Home Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
Article
Licensed
Unlicensed Requires Authentication

Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review

  • Manash Pratim Barman , Dipanwita Basak , Debasis Borah , Deepmoni Brahma , Mandira Debnath and Hemaprobha Saikia ORCID logo EMAIL logo
Published/Copyright: May 27, 2024

Abstract

Green nanotechnology comprises the use of natural sources such as plant extracts as both reducing and stabilizing agents thereby reducing the reliance on hazardous chemicals. Recent breakthroughs in nanotechnology involve the incorporation of various metals to create mono and bimetallic nanoparticles, catalyzing transformative shifts. However, concerns arise due to the environmental impact of traditional synthesis methods. An alternative approach focuses on biosynthesized metal nanoparticles using clay, specifically Bentonite, MMT (Montmorillonite) and Kaolinite as supportive materials, emphasizing the prevention of agglomeration with clay and the use of plant extracts. The integration of clay, especially Bentonite, MMT and Kaolinite enhances the stability and functionality. The review emphasizes mitigating environmental impact by reducing metal ions and explores the use of phytochemicals fro environmentally friendly nanoparticle synthesis. Incorporating clay minerals not only improves synthesis efficiency but also minimizes the ecological footprint. Future research is expected to focus on integrative approaches in plant nanotechnology, particularly in agriculture and broader plant science. The comprehensive review covers literature from 2015 to 2023, providing systematic and interpretative data, highlighting progress and potential in eco-friendly metal nanoparticles synthesis supported on clay minerals.


Corresponding author: Hemaprobha Saikia, Department of Chemistry, Bodoland University, Kokrajhar, BTR, Assam, 783370, India, E-mail:

Acknowledgment

We acknowledge our institute Bodoland University for providing us with all the necessary information and tools required for the completion of the review article. We would like to express our deepest appreciation to Prof. Hilloljyoti Singha, Department of Zoology, Bodoland University for his valuable guidance.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

