Abstract
Green nanotechnology comprises the use of natural sources such as plant extracts as both reducing and stabilizing agents thereby reducing the reliance on hazardous chemicals. Recent breakthroughs in nanotechnology involve the incorporation of various metals to create mono and bimetallic nanoparticles, catalyzing transformative shifts. However, concerns arise due to the environmental impact of traditional synthesis methods. An alternative approach focuses on biosynthesized metal nanoparticles using clay, specifically Bentonite, MMT (Montmorillonite) and Kaolinite as supportive materials, emphasizing the prevention of agglomeration with clay and the use of plant extracts. The integration of clay, especially Bentonite, MMT and Kaolinite enhances the stability and functionality. The review emphasizes mitigating environmental impact by reducing metal ions and explores the use of phytochemicals fro environmentally friendly nanoparticle synthesis. Incorporating clay minerals not only improves synthesis efficiency but also minimizes the ecological footprint. Future research is expected to focus on integrative approaches in plant nanotechnology, particularly in agriculture and broader plant science. The comprehensive review covers literature from 2015 to 2023, providing systematic and interpretative data, highlighting progress and potential in eco-friendly metal nanoparticles synthesis supported on clay minerals.
Acknowledgment
We acknowledge our institute Bodoland University for providing us with all the necessary information and tools required for the completion of the review article. We would like to express our deepest appreciation to Prof. Hilloljyoti Singha, Department of Zoology, Bodoland University for his valuable guidance.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
Abbreviations
- CEC
-
Cation exchange capcity
- MNP
-
Metallic nano particles
- UAE
-
Ultrasound assisted extraction
- MAE
-
Microwave assisted extraction
- PEF
-
Pulse electric field extraction
- EAE
-
Enzyme assisted extraction
- Bentonite-CuNPs
-
Bentonite supported copper nanoparticles
- 4-NP
-
4-Nitrophenol
- 0.2 M
-
0.2 molar
- CuSO4·5H2O
-
Copper sulphate pentahydrate
- Bentonite AgNPs
-
Silver bentonite nanocomposite
- NaBH4
-
Sodium borohydride
- Bentonite PdNPs
-
Bentonite palladium nanocomposite
- PdCl2
-
Palladium(II) chloride
- H2O2
-
Hydrogen peroxide
- 2.5 mM
-
2.5 mili mole
- Pt–SnO2/Bnt-mRGO-CH
-
Platinum-tin oxide/bentonite-melamine reduced graphene oxide-chitosan
- Pt–SnO2
-
Platinum tin(VI) oxide
- bnt-mRGO
-
Bentonite melamine reduced grapheme oxide
- SnO2
-
Tin(VI)oxide
- SnCl2
-
Tin(II)chloride
- H2PtCl6
-
Chloroplatinic acid
- EASA
-
Electrochemically active surface area
- MOR
-
Methanol oxidation reaction
- B-nZVI
-
Bentonite nanoscale zero-valent iron
- FeSO4·7H2O
-
Iron(II)sulphate heptahydrate
- XRD
-
X-ray diffraction
- Bentonite SnO2
-
SnO2-bentonite nanocomposite
- SnCl2·2H2O
-
Stannous chloride dehydrate
- BET
-
Brunauer–Emmett–Teller
- Fe(NO3)3·9H2O
-
Iron(III)nitrate
- ZVIN
-
Zinc valent iron nanoparticles
- B-ZVIN
-
Bentonite zinc valent iron nanoparticles
- AgNO3
-
Silver nitrate
- E. coli ATCC 25922
-
Escherichia coli ATCC 25922
- S. aureus ATCC 25923
-
Staphylococcus aureus ATCC 25923
