Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
-
Shahab Khan
, Hong-Wei Zheng
, Huan Jiao, Shahroz Saleem
, Zarif Gul , Jehan Y. Al-Humaidi , Areej Al Bahir , Raed H. Althomali , Arshad Ali and Mohammed M. Rahman
Abstract
This article critically examines the reduction mechanisms and energy transfer processes between trivalent europium ions (Eu3+) and divalent europium ions (Eu2+) in materials synthesized in an air atmosphere. It also encompasses various materials and conditions, including a critical analysis of the reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials. Specific investigations include exploring the reduction process in BaMgSiO4:Eu, focusing on factors influencing the reaction. The article also covers low-temperature self-reduction, addressing conditions and mechanisms such as the charge compensation model and laser-induced reduction. Additionally, it explores the influence of charge compensation on luminescent properties, emphasizing enhancements in red emission. Investigations into the role of oxygen vacancies in the reduction of Eu3+ and their implications on material properties are presented. This article further digs into abnormal reduction processes and the formation of defect centers in Eu3+-doped pollucite, proposing a substitution defect model for the self-reduction of europium ions in silicate Ba(Eu)MgSiO4 phosphors. Unusual reduction phenomena, such as reduction via boiling water in Yb2Si2O7:Eu3+ phosphors, and reductions in various glass systems, including porous glass, ZnO–B2O3–P2O5 glasses, aluminoborosilicate glasses, europium-doped Li2B4O7 glass, and aluminosilicate oxyfluoride glass (AOG), are also thoroughly examined.
Award Identifier / Grant number: PNURSP2024R24
Funding source: Prince Sattam bin Abdulaziz University
Award Identifier / Grant number: PSAU/2023/R/1444
-
Research ethics: Not applicable.
-
Author contributions: Shahab Khan and Hong-Wei Zheng collected initial data from various sources, while Shahroz Saleem designed and improved the grammar and readability. Jehan Y. Al-Hunaidi wrote details about the reduction in glass materials. Areej Al Bahir organized the manuscript and Arshad Ali improved the quality of the Figures. Raed H.Althomali and Mohammed M. Rahman funded the study. Zarif Gul finalized the manuscript writing and validated the integrity. While, the study was proposed, designed, and supervised by Huan Jiao.
-
Competing interests: Not applicable.
-
Research funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R24), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. This study is also supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444) and the Dean of Science and Research at King Khalid University via the Large Group Project under Grant Number RGP. 2/397/44.
-
Data availability: Not applicable.
References
1. Lee, S. M.; Choi, K. C. Enhanced Emission from BaMgAl10O17: Eu2+ by Localized Surface Plasmon Resonance of Silver Particles. Opt. Express 2010, 18 (12), 12144–12152; https://doi.org/10.1364/oe.18.012144.Search in Google Scholar PubMed
2. Chen, X. Y.; Li, Z.; Bao, S. P.; Ji, P. T. Porous MAl2O4: Eu2+ (Eu3+), Dy3+ (M = Sr, Ca, Ba) Phosphors Prepared by Pechini-type Sol–Gel Method: The Effect of Solvents. Opt. Mater. 2011, 34 (1), 48–55; https://doi.org/10.1016/j.optmat.2011.07.020.Search in Google Scholar
3. Peng, M.; Hong, G. Reduction from Eu3+ to Eu2+ in BaAl2O4: Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4: Eu. J. Lumin. 2007, 127 (2), 735–740; https://doi.org/10.1016/j.jlumin.2007.04.012.Search in Google Scholar
4. Kida, T.; Rahman, M. M.; Nagano, M. Synthesis of Blue‐Emitting CaMgSi2O6: Eu2+ Phosphor Using an Electrostatic Self‐assembly Deposition Method. J. Am. Ceram. Soc. 2006, 89 (5), 1492–1498; https://doi.org/10.1111/j.1551-2916.2006.00919.x.Search in Google Scholar