Abbreviations

CEC

Cation exchange capcity

MNP

Metallic nano particles

UAE

Ultrasound assisted extraction

MAE

Microwave assisted extraction

PEF

Pulse electric field extraction

EAE

Enzyme assisted extraction

Bentonite-CuNPs

Bentonite supported copper nanoparticles

4-NP

4-Nitrophenol

0.2 M

0.2 molar

CuSO4·5H2O

Copper sulphate pentahydrate

Bentonite AgNPs

Silver bentonite nanocomposite

NaBH4

Sodium borohydride

Bentonite PdNPs

Bentonite palladium nanocomposite

PdCl2

Palladium(II) chloride

H2O2

Hydrogen peroxide

2.5 mM

2.5 mili mole

Pt–SnO2/Bnt-mRGO-CH

Platinum-tin oxide/bentonite-melamine reduced graphene oxide-chitosan

Pt–SnO2

Platinum tin(VI) oxide

bnt-mRGO

Bentonite melamine reduced grapheme oxide

SnO2

Tin(VI)oxide

SnCl2

Tin(II)chloride

H2PtCl6

Chloroplatinic acid

EASA

Electrochemically active surface area

MOR

Methanol oxidation reaction

B-nZVI

Bentonite nanoscale zero-valent iron

FeSO4·7H2O

Iron(II)sulphate heptahydrate

XRD

X-ray diffraction

Bentonite SnO2

SnO2-bentonite nanocomposite

SnCl2·2H2O

Stannous chloride dehydrate

BET

Brunauer–Emmett–Teller

Fe(NO3)3·9H2O

Iron(III)nitrate

ZVIN

Zinc valent iron nanoparticles

B-ZVIN

Bentonite zinc valent iron nanoparticles

AgNO3

Silver nitrate

E. coli ATCC 25922

Escherichia coli ATCC 25922

S. aureus ATCC 25923

Staphylococcus aureus ATCC 25923

Bentonite ZnONPs

Zinc oxide bentonite nanocomposite

Bentonite Co@CT/BE

Cobalt(II,III) Oxide@ Cetyltrimethylammonium bromide/bentonite

MIC

Minimum inhibitory concentration

MBC

Minimum bactericidal concentration

Ag/MMT

Silver-montmorillonite nanocomposite

MMT

Montmorillonite

HEP G2

Hepatoblastoma cell line

Ag-kaolin functional nanostructures

Silver kaolin functional nanostructures

S. aureus

Staphylococcus aureus

B. subtilis

Bacillus subtilis

E. coli

Escherichia coli

Cd(NO3)2·4H2O

Cadmium nitrate tetrahydrate

CuSO4·5H2O

Copper sulphate pentahydrate

CuO–CdO-BT-nano heterojunction

Copper oxide/cadmium oxide/bentonite-nano heterojunction

CuO–CdO-BT

Copper oxide-cadmium oxide-bentonite

Bentonite SnO2

SnO2 bentonite nanocomposites

CV

Cyclic voltammetry

References

1. Kumar, H.; Venkatesh, N.; Bhowmik, H.; Kuila, A. Metallic Nanoparticle: a Review. Biomed. J. Sci. Tech. Res. 2018, 4 (2), 3765–3775; https://doi.org/10.26717/BJSTR.2018.04.001011.Search in Google Scholar

2. Campelo, J. M.; Luna, D.; Luque, R.; Marinas, J. M.; Romero, A. A. Sustainable Preparation of Supported Metal Nanoparticles and Their Applications in Catalysis. ChemSusChem 2009, 2 (1), 18–45; https://doi.org/10.1002/cssc.200800227.Search in Google Scholar PubMed

3. Maynard, A. D. Nanotechnology: Assessing the Risks. Nano Today 2006, 1 (2), 22–33. https://doi.org/10.1016/S1748-0132(06)70045-7.Search in Google Scholar

4. Toshima, N.; Yonezawa, T. Bimetallic Nanoparticles—Novel Materials for Chemical and Physical Applications. New J. Chem. 1998, 22 (11), 1179–1201; https://doi.org/10.1039/a805753b.Search in Google Scholar

5. Jönsson, B.; Åkesson, T.; Jönsson, B.; Meehdi, S.; Janiak, J.; Wallenberg, R. Structure and forces in bentonite MX-80 (No. SKB-TR--09-06); Swedish Nuclear Fuel and Waste Management Co, 2009. 39 refs., 29 figs., 1 tab. http://www.skb.se/upload/publications/pdf/TR-09-06webb.Search in Google Scholar

6. Tahir, H.; Sultan, M.; Qadir, Z. Physiochemical Modification and Characterization of Bentonite Clay and its Application for the Removal of Reactive Dyes. Int. J. Chem. 2013, 5 (3), 19; https://doi.org/10.5539/ijc.v5n3p19.Search in Google Scholar

7. Guo, Y. X.; Liu, J. H.; Gates, W. P.; Zhou, C. H. Organo-modification of Montmorillonite. Clay Clay Miner. 2020, 68, 601–622; https://doi.org/10.1007/s42860-020-00098-2.Search in Google Scholar

8. Zhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H. Adsorbents Based on Montmorillonite for Contaminant Removal from Water: A Review. Appl. Clay Sci. 2016, 123, 239–258; https://doi.org/10.1016/j.clay.2015.12.024.Search in Google Scholar

9. Uddin, F. Clays, Nanoclays, and Montmorillonite Minerals. Metall. Mater. Trans. 2008, 39 (12), 2804–2814; https://doi.org/10.1007/s11661-008-9603-5.Search in Google Scholar

10. Miranda-Trevino, J. C.; Coles, C. A. Kaolinite Properties, Structure and Influence of Metal Retention on pH. Appl. Clay Sci. 2003, 23 (1–4), 133–139; https://doi.org/10.1016/s0169-1317(03)00095-4.Search in Google Scholar

11. Brigatti, M. F.; Galan, E.; Theng, B. K. G. Structure and Mineralogy of Clay Minerals. In Developments in Clay Science; Elsevier, Vol. 5, 2013; pp 21–81.10.1016/B978-0-08-098258-8.00002-XSearch in Google Scholar