- Bentonite ZnONPs
-
Zinc oxide bentonite nanocomposite
- Bentonite Co@CT/BE
-
Cobalt(II,III) Oxide@ Cetyltrimethylammonium bromide/bentonite
- MIC
-
Minimum inhibitory concentration
- MBC
-
Minimum bactericidal concentration
- Ag/MMT
-
Silver-montmorillonite nanocomposite
- MMT
-
Montmorillonite
- HEP G2
-
Hepatoblastoma cell line
- Ag-kaolin functional nanostructures
-
Silver kaolin functional nanostructures
- S. aureus
-
Staphylococcus aureus
- B. subtilis
-
Bacillus subtilis
- E. coli
-
Escherichia coli
- Cd(NO3)2·4H2O
-
Cadmium nitrate tetrahydrate
- CuSO4·5H2O
-
Copper sulphate pentahydrate
- CuO–CdO-BT-nano heterojunction
-
Copper oxide/cadmium oxide/bentonite-nano heterojunction
- CuO–CdO-BT
-
Copper oxide-cadmium oxide-bentonite
- Bentonite SnO2
-
SnO2 bentonite nanocomposites
- CV
-
Cyclic voltammetry
References
1. Kumar, H.; Venkatesh, N.; Bhowmik, H.; Kuila, A. Metallic Nanoparticle: a Review. Biomed. J. Sci. Tech. Res. 2018, 4 (2), 3765–3775; https://doi.org/10.26717/BJSTR.2018.04.001011.Search in Google Scholar
2. Campelo, J. M.; Luna, D.; Luque, R.; Marinas, J. M.; Romero, A. A. Sustainable Preparation of Supported Metal Nanoparticles and Their Applications in Catalysis. ChemSusChem 2009, 2 (1), 18–45; https://doi.org/10.1002/cssc.200800227.Search in Google Scholar PubMed
3. Maynard, A. D. Nanotechnology: Assessing the Risks. Nano Today 2006, 1 (2), 22–33. https://doi.org/10.1016/S1748-0132(06)70045-7.Search in Google Scholar
4. Toshima, N.; Yonezawa, T. Bimetallic Nanoparticles—Novel Materials for Chemical and Physical Applications. New J. Chem. 1998, 22 (11), 1179–1201; https://doi.org/10.1039/a805753b.Search in Google Scholar
5. Jönsson, B.; Åkesson, T.; Jönsson, B.; Meehdi, S.; Janiak, J.; Wallenberg, R. Structure and forces in bentonite MX-80 (No. SKB-TR--09-06); Swedish Nuclear Fuel and Waste Management Co, 2009. 39 refs., 29 figs., 1 tab. http://www.skb.se/upload/publications/pdf/TR-09-06webb.Search in Google Scholar
6. Tahir, H.; Sultan, M.; Qadir, Z. Physiochemical Modification and Characterization of Bentonite Clay and its Application for the Removal of Reactive Dyes. Int. J. Chem. 2013, 5 (3), 19; https://doi.org/10.5539/ijc.v5n3p19.Search in Google Scholar
7. Guo, Y. X.; Liu, J. H.; Gates, W. P.; Zhou, C. H. Organo-modification of Montmorillonite. Clay Clay Miner. 2020, 68, 601–622; https://doi.org/10.1007/s42860-020-00098-2.Search in Google Scholar
8. Zhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H. Adsorbents Based on Montmorillonite for Contaminant Removal from Water: A Review. Appl. Clay Sci. 2016, 123, 239–258; https://doi.org/10.1016/j.clay.2015.12.024.Search in Google Scholar
9. Uddin, F. Clays, Nanoclays, and Montmorillonite Minerals. Metall. Mater. Trans. 2008, 39 (12), 2804–2814; https://doi.org/10.1007/s11661-008-9603-5.Search in Google Scholar
10. Miranda-Trevino, J. C.; Coles, C. A. Kaolinite Properties, Structure and Influence of Metal Retention on pH. Appl. Clay Sci. 2003, 23 (1–4), 133–139; https://doi.org/10.1016/s0169-1317(03)00095-4.Search in Google Scholar
11. Brigatti, M. F.; Galan, E.; Theng, B. K. G. Structure and Mineralogy of Clay Minerals. In Developments in Clay Science; Elsevier, Vol. 5, 2013; pp 21–81.10.1016/B978-0-08-098258-8.00002-XSearch in Google Scholar
