancer. Crit. Rev. Oncol.-Hematol. 2002, 42225–42248. https://doi.org/10.1016/s1040-8428(01)00216-5.Search in Google Scholar PubMed

48. Trudu, F.; Amato, F.; Vaňhara, P.; Pivetta, T.; Peña-Méndez, E.; Havel, J. Coordination Compounds in Cancer: Past, Present and Perspectives. J. Appl. Biomed. 2015, 1379–2103. https://doi.org/10.1016/j.jab.2015.03.003.Search in Google Scholar

49. Wang, X.; Guo, Z. Towards the Rational Design of Platinum (II) and Gold (III) Complexes as Antitumour Agents. Dalton Trans. 2008, 1521–1532. https://doi.org/10.1039/b715903j.Search in Google Scholar PubMed

50. Wang, N. X.; von Recum, H. A. Affinity‐based Drug Delivery. Macromol. Biosci. 2011, 11321–11332. https://doi.org/10.1002/mabi.201000206.Search in Google Scholar PubMed

51. Wang, Y.; He, Q.-Y.; Sun, R. W.-Y.; Che, C.-M.; Chiu, J.-F. Gold (III) Porphyrin 1a Induced Apoptosis by Mitochondrial Death Pathways Related to Reactive Oxygen Species. Cancer Res. 2005, 6511553–6511564. https://doi.org/10.1158/0008-5472.can-05-2867.Search in Google Scholar

52. Yu, Y.; Kalinowski, D. S.; Kovacevic, Z.; Siafakas, A. R.; Jansson, P. J.; Stefani, C.; Lovejoy, D. B.; Sharpe, P. C.; Bernhardt, P. V.; Richardson, D. R. Thiosemicarbazones from the Old to New: Iron Chelators that Are More Than Just Ribonucleotide Reductase Inhibitors. J. Med. Chem. 2009, 525271–525294. https://doi.org/10.1021/jm900552r.Search in Google Scholar PubMed

53. Zhong, H. J.; Leung, K. H.; Liu, L. J.; Lu, L.; Chan, D. S. H.; Leung, C. H.; Ma, D. L. Antagonism of mTOR Activity by a Kinetically Inert Rhodium (III) Complex. ChemPlusChem 2014, 79508–79511. https://doi.org/10.1002/cplu.201400014.Search in Google Scholar PubMed

54. Zoroddu, M. A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V. M. The Essential Metals for Humans: a Brief Overview. J. Inorg. Biochem. 2019, 195120–195129. https://doi.org/10.1016/j.jinorgbio.2019.03.013.Search in Google Scholar PubMed

Received: 2024-05-17
Accepted: 2024-07-22
Published Online: 2024-08-08
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
  3. Advanced synthetic routes of metal organic frameworks and their diverse applications
  4. Carbon materials derived by crystalline porous materials for capacitive energy storage
  5. BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
  6. Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base
  7. Solid-phase extraction of organophosphates from polluted waters on a matrix-imprinted sorbent
  8. Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
  9. Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
  10. Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
  11. Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
  12. Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
  13. A review of carbon-based adsorbents for the removal of organic and inorganic components
  14. Mercury removal from water: insights from MOFs and their composites
  15. Organometallic complexes and reaction methods for synthesis: a review
  16. Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity
Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2024-0030/html
Scroll to top button