12. Chen, M.; Yang, T.; Han, J.; Zhang, Y.; Zhao, L.; Zhao, J.; Li, R.; Huang, Y.; Gu, Z.; Wu, J. The Application of Mineral Kaolinite for Environment Decontamination: A Review. Catalysts 2023, 13 (1), 123; https://doi.org/10.3390/catal13010123.Search in Google Scholar

13. Basak, D.; Kumar, M.; Debnath, M.; Borah, D.; Brahma, D.; Nath, H.; Saikia, H. Smectite-supported Metal Nanoparticles: Current Trends and Approaches. Monatsh. Chem. 2023, 1–11. https://doi.org/10.1007/s00706-023-03077-0.Search in Google Scholar

14. Shnoudeh, A. J., Hamad, I., Abdo, R. W., Qadumii, L., Jaber, A. Y., Surchi, H. S., Alkelany, S. Z. Synthesis, Characterization, and Applications of Metal Nanoparticles. In Biomaterials and Bionanotechnology; Academic Press: Cambridge, 2019; pp. 527–612. https://doi.org/10.1016/B978-0-12-814427-5.00015-9.Search in Google Scholar

15. Shekhar, T. C.; Vipin, P. Phytochemical, Pharmacognostic Investigation and Antioxidant Activity of Lawsonia Inermis linn. Int. J. Pharm. Erud. 2016, 6 (2), 1–11. http://www.pharmaerudition.org/ContentPaper/2016/1-aug%2016%20_1-11_.pdf.Search in Google Scholar

16. Sorbiun, M.; Shayegan Mehr, E.; Ramazani, A.; Mashhadi Malekzadeh, A. Biosynthesis of Metallic Nanoparticles Using Plant Extracts and Evaluation of Their Antibacterial Properties. Nanochem. Res. 2018, 3 (1), 1–16; https://doi.org/10.22036/ncr.2018.01.001.Search in Google Scholar

17. Fierascu, I.; Georgiev, M. I.; Ortan, A.; Fierascu, R. C.; Avramescu, S. M.; Ionescu, D.; Sutan, A.; Brinzan, A.; Ditu, L. M. Phyto-mediated Metallic Nano-Architectures via Melissa Officinalis L.: Synthesis, Characterization and Biological Properties. Sci. Rep. 2017, 7 (1), 12428. https://doi.org/10.1038/s41598-017-12804-7.Search in Google Scholar PubMed PubMed Central

18. Ćujić, N.; Šavikin, K.; Janković, T.; Pljevljakušić, D.; Zdunić, G.; Ibrić, S. Optimization of Polyphenols Extraction from Dried Chokeberry Using Maceration as Traditional Technique. Food Chem. 2016, 194, 135–142. https://doi.org/10.1016/j.foodchem.2015.08.008.Search in Google Scholar PubMed

19. Turrini, F.; Malaspina, P.; Giordani, P.; Catena, S.; Zunin, P.; Boggia, R. Traditional Decoction and PUAE Aqueous Extracts of Pomegranate Peels as Potential Low-Cost Anti-tyrosinase Ingredients. Appl. Sci. 2020, 10 (8), 2795. https://doi.org/10.3390/app10082795.Search in Google Scholar

20. Handa, S. S. An Overview of Extraction Techniques for Medicinal and Aromatic Plants. Extract. Technol. Med. Aromatic Plants 2008, 1 (1), 21–40.Search in Google Scholar

21. Fagbemi, K. O., Aina, D. A. and Olajuyigbe, O. O., 2021. Soxhlet Extraction versus Hydrodistillation Using the Clevenger Apparatus: A Comparative Study on the Extraction of a Volatile Compound from Tamarindus indica Seeds. Sci. World J., 2021, 2021, 1–8. https://doi.org/10.1155/2021/5961586.Search in Google Scholar PubMed PubMed Central

22. De Castro, M. L.; Garcıa-Ayuso, L. E. Soxhlet Extraction of Solid Materials: an Outdated Technique with a Promising Innovative Future. Anal. Chim. Acta 1998, 369 (1–2), 1–10. https://doi.org/10.1016/S0003-2670(98)00233-5.Search in Google Scholar

23. d’Alessandro, L. G.; Kriaa, K.; Nikov, I.; Dimitrov, K. Ultrasound Assisted Extraction of Polyphenols from Black Chokeberry. Separ. Purif. Technol. 2012, 93, 42–47. https://doi.org/10.1016/j.seppur.2012.03.024.Search in Google Scholar

24. Azmir, J.; Zaidul, I. S. M.; Rahman, M. M.; Sharif, K. M.; Mohamed, A.; Sahena, F.; Jahurul, M. H. A.; Ghafoor, K.; Norulaini, N. A. N.; Omar, A. K. M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117 (4), 426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014.Search in Google Scholar

25. Pan, X.; Niu, G.; Liu, H. Microwave-assisted Extraction of Tea Polyphenols and Tea Caffeine from Green Tea Leaves. Chem. Eng. Process: Process Intensif. 2003, 42 (2), 129–133. https://doi.org/10.1016/S0255-2701(02)00037-5.Search in Google Scholar

26. Bozinou, E.; Karageorgou, I.; Batra, G. G.; Dourtoglou, V.; ILalas, S. Pulsed Electric Field Extraction and Antioxidant Activity Determination of Moringa Oleifera Dry Leaves: A Comparative Study with Other Extraction Techniques. Beverages 2019, 5 (1), 8. https://doi.org/10.3390/beverages5010008.Search in Google Scholar

27. Li, B. B.; Smith, B.; Hossain, M. M. Extraction of Phenolics from Citrus Peels: II. Enzyme-Assisted Extraction Method. Separ. Purif. Technol. 2006, 48 (2), 189–196. https://doi.org/10.1016/j.seppur.2005.07.019.Search in Google Scholar

28. Martínez-Flores, H. E.; Contreras-Chávez, R.; Garnica-Romo, M. G. Effect of Extraction Processes on Bioactive Compounds from Pleurotus Ostreatus and Pleurotus Djamor: Their Applications in the Synthesis of Silver Nanoparticles. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1406–1418; https://doi.org/10.1007/s10904-020-01820-2.Search in Google Scholar

29. Azizinezhad, F.; Nasrollahi, Z. Z.; Sadrnezhaad, S. Synthesis of the Silver Nanoparticles with the Using of Camomile Plant. Eur. J. Exp. Biol. 2014, 4 (2), 124–127.Search in Google Scholar

30. Tippayawat, P.; Phromviyo, N.; Boueroy, P.; Chompoosor, A. Green Synthesis of Silver Nanoparticles in Aloe Vera Plant Extract Prepared by a Hydrothermal Method and Their Synergistic Antibacterial Activity. PeerJ 2016, 4, e2589; https://doi.org/10.7717/peerj.2589.Search in Google Scholar PubMed PubMed Central

31. Rajabi, H. R.; Naghiha, R.; Kheirizadeh, M.; Sadatfaraji, H.; Mirzaei, A.; Alvand, Z. M. Microwave Assisted Extraction as an Efficient Approach for Biosynthesis of Zinc Oxide Nanoparticles: Synthesis, Characterization, and Biological Properties. Mater. Sci. Eng. C 2017, 78, 1109–1118; https://doi.org/10.1016/j.msec.2017.03.090.Search in Google Scholar PubMed

32. Balasubramani, G.; Ramkumar, R.; Krishnaveni, N.; Pazhanimuthu, A.; Natarajan, T.; Sowmiya, R.; Perumal, P. Structural Characterization, Antioxidant and Anticancer Properties of Gold Nanoparticles Synthesized from Leaf Extract (Decoction) of Antigonon Leptopus Hook. & Arn. J. Trace Elem. Med. Biol. 2015, 30, 83–89; https://doi.org/10.1016/j.jtemb.2014.11.001.Search in Google Scholar PubMed

33. Balčiūnaitienė, A.; Štreimikytė, P.; Puzerytė, V.; Viškelis, J.; Štreimikytė-Mockeliūnė, Ž.; Maželienė, Ž.; Sakalauskienė, V.; Viškelis, P. Antimicrobial Activities against Opportunistic Pathogenic Bacteria Using Green Synthesized Silver Nanoparticles in Plant and Lichen Enzyme-Assisted Extracts. Plants 2022, 11 (14), 1833; https://doi.org/10.3390/plants11141833.Search in Google Scholar PubMed PubMed Central

34. Safarpoor, M.; Ghaedi, M.; Asfaram, A.; Yousefi-Nejad, M.; Javadian, H.; Khafri, H. Z.; Bagherinasab, M. Ultrasound-assisted Extraction of Antimicrobial Compounds from Thymus Daenensis and Silybum marianum: Antimicrobial Activity with and without the Presence of Natural Silver Nanoparticles. Ultrason. Sonochem. 2018, 42, 76–83; https://doi.org/10.1016/j.ultsonch.2017.11.001.Search in Google Scholar PubMed

35. Patil, S. M.; Ramu, R.; Shirahatti, P. S.; Shivamallu, C.; Amachawadi, R. G. A Systematic Review on Ethnopharmacology, Phytochemistry and Pharmacological Aspects of Thymus Vulgaris Linn. Heliyon 2021, 7 (5); https://doi.org/10.1016/j.heliyon.2021.e07054.Search in Google Scholar PubMed PubMed Central

36. Jassbi, A. R. Chemistry and Biological Activity of Secondary Metabolites in Euphorbia from Iran. Phytochemistry 2006, 67 (18), 1977–1984; https://doi.org/10.1016/j.phytochem.2006.06.030.Search in Google Scholar PubMed

37. Chambon, M.; Ho, R.; Baghdikian, B.; Herbette, G.; Bun-Llopet, S. S.; Garayev, E.; Raharivelomanana, P. Identification of Antioxidant Metabolites from Five Plants (Calophyllum Inophyllum, Gardenia Taitensis, Curcuma Longa, Cordia subcordata, Ficus Prolixa) of the Polynesian Pharmacopoeia and Cosmetopoeia for Skin Care. Antioxidants 2023, 12 (10), 1870; https://doi.org/10.3390/antiox12101870.Search in Google Scholar PubMed PubMed Central

38. Amabye, T. G. Evaluation of Physiochemical, Phytochemical, Antioxidant and Antimicrobial Screening Parameters of Amaranthus Spinosus Leaves. Nat. Prod. Chem. Res 2015, 4, 199; https://doi.org/10.4172/2329-6836.1000199.Search in Google Scholar

39. Zhao, T.; Li, C.; Wang, S.; Song, X. Green Tea (Camellia Sinensis): A Review of its Phytochemistry, Pharmacology, and Toxicology. Molecules 2022, 27 (12), 3909; https://doi.org/10.3390/molecules27123909.Search in Google Scholar PubMed PubMed Central

40. Bai, L.; Zhang, H.; Liu, Q.; Zhao, Y.; Cui, X.; Guo, S.; Zhang, L.; Ho, C. T.; Bai, N. Chemical Characterization of the Main Bioactive Constituents from Fruits of Ziziphus Jujuba. Food Funct. 2016, 7 (6), 2870–2877; https://doi.org/10.1039/c6fo00613b.Search in Google Scholar PubMed

41. Shala, A. Y.; Gururani, M. A. Phytochemical Properties and Diverse Beneficial Roles of Eucalyptus Globulus Labill. A review. Horticulturae 2021, 7 (11), 450; https://doi.org/10.3390/horticulturae7110450.Search in Google Scholar

42. Wolde, T.; Bizuayehu, B.; Hailemariam, T.; Tiruha, K. Phytochemical Analysis and Antimicrobial Activity of Hagenia Abyssinica. Indian J. Pharm. Pharmacol. 2016, 3 (3), 127–134; https://doi.org/10.5958/2393-9087.2016.00028.5.Search in Google Scholar

43. Bardón, A.; Kamiya, N.; Toyota, M.; Takaoka, S.; Asakawa, Y. Sesquiterpenoids, Hopanoids and Bis (Bibenzyls) from the Argentine Liverwort Plagiochasma Rupestre. Phytochemistry 1999, 52 (7), 1323–1329; https://doi.org/10.1016/s0031-9422(99)00452-5.Search in Google Scholar

44. Rasheed, U.; Ain, Q. U.; Yaseen, M.; Fan, X.; Yao, X.; Tong, Z.; Liu, B. Modification of Bentonite with Orange Peels Extract and its Application as Mycotoxins’ Binder in Buffered Solutions and Simulated Gastrointestinal Fluids. J. Clean. Prod. 2020, 267, 122105. https://doi.org/10.1016/j.jclepro.2020.122105.Search in Google Scholar

45. Du, Y.; Brumaud, C.; Winnefeld, F.; Lai, Y. H.; Habert, G. Mechanisms for Efficient Clay Dispersing Effect with Tannins and Sodium Hydroxide. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127589. https://doi.org/10.1016/j.colsurfa.2021.127589.Search in Google Scholar

46. Hassanien, R.; Husein, D. Z.; Al-Hakkani, M. F. Biosynthesis of Copper Nanoparticles Using Aqueous Tilia Extract: Antimicrobial and Anticancer Activities. Heliyon 2018, 4 (12), e01077. https://doi.org/10.1016/j.heliyon.2018.e01077.Search in Google Scholar PubMed PubMed Central

47. Mohamad, N. A. N.; Arham, N. A.; Jai, J.; Hadi, A. Plant Extract as Reducing Agent in Synthesis of Metallic Nanoparticles: a Review. Adv. Mater. Res. 2014, 832, 350–355.10.4028/www.scientific.net/AMR.832.350Search in Google Scholar

48. Singh, J.; Dutta, T.; Kim, K. H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’synthesis of Metals and Their Oxide Nanoparticles: Applications for Environmental Remediation. J. Nanobiotechnol. 2018, 16 (1), 1–24. https://doi.org/10.1186/s12951-018-0408-4.Search in Google Scholar PubMed PubMed Central

49. Jadoun, S.; Arif, R.; Jangid, N. K.; Meena, R. K. Green Synthesis of Nanoparticles Using Plant Extracts: A Review. Environ. Chem. Lett. 2021, 19, 355–374. https://doi.org/10.1007/s10311-020-01074-x.Search in Google Scholar

50. Sakhare, D. T. Green Synthesis of Transition Metal & Transitions Metal Oxides of Nanoparticles and Their Antimicrobial Activity. J. Xi’an Shiyou Univ. Nat. Sci. Ed. 2020, 16 (7), 207–237.Search in Google Scholar

51. Ishak, N. M.; Kamarudin, S. K.; Timmiati, S. N. Green Synthesis of Metal and Metal Oxide Nanoparticles via Plant Extracts: an Overview. Mater. Res. Express 2019, 6 (11), 112004; https://doi.org/10.1088/2053-1591/ab4458.Search in Google Scholar

52. Rostami-Vartooni, A.; Alizadeh, M.; Bagherzadeh, M. Green Synthesis, Characterization and Catalytic Activity of Natural Bentonite-Supported Copper Nanoparticles for the Solvent-free Synthesis of 1-substituted 1H-1,2,3, 4-tetrazoles and Reduction of 4-nitrophenol. Beilstein J. Nanotechnol. 2015, 6 (1), 2300–2309. https://doi.org/10.3762/bjnano.6.236.Search in Google Scholar PubMed PubMed Central

53. Sajadi, S. M.; Kolo, K.; Hamad, S. M.; Mahmud, S. A.; Barzinjy, A. A.; Hussein, S. M. Green Synthesis of the Ag/Bentonite Nanocomposite UsingEuphorbia Larica Extract: a Reusable Catalyst for Efficient Reduction of Nitro Compounds and Organic Dyes. ChemistrySelect 2018, 3 (43), 12274–12280. https://doi.org/10.1002/slct.201802707.Search in Google Scholar

54. Nasrollahzadeh, M.; Sajadi, S. M.; Maham, M.; Kohsari, I. Biosynthesis, Characterization and Catalytic Activity of the Pd/bentonite Nanocomposite for Base-And Ligand-free Oxidative Hydroxylation of Phenylboronic Acid and Reduction of Chromium (VI) and Nitro Compounds. Microporous Mesoporous Mater. 2018, 271, 128–137. https://doi.org/10.1016/j.micromeso.2018.05.045.Search in Google Scholar

55. Atarod, M.; Safari, J. Comparative Study of CuO, Fe3O4 and CuFe2O4/CuO over Montmorillonite Clay: Green Synthesis, Characterization and Catalytic Activity. ChemistrySelect 2020, 5 (28), 8394–8404; https://doi.org/10.1002/slct.202001849.Search in Google Scholar

56. Aryafar, A.; Ekrami-Kakhki, M. S.; Naeimi, A. Enhanced Electrocatalytic Activity of Pt-SnO2 Nanoparticles Supported on Natural Bentonite-Functionalized Reduced Graphene Oxide-Extracted Chitosan from Shrimp Wastes for Methanol Electro-Oxidation. Sci. Rep. 2023, 13 (1), 3597. https://doi.org/10.1038/s41598-023-30705-w.Search in Google Scholar PubMed PubMed Central

57. Basak, D.; Bhattacharjya, R.; Kalita, S.; Borah, D.; Saikia, H. “Green” Synthesis and Electrochemical Studies of B/nZVCu-M Nanoparticles Using Lawsonia Inermis. Results Chem. 2023, 6, 101078; https://doi.org/10.1016/j.rechem.2023.101078.Search in Google Scholar

58. Soliemanzadeh, A.; Fekri, M. Synthesis of Clay-Supported Nanoscale Zero-Valent Iron Using Green Tea Extract for the Removal of Phosphorus from Aqueous Solutions. Chin. J. Chem. Eng. 2017, 25 (7), 924–930. https://doi.org/10.1016/j.cjche.2016.12.006.Search in Google Scholar

59. Golmohammadi, M.; Honarmand, M.; Esmaeili, A. Biosynthesis of ZnO Nanoparticles Supported on Bentonite and the Evaluation of its Photocatalytic Activity. Mater. Res. Bull. 2022, 149, 111714; https://doi.org/10.1016/j.materresbull.2021.111714.Search in Google Scholar

60. Sravanthi, K.; Ayodhya, D.; Swamy, P. Y. Green Synthesis, Characterization and Catalytic Activity of 4-nitrophenol Reduction and Formation of Benzimidazoles Using Bentonite Supported Zero Valent Iron Nanoparticles. Mater. Sci. Energy Technol. 2019, 2 (2), 298–307. https://doi.org/10.1016/j.mset.2019.02.003.Search in Google Scholar

61. Gopal, G.; Sankar, H.; Natarajan, C.; Mukherjee, A. Tetracycline Removal Using Green Synthesized Bimetallic nZVI-Cu and Bentonite Supported Green nZVI-Cu Nanocomposite: A Comparative Study. J. Environ. Manag. 2020, 254, 109812; https://doi.org/10.1016/j.jenvman.2019.109812.Search in Google Scholar PubMed

62. Gopal, G.; Ravikumar, K. V. G.; Salma, M.; Chandrasekaran, N.; Mukherjee, A. Green Synthesized Fe/Pd and In-Situ Bentonite-Fe/Pd Composite for Efficient Tetracycline Removal. J. Environ. Chem. Eng. 2020, 8 (5), 104126; https://doi.org/10.1016/j.jece.2020.104126.Search in Google Scholar

63. Zewudie, A. G.; Zereffa, E. A.; Segne, T. A.; Murthy, H. A.; Ravikumar, C. R.; Muniswamy, D.; Binagdie, B. B. Biosynthesis of Ag/bentonite, ZnO/bentonite, and Ag/ZnO/bentonite Nanocomposites by Aqueous Leaf Extract of Hagenia Abyssinica for Antibacterial Activities. Rev. Adv. Mater. Sci. 2023, 62 (1), 20220307. https://doi.org/10.1515/rams-2022-0307.Search in Google Scholar

64. Abukhadra, M. R.; Saad, I.; Othman, S. I.; Allam, A. A.; Fathallah, W. Synthesis of Co3O4@ Organo/Polymeric Bentonite Structures as Environmental Photocatalysts and Antibacterial Agents for Enhanced Removal of Methyl Parathion and Pathogenic Bacteria. J. Inorg. Organomet. Polym. Mater. 2022, 32 (7), 2600–2614. https://doi.org/10.1007/s10904-022-02346-5.Search in Google Scholar

65. Moradi, F.; Sedaghat, S.; Arab-Salmanabadi, S.; Moradi, O. Biosynthesis of Silver-Montmorillonite Nanocomposites Using Ocimum Basilicum and Teucrium Polium; A Comparative Study. Mater. Res. Express 2019, 6 (12), 125008; https://doi.org/10.1088/2053-1591/ab5474.Search in Google Scholar

66. Hariram, M.; Ganesan, V.; Muthuramkumar, S.; Vivekanandhan, S.. Functionalization of Kaolin Clay with Silver Nanoparticles by Murraya Koenigii Fruit Extract-Mediated Bioreduction Process for Antimicrobial Applications. J. Austr. Ceram. Soc. 2021, 57, 505-513. https://doi.org/10.1007/s41779-020-00545-2.Search in Google Scholar

67. Moosa, S., Mahadeven, A. N. M. F., Shameli, K. Synthesis of Silver Nanoparticles in Kaolinite and Their Antibacterial Behaviour. Int. J. Eng. Res. Tech. Res. 2019, 8(8), 129–138; https://doi.org/10.17577/ijertv8is080065.Search in Google Scholar

68. Mahjoore, M., Honarmand, M., Aryafar, A. Plant-based Green Fabrication of S-Scheme CuO/CdO/bentonite Heterojunction with Enhanced Photocatalytic Performance for Degradation of Levofloxacin. Res. Sq. 2022, 2–26. https://doi.org/10.21203/rs.3.rs-1887737/v1.Search in Google Scholar

69. Honarmand, M.; Golmohammadi, M.; Naeimi, A. Green Synthesis of SnO2-Bentonite Nanocomposites for the Efficient Photodegradation of Methylene Blue and Eriochrome Black-T. Mater. Chem. Phys. 2020, 241, 122416. https://doi.org/10.1016/j.matchemphys.2019.122416.Search in Google Scholar

70. Sohrabnezhad, S.; Seifi, A. J. A. S. S. The Green Synthesis of Ag/ZnO in Montmorillonite with Enhanced Photocatalytic Activity. Appl. Surf. Sci. 2016, 386, 33–40; https://doi.org/10.1016/j.apsusc.2016.05.102.Search in Google Scholar

Received: 2023-12-17
Accepted: 2024-04-29
Published Online: 2024-05-27
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
  3. Advanced synthetic routes of metal organic frameworks and their diverse applications
  4. Carbon materials derived by crystalline porous materials for capacitive energy storage
  5. BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
  6. Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base
  7. Solid-phase extraction of organophosphates from polluted waters on a matrix-imprinted sorbent
  8. Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
  9. Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
  10. Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
  11. Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
  12. Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
  13. A review of carbon-based adsorbents for the removal of organic and inorganic components
  14. Mercury removal from water: insights from MOFs and their composites
  15. Organometallic complexes and reaction methods for synthesis: a review
  16. Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity
Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2024-0008/html
Scroll to top button