12. Chen, M.; Yang, T.; Han, J.; Zhang, Y.; Zhao, L.; Zhao, J.; Li, R.; Huang, Y.; Gu, Z.; Wu, J. The Application of Mineral Kaolinite for Environment Decontamination: A Review. Catalysts 2023, 13 (1), 123; https://doi.org/10.3390/catal13010123.Search in Google Scholar
13. Basak, D.; Kumar, M.; Debnath, M.; Borah, D.; Brahma, D.; Nath, H.; Saikia, H. Smectite-supported Metal Nanoparticles: Current Trends and Approaches. Monatsh. Chem. 2023, 1–11. https://doi.org/10.1007/s00706-023-03077-0.Search in Google Scholar
14. Shnoudeh, A. J., Hamad, I., Abdo, R. W., Qadumii, L., Jaber, A. Y., Surchi, H. S., Alkelany, S. Z. Synthesis, Characterization, and Applications of Metal Nanoparticles. In Biomaterials and Bionanotechnology; Academic Press: Cambridge, 2019; pp. 527–612. https://doi.org/10.1016/B978-0-12-814427-5.00015-9.Search in Google Scholar
15. Shekhar, T. C.; Vipin, P. Phytochemical, Pharmacognostic Investigation and Antioxidant Activity of Lawsonia Inermis linn. Int. J. Pharm. Erud. 2016, 6 (2), 1–11. http://www.pharmaerudition.org/ContentPaper/2016/1-aug%2016%20_1-11_.pdf.Search in Google Scholar
16. Sorbiun, M.; Shayegan Mehr, E.; Ramazani, A.; Mashhadi Malekzadeh, A. Biosynthesis of Metallic Nanoparticles Using Plant Extracts and Evaluation of Their Antibacterial Properties. Nanochem. Res. 2018, 3 (1), 1–16; https://doi.org/10.22036/ncr.2018.01.001.Search in Google Scholar
17. Fierascu, I.; Georgiev, M. I.; Ortan, A.; Fierascu, R. C.; Avramescu, S. M.; Ionescu, D.; Sutan, A.; Brinzan, A.; Ditu, L. M. Phyto-mediated Metallic Nano-Architectures via Melissa Officinalis L.: Synthesis, Characterization and Biological Properties. Sci. Rep. 2017, 7 (1), 12428. https://doi.org/10.1038/s41598-017-12804-7.Search in Google Scholar PubMed PubMed Central
18. Ćujić, N.; Šavikin, K.; Janković, T.; Pljevljakušić, D.; Zdunić, G.; Ibrić, S. Optimization of Polyphenols Extraction from Dried Chokeberry Using Maceration as Traditional Technique. Food Chem. 2016, 194, 135–142. https://doi.org/10.1016/j.foodchem.2015.08.008.Search in Google Scholar PubMed
19. Turrini, F.; Malaspina, P.; Giordani, P.; Catena, S.; Zunin, P.; Boggia, R. Traditional Decoction and PUAE Aqueous Extracts of Pomegranate Peels as Potential Low-Cost Anti-tyrosinase Ingredients. Appl. Sci. 2020, 10 (8), 2795. https://doi.org/10.3390/app10082795.Search in Google Scholar
20. Handa, S. S. An Overview of Extraction Techniques for Medicinal and Aromatic Plants. Extract. Technol. Med. Aromatic Plants 2008, 1 (1), 21–40.Search in Google Scholar
21. Fagbemi, K. O., Aina, D. A. and Olajuyigbe, O. O., 2021. Soxhlet Extraction versus Hydrodistillation Using the Clevenger Apparatus: A Comparative Study on the Extraction of a Volatile Compound from Tamarindus indica Seeds. Sci. World J., 2021, 2021, 1–8. https://doi.org/10.1155/2021/5961586.Search in Google Scholar PubMed PubMed Central
22. De Castro, M. L.; Garcıa-Ayuso, L. E. Soxhlet Extraction of Solid Materials: an Outdated Technique with a Promising Innovative Future. Anal. Chim. Acta 1998, 369 (1–2), 1–10. https://doi.org/10.1016/S0003-2670(98)00233-5.Search in Google Scholar
23. d’Alessandro, L. G.; Kriaa, K.; Nikov, I.; Dimitrov, K. Ultrasound Assisted Extraction of Polyphenols from Black Chokeberry. Separ. Purif. Technol. 2012, 93, 42–47. https://doi.org/10.1016/j.seppur.2012.03.024.Search in Google Scholar
24. Azmir, J.; Zaidul, I. S. M.; Rahman, M. M.; Sharif, K. M.; Mohamed, A.; Sahena, F.; Jahurul, M. H. A.; Ghafoor, K.; Norulaini, N. A. N.; Omar, A. K. M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117 (4), 426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014.Search in Google Scholar
25. Pan, X.; Niu, G.; Liu, H. Microwave-assisted Extraction of Tea Polyphenols and Tea Caffeine from Green Tea Leaves. Chem. Eng. Process: Process Intensif. 2003, 42 (2), 129–133. https://doi.org/10.1016/S0255-2701(02)00037-5.Search in Google Scholar
26. Bozinou, E.; Karageorgou, I.; Batra, G. G.; Dourtoglou, V.; ILalas, S. Pulsed Electric Field Extraction and Antioxidant Activity Determination of Moringa Oleifera Dry Leaves: A Comparative Study with Other Extraction Techniques. Beverages 2019, 5 (1), 8. https://doi.org/10.3390/beverages5010008.Search in Google Scholar
27. Li, B. B.; Smith, B.; Hossain, M. M. Extraction of Phenolics from Citrus Peels: II. Enzyme-Assisted Extraction Method. Separ. Purif. Technol. 2006, 48 (2), 189–196. https://doi.org/10.1016/j.seppur.2005.07.019.Search in Google Scholar
28. Martínez-Flores, H. E.; Contreras-Chávez, R.; Garnica-Romo, M. G. Effect of Extraction Processes on Bioactive Compounds from Pleurotus Ostreatus and Pleurotus Djamor: Their Applications in the Synthesis of Silver Nanoparticles. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1406–1418; https://doi.org/10.1007/s10904-020-01820-2.Search in Google Scholar
29. Azizinezhad, F.; Nasrollahi, Z. Z.; Sadrnezhaad, S. Synthesis of the Silver Nanoparticles with the Using of Camomile Plant. Eur. J. Exp. Biol. 2014, 4 (2), 124–127.Search in Google Scholar
30. Tippayawat, P.; Phromviyo, N.; Boueroy, P.; Chompoosor, A. Green Synthesis of Silver Nanoparticles in Aloe Vera Plant Extract Prepared by a Hydrothermal Method and Their Synergistic Antibacterial Activity. PeerJ 2016, 4, e2589; https://doi.org/10.7717/peerj.2589.Search in Google Scholar PubMed PubMed Central
31. Rajabi, H. R.; Naghiha, R.; Kheirizadeh, M.; Sadatfaraji, H.; Mirzaei, A.; Alvand, Z. M. Microwave Assisted Extraction as an Efficient Approach for Biosynthesis of Zinc Oxide Nanoparticles: Synthesis, Characterization, and Biological Properties. Mater. Sci. Eng. C 2017, 78, 1109–1118; https://doi.org/10.1016/j.msec.2017.03.090.Search in Google Scholar PubMed
32. Balasubramani, G.; Ramkumar, R.; Krishnaveni, N.; Pazhanimuthu, A.; Natarajan, T.; Sowmiya, R.; Perumal, P. Structural Characterization, Antioxidant and Anticancer Properties of Gold Nanoparticles Synthesized from Leaf Extract (Decoction) of Antigonon Leptopus Hook. & Arn. J. Trace Elem. Med. Biol. 2015, 30, 83–89; https://doi.org/10.1016/j.jtemb.2014.11.001.Search in Google Scholar PubMed
33. Balčiūnaitienė, A.; Štreimikytė, P.; Puzerytė, V.; Viškelis, J.; Štreimikytė-Mockeliūnė, Ž.; Maželienė, Ž.; Sakalauskienė, V.; Viškelis, P. Antimicrobial Activities against Opportunistic Pathogenic Bacteria Using Green Synthesized Silver Nanoparticles in Plant and Lichen Enzyme-Assisted Extracts. Plants 2022, 11 (14), 1833; https://doi.org/10.3390/plants11141833.Search in Google Scholar PubMed PubMed Central