5. Debasu, M. L.; Ananias, D.; Macedo, A. G.; Rocha, J.; Carlos, L. D. Emission-Decay Curves, Energy-Transfer and Effective-Refractive Index in Gd2O3: Eu3+ Nanorods. J. Phys. Chem. C 2011, 115 (31), 15297–15303; https://doi.org/10.1021/jp205093x.Search in Google Scholar
6. Lourenco, S.; Dantas, N.; Serqueira, E.; Ayta, W.; Andrade, A.; Filadelpho, M.; Sampaio, J.; Bell, M.; Pereira-da-Silva, M. Eu3+ Photoluminescence Enhancement Due to Thermal Energy Transfer in Eu2O3-Doped SiO2–B2o3–PbO2 Glasses System. J. Lumin. 2011, 131 (5), 850–855; https://doi.org/10.1016/j.jlumin.2010.11.028.Search in Google Scholar
7. Pei, Z.; Zeng, Q.; Su, Q. The Application and a Substitution Defect Model for Eu3+ → Eu2+ Reduction in Non-reducing Atmospheres in Borates Containing BO4 Anion Groups. J. Phys. Chem. Solid. 2000, 61 (1), 9–12; https://doi.org/10.1016/s0022-3697(99)00237-1.Search in Google Scholar
8. Wu, C.-C.; Chen, K.-B.; Lee, C.-S.; Chen, T.-M.; Cheng, B.-M. Synthesis and VUV Photoluminescence Characterization of (Y, Gd)(V, P)O4: Eu3+ as a Potential Red-Emitting PDP Phosphor. Chem. Mater. 2007, 19 (13), 3278–3285; https://doi.org/10.1021/cm061042a.Search in Google Scholar
9. Cho, A.; Kim, S. Y.; Lee, M.; Kim, S.-J.; Kim, C.-H.; Pyun, C.-H. Fast Luminescence Decay Processes of Photoexcited Eu3+ in CaS: Eu, La. J. Lumin. 2000, 91 (3-4), 215–221; https://doi.org/10.1016/s0022-2313(00)00226-x.Search in Google Scholar
10. Chambers, M.; Rousseve, P.; Clarke, D. Decay Pathway and High-Temperature Luminescence of Eu3+ in Ca2Gd8Si6O26. J. Lumin. 2009, 129 (3), 263–269; https://doi.org/10.1016/j.jlumin.2008.10.008.Search in Google Scholar
11. Denis, G.; Deniard, P.; Gautron, E.; Clabau, F.; Garcia, A.; Jobic, S. Structure and White Luminescence of Eu-Activated (Ba, Sr)(13 − X)Al(22− 2X) Si(10+2X)O66 Materials. Inorg. Chem. 2008, 47 (10), 4226–4235; https://doi.org/10.1021/ic702240q.Search in Google Scholar PubMed
12. Raju, G. S. R.; Jung, H. C.; Park, J. Y.; Moon, B. K.; Balakrishnaiah, R.; Jeong, J. H.; Kim, J. H. The Influence of Sintering Temperature on the Photoluminescence Properties of Oxyapatite Eu3+: Ca2Gd8Si6O26 Nanophosphors. Sensor. Actuator. B Chem. 2010, 146 (1), 395–402; https://doi.org/10.1016/j.snb.2010.02.056.Search in Google Scholar
13. Chang, Y.-C.; Liang, C.-H.; Yan, S.-A.; Chang, Y.-S. Synthesis and Photoluminescence Characteristics of High Color Purity and Brightness Li3Ba2Gd3 (MoO4)8: Eu3+ Red Phosphors. J. Phys. Chem. C 2010, 114 (8), 3645–3652; https://doi.org/10.1021/jp9084124.Search in Google Scholar
14. Hao, J.; Gao, J.; Cocivera, M. Tuning of the Blue Emission from Europium-Doped Alkaline Earth Chloroborate Thin Films Activated in Air. Appl. Phys. Lett. 2003, 82 (17), 2778–2780; https://doi.org/10.1063/1.1569048.Search in Google Scholar
15. Kim, C.-H.; Kwon, I.-E.; Park, C.-H.; Hwang, Y.-J.; Bae, H.-S.; Yu, B.-Y.; Pyun, C.-H.; Hong, G.-Y. Phosphors for Plasma Display Panels. J. Alloys Compd. 2000, 311 (1), 33–39; https://doi.org/10.1016/s0925-8388(00)00856-2.Search in Google Scholar
16. Pei, Z.; Su, Q.; Zhang, J. The Valence Change from RE3+ to RE2+ (RE Eu, Sm, Yb) in SrB4O7: RE Prepared in Air and the Spectral Properties of RE2+. J. Alloys Compd. 1993, 198 (1-2), 51–53; https://doi.org/10.1016/0925-8388(93)90143-b.Search in Google Scholar
17. Peng, M.; Pei, Z.; Hong, G.; Su, Q. The Reduction of Eu3+ to Eu2+ in BaMgSiO4∶ Eu Prepared in Air and the Luminescence of BaMgSiO4∶ Eu2+ Phosphor. J. Mater. Chem. 2003, 13 (5), 1202–1205; https://doi.org/10.1039/b211624c.Search in Google Scholar
18. Dai, W. Mechanism of the Reduction and Energy Transfer between Eu2+ and Eu3+ in Eu-Doped CaAl2 Si2O8 Materials Prepared in Air. J. Mater. Chem. C 2014, 2 (20), 3951–3959; https://doi.org/10.1039/c3tc32378a.Search in Google Scholar
19. Dang, P.; Li, G.; Yun, X.; Zhang, Q.; Liu, D.; Lian, H.; Shang, M.; Lin, J. Thermally Stable and Highly Efficient Red-Emitting Eu3+-Doped Cs3GdGe3O9 Phosphors for WLEDs: Non-concentration Quenching and Negative Thermal Expansion. Light Sci. Appl. 2021, 10 (1), 29; https://doi.org/10.1038/s41377-021-00469-x.Search in Google Scholar PubMed PubMed Central
20. Dong, L.; Zhang, L.; Jia, Y.; Shao, B.; Lü, W.; Zhao, S.; You, H. Enhancing Luminescence and Controlling the Mn Valence State of Gd3Ga5–x–δAlX–Y+δO12: Y Mn Phosphors by the Design of the Garnet Structure. ACS Appl. Mater. Interfaces 2020, 12 (6), 7334–7344; https://doi.org/10.1021/acsami.9b20915.Search in Google Scholar PubMed
21. Dong, L.; Zhang, L.; Jia, Y.; Shao, B.; Lü, W.; Zhao, S.; You, H. Site Occupation and Luminescence of Novel Orange-Red Ca3M2Ge3O12: Mn2+, Mn4+ (M = Al, Ga) Phosphors. ACS Sustain. Chem. Eng. 2020, 8 (8), 3357–3366; https://doi.org/10.1021/acssuschemeng.9b07281.Search in Google Scholar
22. Liang, P.; Lian, W. L.; Liu, Z. H. Ca[B8O11(OH)4]: Eu2+–A Highly Efficient Deep Blue‐Emitting Phosphor Prepared by Low‐Temperature Self‐reduction. Chem. Eur. J. 2021, 27 (55), 13819–13827; https://doi.org/10.1002/chem.202101639.Search in Google Scholar PubMed
23. Leano, Jr, J. L.; Mariano, C. O. M.; Huang, W.-T.; Mahlik, S.; Lesniewski, T.; Grinberg, M.; Sheu, H.-S.; Hu, S.-F.; Liu, R.-S. Thermally Stable and Deep Red Luminescence of Sr1–X BaX[Mg2Al2N4]:Eu2+ (X = 0–1) Phosphors for Solid State and Agricultural Lighting Applications. ACS Appl. Mater. Interfaces 2020, 12 (20), 23165–23171; https://doi.org/10.1021/acsami.0c07345.Search in Google Scholar PubMed
24. Su, Q.; Liang, H.; Hu, T.; Tao, Y.; Liu, T. Preparation of Divalent Rare Earth Ions in Air by Aliovalent Substitution and Spectroscopic Properties of Ln2+. J. Alloys Compd. 2002, 344 (1-2), 132–136; https://doi.org/10.1016/s0925-8388(02)00351-1.Search in Google Scholar
25. Hao, J.; Gao, J. Abnormal Reduction of Eu Ions and Luminescence in CaB2O4: Eu Thin Films. Appl. Phys. Lett. 2004, 85 (17), 3720–3722; https://doi.org/10.1063/1.1808876.Search in Google Scholar
26. Pei, Z.; Zeng, Q.; Su, Q. A Study on the Mechanism of the Abnormal Reduction of Eu3+→Eu2+ in Sr2B5O9Cl Prepared in Air at High Temperature. J. Solid State Chem. 1999, 145 (1), 212–215; https://doi.org/10.1006/jssc.1999.8246.Search in Google Scholar
27. Rezende, M. V. d. S.; Valerio, M. E.; Jackson, R. A. Study of Eu3+→Eu2+ Reduction in BaAl2O4: Eu Prepared in Different Gas Atmospheres. Mater. Res. Bull. 2015, 61, 348–351; https://doi.org/10.1016/j.materresbull.2014.10.054.Search in Google Scholar
28. Liu, B.; Wang, Y.; Zhou, J.; Zhang, F.; Wang, Z. The Reduction of Eu3+ to Eu2+ in BaMgAl10O17: Eu and the Photoluminescence Properties of BaMgAl10O17: Eu2+ Phosphor. J. Appl. Phys. 2009, 106 (5). https://doi.org/10.1063/1.3211301.Search in Google Scholar
29. Zhong, J.; Yu, L.; Man, X.; Sun, W.; Wu, X.; Jiang, X.; Gao, Z.; Guo, Q.; Zou, Y. The Self‐reduction Synthesis and Luminescent Properties of Eu2+/Eu3+ Activated BaZrxSi3O7+ 2x Phosphors with White Light Emission for White Light‐emitting Diodes. Luminescence 2018, 33 (8), 1387–1393; https://doi.org/10.1002/bio.3559.Search in Google Scholar PubMed
30. Zhong, J.; Yu, L.; Guo, Q.; Gao, Z.; Zou, Y. The Self-Reduction Synthesis and Luminescent Properties of Color-Tunable BaSnxSi3O7+ 2x: Eu2+-Eu3+ Phosphors with High Quantum Efficiency for White Light-Emitting Diodes. Ceram. Int. 2018, 44 (15), 18656–18662; https://doi.org/10.1016/j.ceramint.2018.07.093.Search in Google Scholar
31. Lin, Y.; Niu, Z.; Han, Y.; Li, C.; Zhou, W.; Zhang, J.; Yu, L.; Lian, S. The Self-Reduction Ability of RE3+ in Orthosilicate (RE = Eu, Tm, Yb, Sm): BaZnSiO4-Based Phosphors Prepared in Air and its Luminescence. J. Alloys Compd. 2017, 690, 267–273; https://doi.org/10.1016/j.jallcom.2016.08.079.Search in Google Scholar
32. Chen, J.; Liu, Y.; Liu, H.; Ding, H.; Fang, M.; Huang, Z. Tunable SrAl2Si2O8: Eu Phosphor Prepared in Air via Valence State-Controlled Means. Opt. Mater. 2015, 42, 80–86; https://doi.org/10.1016/j.optmat.2014.12.023.Search in Google Scholar
33. Li, S.; Yu, L.; Sun, J.; Man, X. In-Air Self-Reduction Synthesis and Photoluminescent Properties of Eu2+–Eu3+ Activated CaAl2SixO2x+ 4 Phosphors. Ceram. Int. 2016, 42 (7), 7968–7973; https://doi.org/10.1016/j.ceramint.2016.01.194.Search in Google Scholar
34. Xie, H.; Lu, J.; Guan, Y.; Huang, Y.; Wei, D.; Seo, H. J. Abnormal Reduction, Eu3+→Eu2+, and Defect Centers in Eu3+-Doped Pollucite, CsAlSi2O6, Prepared in an Oxidizing Atmosphere. Inorg. Chem. 2014, 53 (2), 827–834; https://doi.org/10.1021/ic402169w.Search in Google Scholar PubMed
35. Grandhe, B. K.; Bandi, V. R.; Jang, K.; Kim, S.-S.; Shin, D.-S.; Lee, Y.-I.; Lim, J.-M.; Song, T. Reduction of Eu3+ to Eu2+ in NaCaPO4: Eu Phosphors Prepared in a Non-reducing Atmosphere. J. Alloys Compd. 2011, 509 (30), 7937–7942; https://doi.org/10.1016/j.jallcom.2011.05.044.Search in Google Scholar
36. Chen, J.; Liang, Y.; Zhu, Y.; Liu, S.; Li, H.; Lei, W. Abnormal Reduction of Eu3+ to Eu2+ in Sr5(PO4)3Cl: Eu Phosphor and its Enhanced Red Emission by the Charge Compensation. J. Lumin. 2019, 214, 116569; https://doi.org/10.1016/j.jlumin.2019.116569.Search in Google Scholar
37. Tong, C.; Zhu, Y.; Xu, C.; Li, Y. Preliminary Observation of Self-reduction of Eu Ions in α-Ca3(PO4)2 Phosphors Prepared in Air Condition. Phys. B Condens. Matter 2016, 500, 20–23; https://doi.org/10.1016/j.physb.2016.07.026.Search in Google Scholar
38. Kim, K.-B.; Kim, Y.-I.; Chun, H.-G.; Cho, T.-Y.; Jung, J.-S.; Kang, J.-G. Structural and Optical Properties of BaMgAl10O17:Eu2+ Phosphor. Chem. Mater. 2002, 14 (12), 5045–5052; https://doi.org/10.1021/cm020592f.Search in Google Scholar
39. Liao, H.; Zhao, M.; Molokeev, M. S.; Liu, Q.; Xia, Z. Learning from a Mineral Structure toward an Ultra‐Narrow‐Band Blue‐Emitting Silicate Phosphor RbNa3(Li3SiO4)4:Eu2+. Angew. Chem. 2018, 130 (36), 11902–11905; https://doi.org/10.1002/ange.201807087.Search in Google Scholar
40. Zheng, J.; Cheng, Q.; Wu, S.; Guo, Z.; Zhuang, Y.; Lu, Y.; Li, Y.; Chen, C. An Efficient Blue-Emitting Sr5(PO4)3Cl: Eu2+ Phosphor for Application in Near-UV White Light-Emitting Diodes. J. Mater. Chem. C 2015, 3 (42), 11219–11227; https://doi.org/10.1039/c5tc02482j.Search in Google Scholar
41. Zhao, M.; Liao, H.; Ning, L.; Zhang, Q.; Liu, Q.; Xia, Z. Next‐Generation Narrow‐Band Green‐Emitting RbLi (Li3SiO4)2:Eu2+ Phosphor for Backlight Display Application. Adv. Mater. 2018, 30 (38), 1802489; https://doi.org/10.1002/adma.201802489.Search in Google Scholar PubMed
42. Li, S.; Wang, L.; Tang, D.; Cho, Y.; Liu, X.; Zhou, X.; Lu, L.; Zhang, L.; Takeda, T.; Hirosaki, N.; Xie, R. J. Achieving High Quantum Efficiency Narrow-Band β-sialon: Eu2+ Phosphors for High-Brightness LCD Backlights by Reducing the Eu3+ Luminescence Killer. Chem. Mater. 2018, 30 (2), 494–505; https://doi.org/10.1021/acs.chemmater.7b04605.Search in Google Scholar
43. Takeda, T.; Hirosaki, N.; Funahshi, S.; Xie, R.-J. Narrow-Band Green-Emitting Phosphor Ba2LiSi7AlN12:Eu2+ with High Thermal Stability Discovered by a Single Particle Diagnosis Approach. Chem. Mater. 2015, 27 (17), 5892–5898; https://doi.org/10.1021/acs.chemmater.5b01464.Search in Google Scholar
44. Pust, P.; Weiler, V.; Hecht, C.; Tücks, A.; Wochnik, A. S.; Henß, A.-K.; Wiechert, D.; Scheu, C.; Schmidt, P. J.; Schnick, W. Narrow-band Red-Emitting Sr [LiAl3N4]:Eu2+ as a Next-Generation LED-Phosphor Material. Nat. Mater. 2014, 13 (9), 891–896; https://doi.org/10.1038/nmat4012.Search in Google Scholar PubMed
45. Poesl, C.; Schnick, W. Crystal Structure and Nontypical Deep-Red Luminescence of Ca3Mg[Li2Si2N6]:Eu2+. Chem. Mater. 2017, 29 (8), 3778–3784; https://doi.org/10.1021/acs.chemmater.7b00871.Search in Google Scholar
46. Elzer, E.; Strobel, P.; Weiler, V.; Schmidt, P. J.; Schnick, W. Illuminating Nitridoberylloaluminates: The Highly Efficient Red-Emitting Phosphor Sr2[BeAl3N5]:Eu2+. Chem. Mater. 2020, 32 (15), 6611–6617; https://doi.org/10.1021/acs.chemmater.0c02037.Search in Google Scholar
47. Lim, K.-S.; Lee, S.; Trinh, M.-T.; Kim, S.-H.; Lee, M.; Hamilton, D. S.; Gibson, G. N. Femtosecond Laser-Induced Reduction in Eu-Doped Sodium Borate Glasses. J. Lumin. 2007, 122, 14–16; https://doi.org/10.1016/j.jlumin.2006.01.067.Search in Google Scholar
48. Wang, X.; Wu, N.; Shimizu, M.; Sakakura, M.; Shimotsuma, Y.; Miura, K.; Zhou, S.; Qiu, J.; Hirao, K. Space Selective Reduction of Europium Ions via SrF2 Crystals Induced by High Repetition Rate Femtosecond Laser. J. Ceram. Soc. Jpn. 2011, 119 (1396), 939–941; https://doi.org/10.2109/jcersj2.119.939.Search in Google Scholar
49. Yang, Z.; Yang, L.; Pu, Y.; Zhu, D.-c. The Effect and Mechanism of Different Charge Compensation on the Luminescent Properties of Eu-Doped BaSiO3 Phosphor Calcined in Air with Self-Reduction. Opt. Mater. 2021, 114, 110981; https://doi.org/10.1016/j.optmat.2021.110981.Search in Google Scholar
50. Zhu, Y.; Liang, Y.; Liu, S.; Wu, X.; Xu, R.; Li, K. New Insight into the Structure Evolution and Site Preferential Occupancy of Na2Ba6 (Si2O7)(SiO4)2: Eu2+ Phosphor by Cation Substitution Effect. J. Alloys Compd. 2017, 698, 49–59; https://doi.org/10.1016/j.jallcom.2016.12.195.Search in Google Scholar
51. Zhang, S.; Hu, Y.; Chen, L.; Wang, X.; Ju, G.; Wang, Z. Systematic Investigation of Photoluminescence on the Mixed Valence of Europium in Zn2GeO4 Host. Appl. Phys. A 2014, 116, 1985–1992; https://doi.org/10.1007/s00339-014-8379-2.Search in Google Scholar
52. Zhang, Y.; Chen, J.; Xu, C.; Li, Y.; Seo, H. J. Photoluminescence and Abnormal Reduction of Eu3+ Ions in CaAl2O4: EU Nanophosphors Calcined in Air Atmosphere. Phys. B Condens. Matter 2015, 472, 6–10; https://doi.org/10.1016/j.physb.2015.04.018.Search in Google Scholar
53. Dai, W.; Song, E.; Wang, J.; Zhang, Q. Adjustable Valence States of Europium in CaAlBO4 Phosphor by Means of Enlarging the Activator Site and its Luminescent Properties. CrystEngComm 2016, 18 (15), 2679–2689; https://doi.org/10.1039/c6ce00125d.Search in Google Scholar
54. Wang, W.; Pan, Y.; Zhu, Y.; Xu, H.; Zhou, L.; Noh, H. M.; Jeong, J. H.; Liu, X.; Li, L. Bond Energy, Site Preferential Occupancy and Eu2+/3+ Co-doping System Induced by Eu3+ Self-Reduction in Ca10M(PO4)7 (M = Li, Na, K) Crystals. Dalton Trans. 2018, 47 (18), 6507–6518; https://doi.org/10.1039/c8dt00749g.Search in Google Scholar PubMed
55. Bedyal, A.; Kumar, V.; Swart, H. Charge Compensated Derived Enhanced Red Emission from Sr3(VO4)2:Eu3+ Nanophosphors for White Light Emitting Diodes and Flat Panel Displays. J. Alloys Compd. 2017, 709, 362–372; https://doi.org/10.1016/j.jallcom.2017.03.139.Search in Google Scholar
56. Liu, S.; Liang, Y.; Zhu, Y.; Li, H.; Chen, J.; Wang, M.; Li, W. Enhancing Emission Intensity and Thermal Stability by Charge Compensation in Sr2Mg3P4O15:Eu3+. J. Am. Ceram. Soc. 2018, 101 (4), 1655–1664; https://doi.org/10.1111/jace.15334.Search in Google Scholar
57. Danielson, E.; Devenney, M.; Giaquinta, D. M.; Golden, J. H.; Haushalter, R. C.; McFarland, E. W.; Poojary, D. M.; Reaves, C. M.; Weinberg, W. H.; Di Wu, X. X-Ray Powder Structure of Sr2CeO4: A New Luminescent Material Discovered by Combinatorial Chemistry. J. Mol. Struct. 1998, 470 (1-2), 229–235; https://doi.org/10.1016/s0022-2860(98)00485-2.Search in Google Scholar
58. Xiao, X.; Yan, B. Sr2CeO4:Eu3+ and Sr2CeO4: 5 Mol% Eu3+, 3 Mol% Dy3+ Microphosphors: Wet Chemistry Synthesis from Hybrid Precursor and Photoluminescence Properties. J. Phys. Chem. Solid. 2008, 69 (7), 1665–1668; https://doi.org/10.1016/j.jpcs.2007.12.004.Search in Google Scholar
59. Viagin, O.; Masalov, A.; Ganina, I.; Malyukin, Y. Mechanism of Energy Transfer in Sr2CeO4: Eu3+ Phosphor. Opt. Mater. 2009, 31 (12), 1808–1810; https://doi.org/10.1016/j.optmat.2008.12.038.Search in Google Scholar
60. Page, P.; Murthy, K. Luminescence Associated with Eu3+ in Two Host Lattices. Phil. Mag. Lett. 2010, 90 (9), 653–662; https://doi.org/10.1080/09500839.2010.491804.Search in Google Scholar
61. Sankara, R.; Rao, G. S. Eu3+ Luminescence, Ce4+→Eu3+ Energy Transfer, and White‐Red Light Generation in Sr2CeO4. J. Electrochem. Soc. 2000, 147 (7), 2773; https://doi.org/10.1149/1.1393605.Search in Google Scholar
62. Mu, Z.; Hu, Y.; Chen, L.; Wang, X. Enhanced Red Emission in ZnB2O4:Eu3+ by Charge Compensation. Opt. Mater. 2011, 34 (1), 89–94; https://doi.org/10.1016/j.optmat.2011.07.012.Search in Google Scholar
63. Birkel, A.; Denault, K. A.; George, N. C.; Doll, C. E.; Hery, B.; Mikhailovsky, A. A.; Birkel, C. S.; Hong, B.-C.; Seshadri, R. Rapid Microwave Preparation of Highly Efficient Ce3+-Substituted Garnet Phosphors for Solid State White Lighting. Chem. Mater. 2012, 24 (6), 1198–1204; https://doi.org/10.1021/cm3000238.Search in Google Scholar
64. Liu, X.; Liu, Y.; Yan, D.; Zhu, H.; Liu, C.; Xu, C.; Liu, Y.; Wang, X. Single-phased White-Emitting 12CaO·7Al2O3:Ce3+, Dy3+ Phosphors with Suitable Electrical Conductivity for Field Emission Displays. J. Mater. Chem. 2012, 22 (33), 16839–16843; https://doi.org/10.1039/c2jm32741d.Search in Google Scholar
65. Zhu, G.; Wang, Y.; Ci, Z.; Liu, B.; Shi, Y.; Xin, S. Ca5La5(SiO4)3(PO4)3O2:Ce3+,Mn2+: a Color-Tunable Phosphor with Efficient Energy Transfer for White-Light-Emitting Diodes. J. Electrochem. Soc. 2011, 158 (8), J236; https://doi.org/10.1149/1.3595434.Search in Google Scholar
66. Geng, D.; Li, G.; Shang, M.; Yang, D.; Zhang, Y.; Cheng, Z.; Lin, J. Color Tuning via Energy Transfer in Sr3ln(PO4)3:Ce3+/Tb3+/Mn2+ Phosphors. J. Mater. Chem. 2012, 22 (28), 14262–14271; https://doi.org/10.1039/c2jm32392c.Search in Google Scholar
67. Li, G.; Xu, X.; Peng, C.; Shang, M.; Geng, D.; Cheng, Z.; Chen, J.; Lin, J. Yellow-emitting NaCaPO4: Mn 2+ Phosphor for Field Emission Displays. Opt Express 2011, 19 (17), 16423–16431; https://doi.org/10.1364/oe.19.016423.Search in Google Scholar
68. Xu, X.; Wang, Y.; Gong, Y.; Zeng, W.; Li, Y. Effect of Oxygen Vacancies on the Red Phosphorescence of Sr2SnO4: Sm3+ Phosphor. Opt Express 2010, 18 (16), 16989–16994; https://doi.org/10.1364/oe.18.016989.Search in Google Scholar PubMed
69. Dexter, D. L. A Theory of Sensitized Luminescence in Solids. J. Chem. Phys. 1953, 21 (5), 836–850; https://doi.org/10.1063/1.1699044.Search in Google Scholar
70. Trojan-Piegza, J.; Zych, E. Afterglow Luminescence of Lu2O3: Eu Ceramics Synthesized at Different Atmospheres. J. Phys. Chem. C 2010, 114 (9), 4215–4220; https://doi.org/10.1021/jp910126r.Search in Google Scholar
71. Li, H.; Wang, Y. Effect of Oxygen Vacancies on the Reduction of Eu3+ in Mg3Ca3(PO4)4 in Air Atmosphere. Inorg. Chem. 2017, 56 (17), 10396–10403; https://doi.org/10.1021/acs.inorgchem.7b01315.Search in Google Scholar PubMed
72. Dai, W.; Lei, Y.; Yu, T.; Peng, M.; Zhang, Q. Luminescence Properties and a Substitution Defect Model for Self-reduction of Europium Ions in Silicate Ba(Eu)MgSiO4 Phosphors. Mater. Res. Bull. 2015, 67, 176–184; https://doi.org/10.1016/j.materresbull.2015.03.004.Search in Google Scholar
73. Liang, Y.; Noh, H. M.; Ran, W.; Park, S. H.; Choi, B. C.; Jeong, J. H.; Kim, K. H. The Design and Synthesis of New Double Perovskite (Na, Li) YMg(W,Mo)O6: Eu3+ Red Phosphors for White Light-Emitting Diodes. J. Alloys Compd. 2017, 716, 56–64; https://doi.org/10.1016/j.jallcom.2017.05.027.Search in Google Scholar
74. Huang, A.; Yang, Z.; Yu, C.; Chai, Z.; Qiu, J.; Song, Z. Tunable and White Light Emission of a Single-Phased Ba2Y(BO3)2Cl:Bi3+, Eu3+ Phosphor by Energy Transfer for Ultraviolet Converted White LEDs. J. Phys. Chem. C 2017, 121 (9), 5267–5276; https://doi.org/10.1021/acs.jpcc.7b00019.Search in Google Scholar
75. Gao, X.; Liu, H.; Yang, X.; Tian, Y.; Lu, X.; Han, L. A Novel Eu3+/Eu2+ Co-doped MgSrLa8 (SiO4)6O2 Single-Phase White Light Phosphor for White LEDs. RSC Adv. 2017, 7 (3), 1711–1717; https://doi.org/10.1039/c6ra25792e.Search in Google Scholar
76. Xie, R.-J., Li, Y. Q., Hirosaki, N., Yamamoto, H. Nitride phosphors and solid-state lighting; CRC Press: New York, 2011.Search in Google Scholar
77. Chu, Y.; Liu, Z.; Zhang, Q.; Fang, H.; Li, Y.; Wang, H. Valence Transfer of Eu3+ Activated in Yb2Si2O7 Phosphors: Luminescence and Self Reduction. J. Alloys Compd. 2017, 728, 307–313; https://doi.org/10.1016/j.jallcom.2017.08.281.Search in Google Scholar
78. Chen, D.; Miyoshi, H.; Akai, T.; Yazawa, T. Colorless Transparent Fluorescence Material: Sintered Porous Glass Containing Rare-Earth and Transition-Metal Ions. Appl. Phys. Lett. 2005, 86 (23). https://doi.org/10.1063/1.1946897.Search in Google Scholar
79. Xia, J.; Chen, D.; Qiu, J.; Zhu, C. Rare-Earth-Doped Silica Microchip Laser Fabricated by Sintering Nanoporous Glass. Opt Lett. 2005, 30 (1), 47–49; https://doi.org/10.1364/ol.30.000047.Search in Google Scholar PubMed
80. Liu, W.; Chen, D.; Miyoshi, H.; Kadono, K.; Akai, T. Colorless Transparent Fluorescence Material at the VUV Excitation: The Leached Sintered Glass with Impregnation of Tb3+ Ions. Chem. Lett. 2005, 34 (8), 1176–1177; https://doi.org/10.1246/cl.2005.1176.Search in Google Scholar
81. Peng, M.; Pei, Z.; Hong, G.; Su, Q. Study on the Reduction of Eu3+→Eu2+ in Sr4Al14O25: Eu Prepared in Air Atmosphere. Chem. Phys. Lett. 2003, 371 (1-2), 1–6; https://doi.org/10.1016/s0009-2614(03)00044-7.Search in Google Scholar
82. Zhang, Q.; Liu, X.; Qiao, Y.; Qian, B.; Dong, G.; Ruan, J.; Zhou, Q.; Qiu, J.; Chen, D. Reduction of Eu3+ to Eu2+ in Eu-Doped High Silica Glass Prepared in Air Atmosphere. Opt. Mater. 2010, 32 (3), 427–431; https://doi.org/10.1016/j.optmat.2009.10.002.Search in Google Scholar
83. Maruo, Y. Y.; Nakamura, J.; Uchiyama, M.; Higuchi, M.; Izumi, K. Development of Formaldehyde Sensing Element Using Porous Glass Impregnated with Schiff’s Reagent. Sensor. Actuator. B Chem. 2008, 129 (2), 544–550; https://doi.org/10.1016/j.snb.2007.09.002.Search in Google Scholar
84. Zhang, Q.; Qiao, Y.; Qian, B.; Dong, G.; Ruan, J.; Liu, X.; Zhou, Q.; Chen, Q.; Qiu, J.; Chen, D. Luminescence Properties of the Eu-Doped Porous Glass and Spontaneous Reduction of Eu3+ to Eu2+. J. Lumin. 2009, 129 (11), 1393–1397; https://doi.org/10.1016/j.jlumin.2009.07.013.Search in Google Scholar
85. Li, J.; Kuwabara, M. Preparation and Luminescent Properties of Eu-Doped BaTiO3 Thin Films by Sol–Gel Process. Sci. Technol. Adv. Mater. 2003, 4 (2), 143–148; https://doi.org/10.1016/s1468-6996(03)00027-5.Search in Google Scholar
86. Tāle, I.; Kūlis, P.; Kronghauz, V. Recombination Luminescence Mechanisms in Ba3(PO4)2. J. Lumin. 1979, 20 (4), 343–347; https://doi.org/10.1016/0022-2313(79)90003-6.Search in Google Scholar
87. Lian, Z.; Wang, J.; Lv, Y.; Wang, S.; Su, Q. The Reduction of Eu3+ to Eu2+ in Air and Luminescence Properties of Eu2+ Activated ZnO–B2o3–P2o5 Glasses. J. Alloys Compd. 2007, 430 (1), 257–261; https://doi.org/10.1016/j.jallcom.2006.05.002.Search in Google Scholar
88. Zhu, C.; Yang, Y.; Liang, X.; Yuan, S.; Chen, G. Composition Induced Reducing Effects on Eu Ions in Borophosphate Glasses. J. Am. Ceram. Soc. 2007, 90 (9), 2984–2986; https://doi.org/10.1111/j.1551-2916.2007.01775.x.Search in Google Scholar
89. Wang, C.; Peng, M.; Jiang, N.; Jiang, X.; Zhao, C.; Qiu, J. Tuning the Eu Luminescence in Glass Materials Synthesized in Air by Adjusting Glass Compositions. Mater. Lett. 2007, 61 (17), 3608–3611; https://doi.org/10.1016/j.matlet.2006.11.133.Search in Google Scholar
90. Liu, S.; Zhao, G.; Ruan, W.; Yao, Z.; Xie, T.; Jin, J.; Ying, H.; Wang, J.; Han, G. Reduction of Eu3+ to Eu2+ in Aluminoborosilicate Glasses Prepared in Air. J. Am. Ceram. Soc. 2008, 91 (8), 2740–2742; https://doi.org/10.1111/j.1551-2916.2008.02496.x.Search in Google Scholar
91. Liu, S.; Zhao, G.; Ying, H.; Wang, J.; Han, G. Eu/Dy Ions Co-doped White Light Luminescence Zinc–Aluminoborosilicate Glasses for White LED. Opt. Mater. 2008, 31 (1), 47–50; https://doi.org/10.1016/j.optmat.2008.01.007.Search in Google Scholar
92. Malchukova, E.; Boizot, B. Reduction of Eu3+ to Eu2+ in Aluminoborosilicate Glasses under Ionizing Radiation. Mater. Res. Bull. 2010, 45 (9), 1299–1303; https://doi.org/10.1016/j.materresbull.2010.04.027.Search in Google Scholar
93. Sun, X. Y.; Le, X. C.; Xiao, Z.; Shi, X.; Wang, W. F.; Hu, Z.; Yang, Q. M.; Wei, R.; Guo, H. Self‐reduction of Eu3+ to Eu2+ in Europium‐doped Li2B4O7 Glass Prepared in Air. J. Am. Ceram. Soc. 2020, 103 (5), 3119–3125; https://doi.org/10.1111/jace.17012.Search in Google Scholar
94. Liu, L.; Shao, X.; Zhang, Z.; Liu, J.; Hu, Y.; Zhu, C. Spectral Properties and Self-reduction of Eu3+ to Eu2+ in Aluminosilicate Oxyfluoride Glass. RSC Adv. 2023, 13, 23708–23715; https://doi.org/10.1039/d3ra03689h.Search in Google Scholar PubMed PubMed Central
95. Duffy, J.; Ingram, M. D. An Interpretation of Glass Chemistry in Terms of the Optical Basicity Concept. J. Non-Cryst. Solids 1976, 21 (3), 373–410; https://doi.org/10.1016/0022-3093(76)90027-2.Search in Google Scholar
96. Biswas, K.; Balaji, S.; Ghosh, D.; Sontakke, A. D.; Annapurna, K. Near-infrared Frequency Down-Conversion and Cross-Relaxation in Eu2+/Eu3+–Yb3+ Doped Transparent Oxyfluoride Glass and Glass–Ceramics. J. Alloys Compd. 2014, 608, 266–271; https://doi.org/10.1016/j.jallcom.2014.04.126.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
- Advanced synthetic routes of metal organic frameworks and their diverse applications
- Carbon materials derived by crystalline porous materials for capacitive energy storage
- BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
- Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base
- Solid-phase extraction of organophosphates from polluted waters on a matrix-imprinted sorbent
- Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
- Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
- Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
- Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
- Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
- A review of carbon-based adsorbents for the removal of organic and inorganic components
- Mercury removal from water: insights from MOFs and their composites
- Organometallic complexes and reaction methods for synthesis: a review
- Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity
Articles in the same Issue
- Frontmatter
- Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
- Advanced synthetic routes of metal organic frameworks and their diverse applications
- Carbon materials derived by crystalline porous materials for capacitive energy storage
- BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
- Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base
- Solid-phase extraction of organophosphates from polluted waters on a matrix-imprinted sorbent
- Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
- Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
- Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
- Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
- Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
- A review of carbon-based adsorbents for the removal of organic and inorganic components
- Mercury removal from water: insights from MOFs and their composites
- Organometallic complexes and reaction methods for synthesis: a review
- Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity