Home Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
Article
Licensed
Unlicensed Requires Authentication

Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots

  • Shahab Khan ORCID logo EMAIL logo , Faizan Ur Rahman , Inam Ullah , Salman Khan , Zarif Gul , Fazal Sadiq , Tufail Ahmad , Sayed M. Shakil Hussain , Ijaz Ali and Muhammad Israr EMAIL logo
Published/Copyright: May 29, 2024

Abstract

In this article, we explore the role of nanotechnology in addressing water scarcity through water desalination. The scope of nanotechnology in water treatment is discussed, emphasizing the potential of 2D nanomaterials such as hexagonal boron nitride (h-BN), graphene, and quantum dots in revolutionizing desalination technologies. Various water desalination techniques, including membrane distillation (MD), solar-powered multi-stage flash distillation (MSF), and multi-effect distillation (MED), are analyzed in the context of nanomaterial applications. The review highlights the energy-intensive nature of conventional water treatment methods and underscores nanomaterials’ potential to enhance efficiency and sustainability in water desalination processes. Challenges facing desalination, such as scalability and environmental impact, are acknowledged, setting the stage for future research directions.


Corresponding author: Shahab Khan, Department of Chemistry, University of Malakand, Chakdara, Malakand 18800, Pakistan, and Deaprtment of Chemistry, Govt Ghazi Umara Khan Degree College Smar Bagh, University of Malakand, Dir Lower, Malakand, Pakistan, E-mail: ; and Muhammad Israr, Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia, Email:

Acknowledgments

The authors acknowledge Govt Ghazi Umara Khan Degree College Smar Bagh Dir Lower and University of Malakand for providing reserach environment.

  1. Research ethics: Not Applicable.

  2. Author contributions: The literature survey and collection of data were performed by Inam Ullah and Salman Khan. Dr. Fiazan Ur Rahman and Dr. Zarif Gul validated and organized the data, while Tufail Ahmad improved the manuscript quality, and Fazal Sadiq wrote about future directions. The language and grammar were improved by Sayed M. Shakil Hussain and Ijaz. While the manuscript sitting writing, data presentation, editing, validation, and supervision was performed by Shahab Khan and Muhammad Israr.

  3. Competing interests: Not Applicable.

  4. Research funding: Not Applicable.

  5. Data availability: Not Applicable.

References

1. Zeng, M.; Chen, M.; Huang, D.; Lei, S.; Zhang, X.; Wang, L.; Cheng, Z. Engineered Two-Dimensional Nanomaterials: An Emerging Paradigm for Water Purification and Monitoring. Mater. Horiz. 2021, 8 (3), 758–802; https://doi.org/10.1039/d0mh01358g.Search in Google Scholar PubMed

2. Kalogirou, S. A. Seawater Desalination Using Renewable Energy Sources. Prog. Energy Combust. Sci. 2005, 31 (3), 242–281; https://doi.org/10.1016/j.pecs.2005.03.001.Search in Google Scholar

3. Rohaizad, N.; Mayorga-Martinez, C. C.; Fojtů, M.; Latiff, N. M.; Pumera, M. Two-Dimensional Materials in Biomedical, Biosensing and Sensing Applications. Chem. Soc. Rev. 2021, 50 (1), 619–657; https://doi.org/10.1039/d0cs00150c.Search in Google Scholar PubMed

4. Ye, M.; Biesold, G. M.; Zhang, M.; Wang, W.; Bai, T.; Lin, Z. Multifunctional Quantum Dot Materials for Perovskite Solar Cells: Charge Transport, Efficiency and Stability. Nano Today 2021, 40, 101286; https://doi.org/10.1016/j.nantod.2021.101286.Search in Google Scholar

5. Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Mater. Adv. 2021, 2 (6), 1821–1871; https://doi.org/10.1039/d0ma00807a.Search in Google Scholar

6. Pandey, S. Advance nanomaterials for biosensors; MDPI: Basel, Switzerland, 12, 2022; p. 219.10.3390/bios12040219Search in Google Scholar PubMed PubMed Central

7. Sreenivasalu, P. K. P.; Dora, C. P.; Swami, R.; Jasthi, V. C.; Shiroorkar, P. N.; Nagaraja, S.; Asdaq, S. M. B.; Anwer, M. K. Nanomaterials in Dentistry: Current Applications and Future Scope. Nanomaterials 2022, 12 (10), 1676; https://doi.org/10.3390/nano12101676.Search in Google Scholar PubMed PubMed Central

8. Chandrasekharam, D.; Lashin, A.; Al Arifi, N.; Al-Bassam, A. M.; Chandrasekhar, V. Geothermal Energy for Sustainable Water Resources Management. Int. J. Green Energy 2020, 17 (1), 1–12; https://doi.org/10.1080/15435075.2019.1685998.Search in Google Scholar

9. Bremere, I.; Kennedy, M.; Stikker, A.; Schippers, J. How Water Scarcity Will Effect the Growth in the Desalination Market in the Coming 25 Years. Desalination 2001, 138 (1), 7–15; https://doi.org/10.1016/s0011-9164(01)00239-9.Search in Google Scholar

10. Gleick, P. H.; Heberger, M. Water and Conflict. World’s Water 2014, 17 (4), 114–124.10.5822/978-1-61091-483-3Search in Google Scholar

11. Jury, W. A.; Vaux, H. J.Jr. The Emerging Global Water Crisis: Managing Scarcity and Conflict between Water Users. Adv. Agron. 2007, 95, 1–76; https://doi.org/10.1016/s0065-2113(07)95001-4.Search in Google Scholar

12. Hanjra, M. A.; Qureshi, M. E. Global Water Crisis and Future Food Security in an Era of Climate Change. Food Pol. 2010, 35 (5), 365–377; https://doi.org/10.1016/j.foodpol.2010.05.006.Search in Google Scholar

13. Zirakrad, A., Hashemian, S. J., Ghaneian, M. T. Performance Study of Reverse Osmosis Plants for Water Desalination in Bandar-Lengeh, Iran. Journal of Community Health Research 2013, 2(1), 8–14.Search in Google Scholar

14. Gorjian, S.; Ghobadian, B. Solar Desalination: A Sustainable Solution to Water Crisis in Iran. Renew. Sustain. Energy Rev. 2015, 48, 571–584; https://doi.org/10.1016/j.rser.2015.04.009.Search in Google Scholar

15. Perreault, F.; De Faria, A. F.; Elimelech, M. Environmental Applications of Graphene-Based Nanomaterials. Chem. Soc. Rev. 2015, 44 (16), 5861–5896; https://doi.org/10.1039/c5cs00021a.Search in Google Scholar PubMed

16. Surwade, S. P.; Smirnov, S. N.; Vlassiouk, I. V.; Unocic, R. R.; Veith, G. M.; Dai, S.; Mahurin, S. M. Water Desalination Using Nanoporous Single-Layer Graphene. Nat. Nanotechnol. 2015, 10 (5), 459–464; https://doi.org/10.1038/nnano.2015.37.Search in Google Scholar PubMed

17. Nair, M.; Kumar, D. Water Desalination and Challenges: The Middle East Perspective: A Review. Desalination Water Treat. 2013, 51 (10–12), 2030–2040; https://doi.org/10.1080/19443994.2013.734483.Search in Google Scholar

18. Ali, S.; Rehman, S. A. U.; Luan, H. Y.; Farid, M. U.; Huang, H. Challenges and Opportunities in Functional Carbon Nanotubes for Membrane-Based Water Treatment and Desalination. Sci. Total Environ. 2019, 646, 1126–1139; https://doi.org/10.1016/j.scitotenv.2018.07.348.Search in Google Scholar PubMed

19. Ullah, I.; Khan, S. Calligraphy and Painting Scraps of Old and New Asian Papers, Their Simulation, Performance, Sources, and Characteristics. J. Polym. Sci. Eng. 2024, 6 (1), 3260; https://doi.org/10.24294/jpse.v6i1.3260.Search in Google Scholar

20. Khan, S.; Rahman, M.; Marwani, H. M.; Althomali, R. H.; Rahman, M. M. Bicomponent Polymorphs of Salicylic Acid, Their Antibacterial Potentials, Intermolecular Interactions, DFT and Docking Studies. Z. Phys. Chem. 2023, 238 (01), 1–16; https://doi.org/10.1515/zpch-2023-0378.Search in Google Scholar

21. Khan, S.; Ajmal, S.; Hussain, T.; Rahman, M. U. Clay-Based Materials for Enhanced Water Treatment: Adsorption Mechanisms, Challenges, and Future Directions. J. Umm Al-Qura Univ. Appl. Sci. 2023, 1–16; https://doi.org/10.1007/s43994-023-00083-0.Search in Google Scholar

22. Gul, Z.; Salman, M.; Khan, S.; Shehzad, A.; Ullah, H.; Irshad, M.; Zeeshan, M.; Batool, S.; Ahmed, M.; Altaf, A. A. Single Organic Ligands Act as a Bifunctional Sensor for Subsequent Detection of Metal and Cyanide Ions, a Statistical Approach toward Coordination and Sensitivity. Crit. Rev. Anal. Chem. 2023, 1–17; https://doi.org/10.1080/10408347.2023.2186165.Search in Google Scholar PubMed

23. Fatima, J.; Shah, A. N.; Tahir, M. B.; Mehmood, T.; Shah, A. A.; Tanveer, M.; Nazir, R.; Jan, B. L.; Alansi, S. Tunable 2D Nanomaterials; Their Key Roles and Mechanisms in Water Purification and Monitoring. Front. Environ. Sci. 2022, 10, 766743; https://doi.org/10.3389/fenvs.2022.766743.Search in Google Scholar

24. Wang, J.; Li, G.; Li, L. Synthesis Strategies about 2D Materials. Two-Dimensional Materials-Synthesis, Characterization and Potential Applications 2016, 1, 1–20; https://doi.org/10.5772/63918.Search in Google Scholar

25. Wei, M.-p.; Chai, H.; Cao, Y. l.; Jia, D. z. Sulfonated Graphene Oxide as an Adsorbent for Removal of Pb2+ and Methylene Blue. J. Colloid Interface Sci. 2018, 524, 297–305; https://doi.org/10.1016/j.jcis.2018.03.094.Search in Google Scholar PubMed

26. Shahabuddin, S.; Khanam, R.; Khalid, M.; Sarih, N. M.; Ching, J. J.; Mohamad, S.; Saidur, R. Synthesis of 2D Boron Nitride Doped Polyaniline Hybrid Nanocomposites for Photocatalytic Degradation of Carcinogenic Dyes from Aqueous Solution. Arab. J. Chem. 2018, 11 (6), 1000–1016; https://doi.org/10.1016/j.arabjc.2018.05.004.Search in Google Scholar

27. Wu, M.-h.; Li, L.; Liu, N.; Wang, D. j.; Xue, Y. c.; Tang, L. Molybdenum Disulfide (MoS2) as a Co-Catalyst for Photocatalytic Degradation of Organic Contaminants: A Review. Process Saf. Environ. Protect. 2018, 118, 40–58; https://doi.org/10.1016/j.psep.2018.06.025.Search in Google Scholar

28. Rahmanian, E.; Mayorga-Martinez, C. C.; Malekfar, R.; Luxa, J.; Sofer, Z.; Pumera, M. 1T-phase Tungsten Chalcogenides (WS2, WSe2, WTe2) Decorated with TiO2 Nanoplatelets with Enhanced Electron Transfer Activity for Biosensing Applications. ACS Appl. Nano Mater. 2018, 1 (12), 7006–7015; https://doi.org/10.1021/acsanm.8b01796.Search in Google Scholar

29. Ren, C. E.; Hatzell, K. B.; Alhabeb, M.; Ling, Z.; Mahmoud, K. A.; Gogotsi, Y. Charge-and Size-Selective Ion Sieving through Ti3C2TX MXene Membranes. J. Phys. Chem. Lett. 2015, 6 (20), 4026–4031; https://doi.org/10.1021/acs.jpclett.5b01895.Search in Google Scholar PubMed

30. Lyding, J. W. Graphene, the One-Atom-Thick Sheet of Carbon Atom, is a Very Important Material and Considered to Be a Potential Replacement to Silicon in Semiconductors for Consumer Electronics. Adv. Coating Surf. Technol. 2011, 24 (12), 11–13.Search in Google Scholar

31. Zhang, K.; Feng, Y.; Wang, F.; Yang, Z.; Wang, J. Two Dimensional Hexagonal Boron Nitride (2D-hBN): Synthesis, Properties and Applications. J. Mater. Chem. C 2017, 5 (46), 11992–12022; https://doi.org/10.1039/c7tc04300g.Search in Google Scholar

32. Cai, Z.; Liu, B.; Zou, X.; Cheng, H. M. Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. Chem. Rev. 2018, 118 (13), 6091–6133; https://doi.org/10.1021/acs.chemrev.7b00536.Search in Google Scholar PubMed

33. Jiang, D.; Liu, Z.; Xiao, Z.; Qian, Z.; Sun, Y.; Zeng, Z.; Wang, R. Flexible Electronics Based on 2D Transition Metal Dichalcogenides. J. Mater. Chem. A 2022, 10 (1), 89–121; https://doi.org/10.1039/d1ta06741a.Search in Google Scholar

34. Khan, S., Ullah, I., Rahman, M. U., Khan, H., Shah, A. B., Althomali, R. H., Rahman, M. M. Inorganic-polymer Composite Electrolytes: Basics, Fabrications, Challenges and Future Perspectives. Rev. Inorg. Chem. 2024, 44(3), 1–29; https://doi.org/10.1515/revic-2023-0030.Search in Google Scholar

35. Khan, S., Ullah, I., Khan, H., Rahman, F. U., Rahman, M. U., Saleem, M. A., Nazir, S., Ali, A., Ullah, A. Green Synthesis of AgNPs from Leaves Extract of Saliva Sclarea, Their Characterization, Antibacterial Activity, and Catalytic Reduction Ability. Z. Phys. Chem. 2024, 238(5), 931–947; https://doi.org/10.1515/zpch-2023-0363.Search in Google Scholar

36. Dastgeer, G., Nisar, S., Eom, J. Electrical Transport in Post-Graphene 2D Materials. In Emerging Two Dimensional Materials and Applications, 1st ed.; CRC Press: Boca Raton, 2022; pp. 39–69.10.1201/9781003247890-4Search in Google Scholar

37. Nazir, S., Zhang, J. M., Junaid, M., Saleem, S., Ali, A., Ullah, A., Khan, S. Metal-based Nanoparticles: Basics, Types, Fabrications and Their Electronic Applications. Z. Phys. Chem. 2024, 238(6), 1–20; https://doi.org/10.1515/zpch-2023-0375.Search in Google Scholar

38. Ullah, A.; Shah Bukhari, K.; Khan, S.; Farooq, F.; Wahab, A.; Hussain, T.; Saleem, S.; Babar, N. Diversification via Coupling Reactions and Biological Activities of Pyrimidine Derivatives. ChemistrySelect 2023, 8 (47), e202303072; https://doi.org/10.1002/slct.202303072.Search in Google Scholar

39. Fadeel, B.; Bussy, C.; Merino, S.; Vázquez, E.; Flahaut, E.; Mouchet, F.; Evariste, L.; Gauthier, L.; Koivisto, A. J.; Vogel, U.; Martín, C.; Delogu, L. G.; Buerki-Thurnherr, T.; Wick, P.; Beloin-Saint-Pierre, D.; Hischier, R.; Pelin, M.; Candotto Carniel, F.; Tretiach, M.; Cesca, F.; Benfenati, F.; Scaini, D.; Ballerini, L.; Kostarelos, K.; Prato, M.; Bianco, A. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano 2018, 12 (11), 10582–10620; https://doi.org/10.1021/acsnano.8b04758.Search in Google Scholar PubMed

40. Sun, J.; Lu, C.; Song, Y.; Ji, Q.; Song, X.; Li, Q.; Zhang, Y.; Zhang, L.; Kong, J.; Liu, Z. Recent Progress in the Tailored Growth of Two-Dimensional Hexagonal Boron Nitride via Chemical Vapour Deposition. Chem. Soc. Rev. 2018, 47 (12), 4242–4257; https://doi.org/10.1039/c8cs00167g.Search in Google Scholar PubMed

41. Shi, Y.; Hamsen, C.; Jia, X.; Kim, K. K.; Reina, A.; Hofmann, M.; Hsu, A. L.; Zhang, K.; Li, H.; Juang, Z. Y.; Dresselhaus, M. S.; Li, L. J.; Kong, J. Synthesis of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition. Nano Lett. 2010, 10 (10), 4134–4139; https://doi.org/10.1021/nl1023707.Search in Google Scholar PubMed

42. Majidi, S., Pakdel, S., Azamat, J., Hamid, E. N. Hexagonal Boron Nitride (H-BN) in Solutes Separation. In Two-Dimensional (2D) Nanomaterials in Separation Science; Springer: Switzerland, 2021; pp. 163–191.10.1007/978-3-030-72457-3_7Search in Google Scholar

43. Gao, H.; Shi, Q.; Rao, D.; Zhang, Y.; Su, J.; Liu, Y.; Wang, Y.; Deng, K.; Lu, R. Rational Design and Strain Engineering of Nanoporous Boron Nitride Nanosheet Membranes for Water Desalination. J. Phys. Chem. C 2017, 121 (40), 22105–22113; https://doi.org/10.1021/acs.jpcc.7b06480.Search in Google Scholar

44. Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the Functional Modification of Graphene/graphene Oxide: A Review. RSC Adv. 2020, 10 (26), 15328–15345; https://doi.org/10.1039/d0ra01068e.Search in Google Scholar PubMed PubMed Central

45. Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6 (3), 183–191; https://doi.org/10.1038/nmat1849.Search in Google Scholar PubMed

46. Nair, A.; Haponiuk, J. T.; Thomas, S.; Gopi, S. Natural Carbon-Based Quantum Dots and Their Applications in Drug Delivery: A Review. Biomed. Pharmacother. 2020, 132, 110834; https://doi.org/10.1016/j.biopha.2020.110834.Search in Google Scholar PubMed PubMed Central

47. Li, M.; Chen, T.; Gooding, J. J.; Liu, J. Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sens. 2019, 4 (7), 1732–1748; https://doi.org/10.1021/acssensors.9b00514.Search in Google Scholar PubMed

48. Xu, A.; Wang, G.; Li, Y.; Dong, H.; Yang, S.; He, P.; Ding, G. Carbon-Based Quantum Dots with Solid-State Photoluminescent: Mechanism, Implementation, and Application. Small 2020, 16 (48), 2004621; https://doi.org/10.1002/smll.202004621.Search in Google Scholar PubMed

49. Van der Bruggen, B.; Vandecasteele, C. Distillation vs. Membrane Filtration: Overview of Process Evolutions in Seawater Desalination. Desalination 2002, 143 (3), 207–218; https://doi.org/10.1016/s0011-9164(02)00259-x.Search in Google Scholar

50. Ergozhin, E., Chalov, T. K., Begenova, B. E., Khakimboatova, K. K. Semi-permeable Membranes for Ultra-, Microfiltration and Reverse Osmosis. Chem. J. Kazakhstan 2019, 4, 6–24.Search in Google Scholar

51. Hussain, A.; Janson, A.; Matar, J. M.; Adham, S. Membrane Distillation: Recent Technological Developments and Advancements in Membrane Materials. Emergent Mater. 2022, 5 (2), 347–367; https://doi.org/10.1007/s42247-020-00152-8.Search in Google Scholar

52. Mathioulakis, E.; Belessiotis, V.; Delyannis, E. Desalination by Using Alternative Energy: Review and State-of-the-Art. Desalination 2007, 203 (1–3), 346–365; https://doi.org/10.1016/j.desal.2006.03.531.Search in Google Scholar

53. Curto, D.; Franzitta, V.; Guercio, A. A Review of the Water Desalination Technologies. Appl. Sci. 2021, 11 (2), 670; https://doi.org/10.3390/app11020670.Search in Google Scholar

54. Shatat, M.; Riffat, S. B. Water Desalination Technologies Utilizing Conventional and Renewable Energy Sources. Int. J. Low Carbon Technol. 2014, 9 (1), 1–19; https://doi.org/10.1093/ijlct/cts025.Search in Google Scholar

55. Darawsheh, I.; Islam, M.; Banat, F. Experimental Characterization of a Solar Powered MSF Desalination Process Performance. Therm. Sci. Eng. Prog. 2019, 10, 154–162; https://doi.org/10.1016/j.tsep.2019.01.018.Search in Google Scholar

56. Ullah, I.; Rasul, M. G. Recent Developments in Solar Thermal Desalination Technologies: A Review. Energies 2018, 12 (1), 119; https://doi.org/10.3390/en12010119.Search in Google Scholar

57. Ahmed, F. E.; Hashaikeh, R.; Hilal, N. Hybrid Technologies: The Future of Energy Efficient Desalination–A Review. Desalination 2020, 495, 114659; https://doi.org/10.1016/j.desal.2020.114659.Search in Google Scholar

58. Longo, S.; d’Antoni, B. M.; Bongards, M.; Chaparro, A.; Cronrath, A.; Fatone, F.; Lema, J. M.; Mauricio-Iglesias, M.; Soares, A.; Hospido, A. Monitoring and Diagnosis of Energy Consumption in Wastewater Treatment Plants. A State of the Art and Proposals for Improvement. Appl. Energy 2016, 179, 1251–1268; https://doi.org/10.1016/j.apenergy.2016.07.043.Search in Google Scholar

59. Ahammad, S., Sreekrishnan, T. Energy from Wastewater Treatment. In Bioremediation and Bioeconomy; Elsevier: Telangana, India, 2016; pp. 523–536.10.1016/B978-0-12-802830-8.00020-4Search in Google Scholar

60. Rafiee, M. A.; Narayanan, T. N.; Hashim, D. P.; Sakhavand, N.; Shahsavari, R.; Vajtai, R.; Ajayan, P. M. Hexagonal Boron Nitride and Graphite Oxide Reinforced Multifunctional Porous Cement Composites. Adv. Funct. Mater. 2013, 23 (45), 5624–5630; https://doi.org/10.1002/adfm.201203866.Search in Google Scholar

61. Pakdel, A.; Zhi, C.; Bando, Y.; Golberg, D. Low-Dimensional Boron Nitride Nanomaterials. Mater. Today 2012, 15 (6), 256–265; https://doi.org/10.1016/s1369-7021(12)70116-5.Search in Google Scholar

62. Wang, J.; Ma, F.; Liang, W.; Sun, M. Electrical Properties and Applications of Graphene, Hexagonal Boron Nitride (H-BN), and Graphene/h-BN Heterostructures. Mater. Today Phys. 2017, 2, 6–34; https://doi.org/10.1016/j.mtphys.2017.07.001.Search in Google Scholar

63. Cohen-Tanugi, D.; Grossman, J. C. Water Desalination across Nanoporous Graphene. Nano Lett. 2012, 12 (7), 3602–3608; https://doi.org/10.1021/nl3012853.Search in Google Scholar PubMed

64. Khan, S.; Iqbal, A. Organic Polymers Revolution: Applications and Formation Strategies, and Future Perspectives. J. Polym. Sci. Eng. 2023, 6 (1), 3125; https://doi.org/10.24294/jpse.v6i1.3125.Search in Google Scholar

65. Khan, S. Phase Engineering and Impact of External Stimuli for Phase Tuning in 2D Materials. Adv. Energy Convers. Mater. 2023, 5 (1), 40–55; https://doi.org/10.37256/aecm.5120243886.Search in Google Scholar

66. Abd Rani, U.; Ng, L. Y.; Ng, C. Y.; Mahmoudi, E. A Review of Carbon Quantum Dots and Their Applications in Wastewater Treatment. Adv. Colloid Interface Sci. 2020, 278, 102124; https://doi.org/10.1016/j.cis.2020.102124.Search in Google Scholar PubMed

67. Qin, X.; Lu, W.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. Green, Low-Cost Synthesis of Photoluminescent Carbon Dots by Hydrothermal Treatment of Willow Bark and Their Application as an Effective Photocatalyst for Fabricating Au Nanoparticles–Reduced Graphene Oxide Nanocomposites for Glucose Detection. Catal. Sci. Technol. 2013, 3 (4), 1027–1035; https://doi.org/10.1039/c2cy20635h.Search in Google Scholar

68. Vasudevan, D.; Gaddam, R. R.; Trinchi, A.; Cole, I. Core–Shell Quantum Dots: Properties and Applications. J. Alloys Compd. 2015, 636, 395–404; https://doi.org/10.1016/j.jallcom.2015.02.102.Search in Google Scholar

69. Khan, S.; Ullah, I.; Ajmal, S.; Saqib, N.; Rahman, F. U.; Ali, S. Advancements in Nanohybrids: From Coordination Materials to Flexible Solar Cells. J. Polym. Sci. Eng. 2024, 7 (1), 4276; https://doi.org/10.24294/jpse.v7i1.4276.Search in Google Scholar

Received: 2024-03-04
Accepted: 2024-05-14
Published Online: 2024-05-29
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
  3. Advanced synthetic routes of metal organic frameworks and their diverse applications
  4. Carbon materials derived by crystalline porous materials for capacitive energy storage
  5. BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
  6. Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base
  7. Solid-phase extraction of organophosphates from polluted waters on a matrix-imprinted sorbent
  8. Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
  9. Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
  10. Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
  11. Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
  12. Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
  13. A review of carbon-based adsorbents for the removal of organic and inorganic components
  14. Mercury removal from water: insights from MOFs and their composites
  15. Organometallic complexes and reaction methods for synthesis: a review
  16. Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity
Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2024-0013/html
Scroll to top button