34. Safarpoor, M.; Ghaedi, M.; Asfaram, A.; Yousefi-Nejad, M.; Javadian, H.; Khafri, H. Z.; Bagherinasab, M. Ultrasound-assisted Extraction of Antimicrobial Compounds from Thymus Daenensis and Silybum marianum: Antimicrobial Activity with and without the Presence of Natural Silver Nanoparticles. Ultrason. Sonochem. 2018, 42, 76–83; https://doi.org/10.1016/j.ultsonch.2017.11.001.Search in Google Scholar PubMed
35. Patil, S. M.; Ramu, R.; Shirahatti, P. S.; Shivamallu, C.; Amachawadi, R. G. A Systematic Review on Ethnopharmacology, Phytochemistry and Pharmacological Aspects of Thymus Vulgaris Linn. Heliyon 2021, 7 (5); https://doi.org/10.1016/j.heliyon.2021.e07054.Search in Google Scholar PubMed PubMed Central
36. Jassbi, A. R. Chemistry and Biological Activity of Secondary Metabolites in Euphorbia from Iran. Phytochemistry 2006, 67 (18), 1977–1984; https://doi.org/10.1016/j.phytochem.2006.06.030.Search in Google Scholar PubMed
37. Chambon, M.; Ho, R.; Baghdikian, B.; Herbette, G.; Bun-Llopet, S. S.; Garayev, E.; Raharivelomanana, P. Identification of Antioxidant Metabolites from Five Plants (Calophyllum Inophyllum, Gardenia Taitensis, Curcuma Longa, Cordia subcordata, Ficus Prolixa) of the Polynesian Pharmacopoeia and Cosmetopoeia for Skin Care. Antioxidants 2023, 12 (10), 1870; https://doi.org/10.3390/antiox12101870.Search in Google Scholar PubMed PubMed Central
38. Amabye, T. G. Evaluation of Physiochemical, Phytochemical, Antioxidant and Antimicrobial Screening Parameters of Amaranthus Spinosus Leaves. Nat. Prod. Chem. Res 2015, 4, 199; https://doi.org/10.4172/2329-6836.1000199.Search in Google Scholar
39. Zhao, T.; Li, C.; Wang, S.; Song, X. Green Tea (Camellia Sinensis): A Review of its Phytochemistry, Pharmacology, and Toxicology. Molecules 2022, 27 (12), 3909; https://doi.org/10.3390/molecules27123909.Search in Google Scholar PubMed PubMed Central
40. Bai, L.; Zhang, H.; Liu, Q.; Zhao, Y.; Cui, X.; Guo, S.; Zhang, L.; Ho, C. T.; Bai, N. Chemical Characterization of the Main Bioactive Constituents from Fruits of Ziziphus Jujuba. Food Funct. 2016, 7 (6), 2870–2877; https://doi.org/10.1039/c6fo00613b.Search in Google Scholar PubMed
41. Shala, A. Y.; Gururani, M. A. Phytochemical Properties and Diverse Beneficial Roles of Eucalyptus Globulus Labill. A review. Horticulturae 2021, 7 (11), 450; https://doi.org/10.3390/horticulturae7110450.Search in Google Scholar
42. Wolde, T.; Bizuayehu, B.; Hailemariam, T.; Tiruha, K. Phytochemical Analysis and Antimicrobial Activity of Hagenia Abyssinica. Indian J. Pharm. Pharmacol. 2016, 3 (3), 127–134; https://doi.org/10.5958/2393-9087.2016.00028.5.Search in Google Scholar
43. Bardón, A.; Kamiya, N.; Toyota, M.; Takaoka, S.; Asakawa, Y. Sesquiterpenoids, Hopanoids and Bis (Bibenzyls) from the Argentine Liverwort Plagiochasma Rupestre. Phytochemistry 1999, 52 (7), 1323–1329; https://doi.org/10.1016/s0031-9422(99)00452-5.Search in Google Scholar
44. Rasheed, U.; Ain, Q. U.; Yaseen, M.; Fan, X.; Yao, X.; Tong, Z.; Liu, B. Modification of Bentonite with Orange Peels Extract and its Application as Mycotoxins’ Binder in Buffered Solutions and Simulated Gastrointestinal Fluids. J. Clean. Prod. 2020, 267, 122105. https://doi.org/10.1016/j.jclepro.2020.122105.Search in Google Scholar
45. Du, Y.; Brumaud, C.; Winnefeld, F.; Lai, Y. H.; Habert, G. Mechanisms for Efficient Clay Dispersing Effect with Tannins and Sodium Hydroxide. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127589. https://doi.org/10.1016/j.colsurfa.2021.127589.Search in Google Scholar
46. Hassanien, R.; Husein, D. Z.; Al-Hakkani, M. F. Biosynthesis of Copper Nanoparticles Using Aqueous Tilia Extract: Antimicrobial and Anticancer Activities. Heliyon 2018, 4 (12), e01077. https://doi.org/10.1016/j.heliyon.2018.e01077.Search in Google Scholar PubMed PubMed Central
47. Mohamad, N. A. N.; Arham, N. A.; Jai, J.; Hadi, A. Plant Extract as Reducing Agent in Synthesis of Metallic Nanoparticles: a Review. Adv. Mater. Res. 2014, 832, 350–355.10.4028/www.scientific.net/AMR.832.350Search in Google Scholar
48. Singh, J.; Dutta, T.; Kim, K. H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’synthesis of Metals and Their Oxide Nanoparticles: Applications for Environmental Remediation. J. Nanobiotechnol. 2018, 16 (1), 1–24. https://doi.org/10.1186/s12951-018-0408-4.Search in Google Scholar PubMed PubMed Central
49. Jadoun, S.; Arif, R.; Jangid, N. K.; Meena, R. K. Green Synthesis of Nanoparticles Using Plant Extracts: A Review. Environ. Chem. Lett. 2021, 19, 355–374. https://doi.org/10.1007/s10311-020-01074-x.Search in Google Scholar
50. Sakhare, D. T. Green Synthesis of Transition Metal & Transitions Metal Oxides of Nanoparticles and Their Antimicrobial Activity. J. Xi’an Shiyou Univ. Nat. Sci. Ed. 2020, 16 (7), 207–237.Search in Google Scholar
51. Ishak, N. M.; Kamarudin, S. K.; Timmiati, S. N. Green Synthesis of Metal and Metal Oxide Nanoparticles via Plant Extracts: an Overview. Mater. Res. Express 2019, 6 (11), 112004; https://doi.org/10.1088/2053-1591/ab4458.Search in Google Scholar
52. Rostami-Vartooni, A.; Alizadeh, M.; Bagherzadeh, M. Green Synthesis, Characterization and Catalytic Activity of Natural Bentonite-Supported Copper Nanoparticles for the Solvent-free Synthesis of 1-substituted 1H-1,2,3, 4-tetrazoles and Reduction of 4-nitrophenol. Beilstein J. Nanotechnol. 2015, 6 (1), 2300–2309. https://doi.org/10.3762/bjnano.6.236.Search in Google Scholar PubMed PubMed Central
53. Sajadi, S. M.; Kolo, K.; Hamad, S. M.; Mahmud, S. A.; Barzinjy, A. A.; Hussein, S. M. Green Synthesis of the Ag/Bentonite Nanocomposite UsingEuphorbia Larica Extract: a Reusable Catalyst for Efficient Reduction of Nitro Compounds and Organic Dyes. ChemistrySelect 2018, 3 (43), 12274–12280. https://doi.org/10.1002/slct.201802707.Search in Google Scholar
54. Nasrollahzadeh, M.; Sajadi, S. M.; Maham, M.; Kohsari, I. Biosynthesis, Characterization and Catalytic Activity of the Pd/bentonite Nanocomposite for Base-And Ligand-free Oxidative Hydroxylation of Phenylboronic Acid and Reduction of Chromium (VI) and Nitro Compounds. Microporous Mesoporous Mater. 2018, 271, 128–137. https://doi.org/10.1016/j.micromeso.2018.05.045.Search in Google Scholar
55. Atarod, M.; Safari, J. Comparative Study of CuO, Fe3O4 and CuFe2O4/CuO over Montmorillonite Clay: Green Synthesis, Characterization and Catalytic Activity. ChemistrySelect 2020, 5 (28), 8394–8404; https://doi.org/10.1002/slct.202001849.Search in Google Scholar
56. Aryafar, A.; Ekrami-Kakhki, M. S.; Naeimi, A. Enhanced Electrocatalytic Activity of Pt-SnO2 Nanoparticles Supported on Natural Bentonite-Functionalized Reduced Graphene Oxide-Extracted Chitosan from Shrimp Wastes for Methanol Electro-Oxidation. Sci. Rep. 2023, 13 (1), 3597. https://doi.org/10.1038/s41598-023-30705-w.Search in Google Scholar PubMed PubMed Central
57. Basak, D.; Bhattacharjya, R.; Kalita, S.; Borah, D.; Saikia, H. “Green” Synthesis and Electrochemical Studies of B/nZVCu-M Nanoparticles Using Lawsonia Inermis. Results Chem. 2023, 6, 101078; https://doi.org/10.1016/j.rechem.2023.101078.Search in Google Scholar
58. Soliemanzadeh, A.; Fekri, M. Synthesis of Clay-Supported Nanoscale Zero-Valent Iron Using Green Tea Extract for the Removal of Phosphorus from Aqueous Solutions. Chin. J. Chem. Eng. 2017, 25 (7), 924–930. https://doi.org/10.1016/j.cjche.2016.12.006.Search in Google Scholar
59. Golmohammadi, M.; Honarmand, M.; Esmaeili, A. Biosynthesis of ZnO Nanoparticles Supported on Bentonite and the Evaluation of its Photocatalytic Activity. Mater. Res. Bull. 2022, 149, 111714; https://doi.org/10.1016/j.materresbull.2021.111714.Search in Google Scholar
60. Sravanthi, K.; Ayodhya, D.; Swamy, P. Y. Green Synthesis, Characterization and Catalytic Activity of 4-nitrophenol Reduction and Formation of Benzimidazoles Using Bentonite Supported Zero Valent Iron Nanoparticles. Mater. Sci. Energy Technol. 2019, 2 (2), 298–307. https://doi.org/10.1016/j.mset.2019.02.003.Search in Google Scholar
61. Gopal, G.; Sankar, H.; Natarajan, C.; Mukherjee, A. Tetracycline Removal Using Green Synthesized Bimetallic nZVI-Cu and Bentonite Supported Green nZVI-Cu Nanocomposite: A Comparative Study. J. Environ. Manag. 2020, 254, 109812; https://doi.org/10.1016/j.jenvman.2019.109812.Search in Google Scholar PubMed
62. Gopal, G.; Ravikumar, K. V. G.; Salma, M.; Chandrasekaran, N.; Mukherjee, A. Green Synthesized Fe/Pd and In-Situ Bentonite-Fe/Pd Composite for Efficient Tetracycline Removal. J. Environ. Chem. Eng. 2020, 8 (5), 104126; https://doi.org/10.1016/j.jece.2020.104126.Search in Google Scholar
63. Zewudie, A. G.; Zereffa, E. A.; Segne, T. A.; Murthy, H. A.; Ravikumar, C. R.; Muniswamy, D.; Binagdie, B. B. Biosynthesis of Ag/bentonite, ZnO/bentonite, and Ag/ZnO/bentonite Nanocomposites by Aqueous Leaf Extract of Hagenia Abyssinica for Antibacterial Activities. Rev. Adv. Mater. Sci. 2023, 62 (1), 20220307. https://doi.org/10.1515/rams-2022-0307.Search in Google Scholar
64. Abukhadra, M. R.; Saad, I.; Othman, S. I.; Allam, A. A.; Fathallah, W. Synthesis of Co3O4@ Organo/Polymeric Bentonite Structures as Environmental Photocatalysts and Antibacterial Agents for Enhanced Removal of Methyl Parathion and Pathogenic Bacteria. J. Inorg. Organomet. Polym. Mater. 2022, 32 (7), 2600–2614. https://doi.org/10.1007/s10904-022-02346-5.Search in Google Scholar
65. Moradi, F.; Sedaghat, S.; Arab-Salmanabadi, S.; Moradi, O. Biosynthesis of Silver-Montmorillonite Nanocomposites Using Ocimum Basilicum and Teucrium Polium; A Comparative Study. Mater. Res. Express 2019, 6 (12), 125008; https://doi.org/10.1088/2053-1591/ab5474.Search in Google Scholar
66. Hariram, M.; Ganesan, V.; Muthuramkumar, S.; Vivekanandhan, S.. Functionalization of Kaolin Clay with Silver Nanoparticles by Murraya Koenigii Fruit Extract-Mediated Bioreduction Process for Antimicrobial Applications. J. Austr. Ceram. Soc. 2021, 57, 505-513. https://doi.org/10.1007/s41779-020-00545-2.Search in Google Scholar
67. Moosa, S., Mahadeven, A. N. M. F., Shameli, K. Synthesis of Silver Nanoparticles in Kaolinite and Their Antibacterial Behaviour. Int. J. Eng. Res. Tech. Res. 2019, 8(8), 129–138; https://doi.org/10.17577/ijertv8is080065.Search in Google Scholar
68. Mahjoore, M., Honarmand, M., Aryafar, A. Plant-based Green Fabrication of S-Scheme CuO/CdO/bentonite Heterojunction with Enhanced Photocatalytic Performance for Degradation of Levofloxacin. Res. Sq. 2022, 2–26. https://doi.org/10.21203/rs.3.rs-1887737/v1.Search in Google Scholar
69. Honarmand, M.; Golmohammadi, M.; Naeimi, A. Green Synthesis of SnO2-Bentonite Nanocomposites for the Efficient Photodegradation of Methylene Blue and Eriochrome Black-T. Mater. Chem. Phys. 2020, 241, 122416. https://doi.org/10.1016/j.matchemphys.2019.122416.Search in Google Scholar
70. Sohrabnezhad, S.; Seifi, A. J. A. S. S. The Green Synthesis of Ag/ZnO in Montmorillonite with Enhanced Photocatalytic Activity. Appl. Surf. Sci. 2016, 386, 33–40; https://doi.org/10.1016/j.apsusc.2016.05.102.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
- Advanced synthetic routes of metal organic frameworks and their diverse applications
- Carbon materials derived by crystalline porous materials for capacitive energy storage
- BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
- Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base
- Solid-phase extraction of organophosphates from polluted waters on a matrix-imprinted sorbent
- Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
- Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
- Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
- Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
- Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
- A review of carbon-based adsorbents for the removal of organic and inorganic components
- Mercury removal from water: insights from MOFs and their composites
- Organometallic complexes and reaction methods for synthesis: a review
- Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity
Articles in the same Issue
- Frontmatter
- Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
- Advanced synthetic routes of metal organic frameworks and their diverse applications
- Carbon materials derived by crystalline porous materials for capacitive energy storage
- BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
- Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base
- Solid-phase extraction of organophosphates from polluted waters on a matrix-imprinted sorbent
- Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
- Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
- Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
- Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
- Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
- A review of carbon-based adsorbents for the removal of organic and inorganic components
- Mercury removal from water: insights from MOFs and their composites
- Organometallic complexes and reaction methods for synthesis: a review
- Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity