Home Advanced synthetic routes of metal organic frameworks and their diverse applications
Article
Licensed
Unlicensed Requires Authentication

Advanced synthetic routes of metal organic frameworks and their diverse applications

  • Ghazala Iram

    Miss Ghazala Iram was born in Punjab-Pakistan in August 1996. She completed her schooling and college education at City Layyah-Pakistan and a bachelor’s degree in chemistry at Bahaudin Zakrya University Multan Pakistan in August 2017. She completed her master’s (M.Sc) in chemical sciences at the University of Agriculture Faisalabad in 2020. She then joined the University of Agriculture Faisalabad in September 2021 for an M.Phil. in chemistry in organometallics and coordination chemistry under the supervision of Dr. Muhammad Adnan Iqbal Associate Professor University of Agriculture Faisalabad. She completed her M.Phil. degree in August 2023. Her research work during M.Phil was on the synthesis of coordination complexes.

    , Ateeq-Ur-Rehman

    Dr. Ateeq-ur-Rehman is currently working as an Assistant Professor in the Department of Physics at the University of Agriculture, Faisalabad-Pakistan. After his M.Sc. in Physics, he undertook M.Phil. in solid state physics followed by a fully funded Ph.D. in Physics from Zhejiang University, China. During his Ph.D. studies, he concentrated on the structural and interfacial electronic properties of organic-inorganic interfaces. In addition to studying surface and interface physics, Dr. Rehman is also working on materials synthesis for next-generation energy storage devices. He is the reviewer of several high-impact factor journals; including PCCP and JAP just to mention.

    EMAIL logo
    , Muhammad Adan Iqbal

    Dr. Muhammad Adan Iqbal was born in Punjab-Pakistan in April 1984. He completed his schooling and college education at city Faisalabad-Pakistan and bachelor’s degree in chemistry at university of the Punjab-Lahore-Pakistan in August 2007. He completed his masters (M.Phil) in environmental sciences at college of earth and environmental science, University of the Punjab, Lahore in 2010 and in parallel served as Lecturer of chemistry at Minhaj University Lahore till July 2010. He then joined Universiti Sains Malaysia, Penang-Malaysia in July 2010 for MS leading to PhD study in Dr. Rosenani A. Haque’s laboratory on a fellowship. He completed his PhD in organometallic chemistry in April 2014 and got an opportunity of postdoctoral fellowship at the same research laboratory. During his Ph.D studies Dr. Iqbal visited University of Western Australia, Perth, Australia on a research attachment at Professor Murray Baker’s research Laboratory. He finally joined University of Agriculture Faisalabad in September 2015 as assistant professor. Currently, he has established an organometallic and coordination chemistry laboratory at UAF community college, University of Agriculture Faisalabad-Pakistan with help of funding from Higher Education Commission of Pakistan through one SRGP and two NRPU research grants. His research interests include synthesis of metallodrugs. Dr. Iqbal has published more than 100 research and review articles in international journals, a book on organometallic chemistry and three book chapters. He is managing editor of a reputable research journal, Journal of Angiotherapy. He has produced 5 PhD and 32 M.Phil degree holders in the field of Chemistry. He has organized several workshops, Seminars and Symposiums. He has national (LUMS, University of the Punjab, Lahore, GC University Faisalabad, etc.) and international (University of Western Australia, Perth, Universiti Sains Malaysia, Malaysia, St John’s University, USA) research collaborations. He is working as coordinator for postgraduate classes in chemistry at PARS campus for 2 years and is currently serving additional duties of coordinator for postgraduate classes at PARS and as deputy director students affairs PARS.

    ORCID logo EMAIL logo
    , Ayesha Zafar

    Miss Ayesha Zafar was born in Punjab-Pakistan in November 1997. She completed her schooling and college education at city Jaranwala-Pakistan and done her Graduation in BS Chemistry at Government Postgraduate College Jaranwala Pakistan in October 2020. She then joined University of Agriculture Faisalabad in September 2021 for M.Phil in chemistry in organometallics and coordination chemistry under the supervision of Dr. Muhammad Adnan Iqbal Associate Professor University of Agriculture Faisalabad and completed her M.Phil degree in August 2023. Her research work during M.Phil was on synthesis of metal complexes and their catalytic applications.

    , Adnan Majeed

    Mr. Adnan Majeed was born in Punjab-Pakistan in January 1998. He completed his schooling and college education at Sargodha-Pakistan and his bachelor’s degree in chemistry at The University of Lahore, Pakistan in October 2021. He then joined the University of Agriculture Faisalabad in September 2021 for an M.Phil. in chemistry in organometallics and coordination chemistry under the supervision of Dr. Muhammad Adnan Iqbal Associate Professor University of Agriculture Faisalabad. He completed his M.Phil. degree in August 2023. His research work during his M.Phil. was on the degradation of dyes by Organophotocatalysis using common organic acids.

    , Sofia Hayat

    Miss Sofia Hayat was born in Punjab-Pakistan in July 1997. She completed her schooling and college education at city Toba Tek Singh-Pakistan and bachelor’s degree from Government College University Faisalabad Pakistan in August 2017. She completed her master’s (M.Sc) in chemical sciences at University of Agriculture Faisalabad in 2019. She then joined University of Agriculture Faisalabad in September 2021 for M.Phil in chemistry in organometallics and coordination chemistry under the supervision of Dr. Muhammad Adnan Iqbal Associate Professor University of Agriculture Faisalabad and completed her M.Phil degree in August 2023. Her research work during M.Phil was on the development of benzimidazolium salt based cubosome hydrogels for topical treatment of burns.

    and Maubashera Nawaz

    Miss Maubashera Nawaz was born in Punjab-Pakistan in October 1996. She completed her schooling and college education at city Jhang-Pakistan and bachelor’s degree in chemistry at Punjab University Lahore Pakistan in August 2017. She completed her master’s (M.Sc) in chemical sciences at University of Agriculture Faisalabad in 2020. She then joined University of Agriculture Faisalabad in September 2021 for M.Phil in chemistry in organometallics and coordination chemistry under the supervision of Dr. Muhammad Adnan Iqbal Associate Professor University of Agriculture Faisalabad and completed her M.Phil degree in August 2023. Her research work during M.Phil was on Development of N-alkylated benzimidazole based cubosome hydrogels for topical treatment of burns.

Published/Copyright: April 16, 2024

Abstract

Metal-organic frameworks (MOFs) are crystalline materials characterized by their porous structures, formed through coordination bonding between metal ions/clusters and multidentate organic linkers. MOFs have emerged as a significant class of materials with applications in energy storage, CO2 adsorption, and catalysis. This study serves as a brief introduction to the currently available synthesis methods of MOFs, aimed at acquainting beginners in the field of chemical engineering with the ongoing developments in MOF research. The discussed synthesis methods encompass traditional solvothermal/hydrothermal approaches, microwave synthesis of MOFs, one-pot synthesis, MOF nanocomposites, isothermal synthesis, and fluid-fluid synthesis. Notably, the MOF/NH2/Fe3O4 combination exhibited enhanced adsorption capacity of 618 mg/g and retained an efficiency of over 90 %. This study displays a valuable technique for designing functional MOF hybrid composites. By combining MOFs with specific materials, numerous advantages can be achieved in the newly created compounds (MOF composites), including synergistic effects beneficial in catalytic applications, and overcoming the challenges associated with using bare MOFs.


Corresponding authors: Ateeq-Ur-Rehman, Department of Physics, University of Agriculture, Faisalabad, Pakistan, E-mail: ; and Muhammad Adan Iqbal, Department of Chemistry, University of Agriculture, Faisalabad, Pakistan; and Organometallic and Coordination Chemistry Laboratory, University of Agriculture, Faisalabad, Pakistan, E-mail:

Funding source: Pakistan Science Foundation (PSF)

Award Identifier / Grant number: PSF/Cons/676

About the authors

Ghazala Iram

Miss Ghazala Iram was born in Punjab-Pakistan in August 1996. She completed her schooling and college education at City Layyah-Pakistan and a bachelor’s degree in chemistry at Bahaudin Zakrya University Multan Pakistan in August 2017. She completed her master’s (M.Sc) in chemical sciences at the University of Agriculture Faisalabad in 2020. She then joined the University of Agriculture Faisalabad in September 2021 for an M.Phil. in chemistry in organometallics and coordination chemistry under the supervision of Dr. Muhammad Adnan Iqbal Associate Professor University of Agriculture Faisalabad. She completed her M.Phil. degree in August 2023. Her research work during M.Phil was on the synthesis of coordination complexes.

Ateeq-Ur-Rehman

Dr. Ateeq-ur-Rehman is currently working as an Assistant Professor in the Department of Physics at the University of Agriculture, Faisalabad-Pakistan. After his M.Sc. in Physics, he undertook M.Phil. in solid state physics followed by a fully funded Ph.D. in Physics from Zhejiang University, China. During his Ph.D. studies, he concentrated on the structural and interfacial electronic properties of organic-inorganic interfaces. In addition to studying surface and interface physics, Dr. Rehman is also working on materials synthesis for next-generation energy storage devices. He is the reviewer of several high-impact factor journals; including PCCP and JAP just to mention.

Muhammad Adan Iqbal

Dr. Muhammad Adan Iqbal was born in Punjab-Pakistan in April 1984. He completed his schooling and college education at city Faisalabad-Pakistan and bachelor’s degree in chemistry at university of the Punjab-Lahore-Pakistan in August 2007. He completed his masters (M.Phil) in environmental sciences at college of earth and environmental science, University of the Punjab, Lahore in 2010 and in parallel served as Lecturer of chemistry at Minhaj University Lahore till July 2010. He then joined Universiti Sains Malaysia, Penang-Malaysia in July 2010 for MS leading to PhD study in Dr. Rosenani A. Haque’s laboratory on a fellowship. He completed his PhD in organometallic chemistry in April 2014 and got an opportunity of postdoctoral fellowship at the same research laboratory. During his Ph.D studies Dr. Iqbal visited University of Western Australia, Perth, Australia on a research attachment at Professor Murray Baker’s research Laboratory. He finally joined University of Agriculture Faisalabad in September 2015 as assistant professor. Currently, he has established an organometallic and coordination chemistry laboratory at UAF community college, University of Agriculture Faisalabad-Pakistan with help of funding from Higher Education Commission of Pakistan through one SRGP and two NRPU research grants. His research interests include synthesis of metallodrugs. Dr. Iqbal has published more than 100 research and review articles in international journals, a book on organometallic chemistry and three book chapters. He is managing editor of a reputable research journal, Journal of Angiotherapy. He has produced 5 PhD and 32 M.Phil degree holders in the field of Chemistry. He has organized several workshops, Seminars and Symposiums. He has national (LUMS, University of the Punjab, Lahore, GC University Faisalabad, etc.) and international (University of Western Australia, Perth, Universiti Sains Malaysia, Malaysia, St John’s University, USA) research collaborations. He is working as coordinator for postgraduate classes in chemistry at PARS campus for 2 years and is currently serving additional duties of coordinator for postgraduate classes at PARS and as deputy director students affairs PARS.

Ayesha Zafar

Miss Ayesha Zafar was born in Punjab-Pakistan in November 1997. She completed her schooling and college education at city Jaranwala-Pakistan and done her Graduation in BS Chemistry at Government Postgraduate College Jaranwala Pakistan in October 2020. She then joined University of Agriculture Faisalabad in September 2021 for M.Phil in chemistry in organometallics and coordination chemistry under the supervision of Dr. Muhammad Adnan Iqbal Associate Professor University of Agriculture Faisalabad and completed her M.Phil degree in August 2023. Her research work during M.Phil was on synthesis of metal complexes and their catalytic applications.

Adnan Majeed

Mr. Adnan Majeed was born in Punjab-Pakistan in January 1998. He completed his schooling and college education at Sargodha-Pakistan and his bachelor’s degree in chemistry at The University of Lahore, Pakistan in October 2021. He then joined the University of Agriculture Faisalabad in September 2021 for an M.Phil. in chemistry in organometallics and coordination chemistry under the supervision of Dr. Muhammad Adnan Iqbal Associate Professor University of Agriculture Faisalabad. He completed his M.Phil. degree in August 2023. His research work during his M.Phil. was on the degradation of dyes by Organophotocatalysis using common organic acids.

Sofia Hayat

Miss Sofia Hayat was born in Punjab-Pakistan in July 1997. She completed her schooling and college education at city Toba Tek Singh-Pakistan and bachelor’s degree from Government College University Faisalabad Pakistan in August 2017. She completed her master’s (M.Sc) in chemical sciences at University of Agriculture Faisalabad in 2019. She then joined University of Agriculture Faisalabad in September 2021 for M.Phil in chemistry in organometallics and coordination chemistry under the supervision of Dr. Muhammad Adnan Iqbal Associate Professor University of Agriculture Faisalabad and completed her M.Phil degree in August 2023. Her research work during M.Phil was on the development of benzimidazolium salt based cubosome hydrogels for topical treatment of burns.

Maubashera Nawaz

Miss Maubashera Nawaz was born in Punjab-Pakistan in October 1996. She completed her schooling and college education at city Jhang-Pakistan and bachelor’s degree in chemistry at Punjab University Lahore Pakistan in August 2017. She completed her master’s (M.Sc) in chemical sciences at University of Agriculture Faisalabad in 2020. She then joined University of Agriculture Faisalabad in September 2021 for M.Phil in chemistry in organometallics and coordination chemistry under the supervision of Dr. Muhammad Adnan Iqbal Associate Professor University of Agriculture Faisalabad and completed her M.Phil degree in August 2023. Her research work during M.Phil was on Development of N-alkylated benzimidazole based cubosome hydrogels for topical treatment of burns.

  1. Research ethics: Not applicable.

  2. Author contributions: Ghazala Iram: Writing-original draft, Software; Ateeq-Ur-Rehman: Resources and Validation; Muhammad Adnan Iqbal: Conceptualization, Resources, Supervision, Overall guidance; Ayesha Zafar: Data curation, Visualization. Adnan Majeed: Review and editing, Software. Sofia Hayat: Formal analysis; Mubashera Nawaz: Validation.

  3. Competing interests: The authors declare no conflict of interest.

  4. Research funding: The authors are thankful to the Pakistan Science Foundation (PSF) for awarding the research grant PSF/Cons/676.

  5. Data availability: Data will be provided on demand.

References

1. Baele, G.; Li, W. L. S.; Drummond, A. J.; Suchard, M. A.; Lemey, P. Accurate Model Selection of Relaxed Molecular Clocks in Bayesian Phylogenetics. Mol. Biol. Evol. 2012, 30 (2), 239–243; https://doi.org/10.1093/molbev/mss243.Search in Google Scholar PubMed PubMed Central

2. Cai, G.; Yan, P.; Zhang, L.; Zhou, H. C.; Jiang, H. L. Metal–Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chem. Rev. 2021, 121 (20), 12278–12326; https://doi.org/10.1021/acs.chemrev.1c00243.Search in Google Scholar PubMed

3. Yu, C.-H.; Dang, Y.; Zhou, Z.; Wu, C.; Zhao, F.; Sachs, M.; Liu, Y. Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-Translational Protein Folding. Mol. Cell 2015, 59 (5), 744–754; https://doi.org/10.1016/j.molcel.2015.07.018.Search in Google Scholar PubMed PubMed Central

4. Wu, Y.; Liang, D.; Wang, Y.; Bai, M.; Tang, W.; Bao, S.; Yan, Z.; Li, D.; Li, J. Correction of a Genetic Disease in Mouse via Use of CRISPR-Cas9. Cell Stem Cell 2013, 13 (6), 659–662; https://doi.org/10.1016/j.stem.2013.10.016.Search in Google Scholar PubMed

5. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L. Large-Scale Video Classification with Convolutional Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014.10.1109/CVPR.2014.223Search in Google Scholar

6. Sun, Y.; Wang, Z.; Fu, P.; Jiang, Q.; Yang, T.; Li, J.; Ge, X. The Impact of Relative Humidity on Aerosol Composition and Evolution Processes During Wintertime in Beijing, China. Atmos. Environ. 2013, 77, 927–934; https://doi.org/10.1016/j.atmosenv.2013.06.019.Search in Google Scholar

7. Harbuzaru, B. V.; Corma, A.; Rey, F.; Jordá, J.; Ananias, D.; Carlos, L.; Rocha, J. A Miniaturized Linear pH Sensor Based on a Highly Photoluminescent Self-Assembled Europium (III) Metal–Organic Framework. Angew. Chem., Int. Ed. 2009, 48 (35), 6476–6479; https://doi.org/10.1002/anie.200902045.Search in Google Scholar PubMed

8. Falcaro, P.; Hill, A. J.; Nairn, K. M.; Jasieniak, J.; Mardel, J. I.; Bastow, T. J.; Mayo, S. C.; Gimona, M.; Gomez, D.; Whitfield, H. J.; Riccò, R.; Patelli, A.; Marmiroli, B.; Amenitsch, H.; Colson, T.; Villanova, L.; Buso, D. A New Method to Position and Functionalize Metal-Organic Framework Crystals. Nat. Commun. 2011, 2 (1), 237; https://doi.org/10.1038/ncomms1234.Search in Google Scholar PubMed PubMed Central

9. Jones, C. R.; Pickles, A.; Falcaro, M.; Marsden, A. J.; Happé, F.; Scott, S. K.; Sauter, D.; Tregay, J.; Phillips, R. J.; Baird, G.; Simonoff, E.; Charman, T. A Multimodal Approach to Emotion Recognition Ability in Autism Spectrum Disorders. JCPP (J. Child Psychol. Psychiatry) 2011, 52 (3), 275–285; https://doi.org/10.1111/j.1469-7610.2010.02328.x.Search in Google Scholar PubMed

10. Cherry, S. R.; Jones, T.; Karp, J. S.; Qi, J.; Moses, W. W.; Badawi, R. D. Total-Body PET: Maximizing Sensitivity to Create New Opportunities for Clinical Research and Patient Care. J. Nucl. Med. 2018, 59 (1), 3–12; https://doi.org/10.2967/jnumed.116.184028.Search in Google Scholar PubMed PubMed Central

11. Yang, Y.; Cheng, J.; Wang, B.; Guo, Y.; Dong, X.; Zhao, J. An Amino-Modified Metal-Organic Framework (Type UiO-66-NH2) Loaded with Cadmium (II) and Lead (II) Ions for Simultaneous Electrochemical Immunosensing of Triazophos and Thiacloprid. Microchim. Acta 2019, 186, 1–10; https://doi.org/10.1007/s00604-018-3201-z.Search in Google Scholar PubMed

12. Magri, A.; Petriccione, M.; Gutiérrez, T. J. Metal-Organic Frameworks for Food Applications: A Review. Food Chem. 2021, 354, 129533; https://doi.org/10.1016/j.foodchem.2021.129533.Search in Google Scholar PubMed

13. Luan, Q.; Cao, Y.; Li, T. Mimicking an Enzyme-Based Colorimetric Aptasensor for Antibiotic Residue Detection in Milk Combining Magnetic Loop-DNA Probes and CHA-Assisted Target Recycling Amplification. J. Agric. Food Chem. 2017, 65 (28), 5731–5740; https://doi.org/10.1021/acs.jafc.7b02139.Search in Google Scholar PubMed

14. Bhardwaj, N.; Bhardwaj, S. K.; Mehta, J.; Kim, K. H.; Deep, A. MOF–Bacteriophage Biosensor for Highly Sensitive and Specific Detection of Staphylococcus Aureus. ACS Appl. Mater. Interfaces 2017, 9 (39), 33589–33598; https://doi.org/10.1021/acsami.7b07818.Search in Google Scholar PubMed

15. Anderson, S. L.; Boyd, P. G.; Gładysiak, A.; Nguyen, T. N.; Palgrave, R. G.; Kubicki, D.; Emsley, L.; Bradshaw, D.; Rosseinsky, M. J.; Smit, B.; Stylianou, K. C. Nucleobase Pairing and Photodimerization in a Biologically Derived Metal-Organic Framework Nanoreactor. Nat. Commun. 2019, 10 (1), 1612; https://doi.org/10.1038/s41467-019-09486-2.Search in Google Scholar PubMed PubMed Central

16. Moghadam, P. Z.; Ivy, J. F.; Arvapally, R. K.; dos Santos, A. M.; Pearson, J. C.; Zhang, L.; Tylianakis, E.; Ghosh, P.; Oswald, I. W. H.; Kaipa, U.; Wang, X.; Wilson, A. K.; Snurr, R. Q.; Omary, M. A. Adsorption and Molecular Siting of CO2, Water, and Other Gases in the Superhydrophobic, Flexible Pores of FMOF-1 from Experiment and Simulation. Chem. Sci. 2017, 8 (5), 3989–4000; https://doi.org/10.1039/c7sc00278e.Search in Google Scholar PubMed PubMed Central

17. Pérez-Cejuela, H. M.; Mon, M.; Ferrando-Soria, J.; Pardo, E.; Armentano, D.; Simó-Alfonso, E. F.; Herrero-Martínez, J. M. Bio-Metal-Organic Frameworks for Molecular Recognition and Sorbent Extraction of Hydrophilic Vitamins Followed by Their Determination Using HPLC-UV. Microchim. Acta 2020, 187, 1–8; https://doi.org/10.1007/s00604-020-4185-z.Search in Google Scholar PubMed

18. Wang, J.; Fan, Y.; Tan, Y.; Zhao, X.; Zhang, Y.; Cheng, C.; Yang, M. Porphyrinic Metal–Organic Framework PCN-224 Nanoparticles for Near-Infrared-Induced Attenuation of Aggregation and Neurotoxicity of Alzheimer’s Amyloid-β Peptide. ACS Appl. Mater. Interfaces 2018, 10 (43), 36615–36621; https://doi.org/10.1021/acsami.8b15452.Search in Google Scholar PubMed

19. Wang, H.-S.; Wang, Y.-H.; Ding, Y. Development of Biological Metal–Organic Frameworks Designed for Biomedical Applications: From Bio-Sensing/Bio-Imaging to Disease Treatment. Nanoscale Adv. 2020, 2 (9), 3788–3797; https://doi.org/10.1039/d0na00557f.Search in Google Scholar PubMed PubMed Central

20. Kim, K.; Lee, S.; Jin, E.; Palanikumar, L.; Lee, J. H.; Kim, J. C.; Nam, J. S.; Jana, B.; Kwon, T. H.; Kwak, S. K.; Choe, W.; Ryu, J. H. MOF× Biopolymer: Collaborative Combination of Metal–Organic Framework and Biopolymer for Advanced Anticancer Therapy. ACS Appl. Mater. Interfaces 2019, 11 (31), 27512–27520; https://doi.org/10.1021/acsami.9b05736.Search in Google Scholar PubMed

21. Qiu, G.-H.; Lu, W. Z.; Hu, P. P.; Jiang, Z. H.; Bai, L. P.; Wang, T. R.; Li, M. M.; Chen, J. X. A Metal-Organic Framework Based PCR-Free Biosensor for the Detection of Gastric Cancer Associated MicroRNAs. J. Inorg. Biochem. 2017, 177, 138–142; https://doi.org/10.1016/j.jinorgbio.2017.08.036.Search in Google Scholar PubMed

22. Zhang, T.; Wang, L.; Ma, C.; Wang, W.; Ding, J.; Liu, S.; Zhang, X.; Xie, Z. BODIPY-Containing Nanoscale Metal–Organic Frameworks as Contrast Agents for Computed Tomography. J. Mater. Chem. B 2017, 5 (12), 2330–2336; https://doi.org/10.1039/c7tb00392g.Search in Google Scholar PubMed

23. Gao, Y.; Li, S.; Li, Y.; Yao, L.; Zhang, H. Accelerated Photocatalytic Degradation of Organic Pollutant over Metal-Organic Framework MIL-53 (Fe) Under Visible LED Light Mediated by Persulfate. Appl. Catal. B Environ. 2017, 202, 165–174; https://doi.org/10.1016/j.apcatb.2016.09.005.Search in Google Scholar

24. Park, J.; Xu, M.; Li, F.; Zhou, H. C. 3D Long-Range Triplet Migration in a Water-Stable Metal–Organic Framework for Upconversion-Based Ultralow-Power in Vivo Imaging. J. Am. Chem. Soc. 2018, 140 (16), 5493–5499; https://doi.org/10.1021/jacs.8b01613.Search in Google Scholar PubMed

25. Walker, G.; Bohlender, D. A.; Maier, J. P.; Campbell, E. K. Identification of More Interstellar Bands. Astrophys. J. Lett. 2015, 812 (1), L8; https://doi.org/10.1088/2041-8205/812/1/l8.Search in Google Scholar

26. Ajdari, F. B.; Kowsari, E.; Niknam Shahrak, M.; Ehsani, A.; Kiaei, Z.; Torkzaban, H.; Ershadi, M.; Kholghi Eshkalak, S.; Haddadi-Asl, V.; Chinnappan, A.; Ramakrishna, S. A Review on the Field Patents and Recent Developments over the Application of Metal Organic Frameworks (Mofs) in Supercapacitors. Coord. Chem. Rev. 2020, 422, 213441; https://doi.org/10.1016/j.ccr.2020.213441.Search in Google Scholar

27. Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S.; Kazumori, H.; O’Keeffe, M.; Terasaki, O.; Stoddart, J. F.; Yaghi, O. M. Large-Pore Apertures in a Series of Metal-Organic Frameworks. Science 2012, 336 (6084), 1018–1023; https://doi.org/10.1126/science.1220131.Search in Google Scholar PubMed

28. Li, H.-Y.; Zhao, S. N.; Zang, S. Q.; Li, J. Functional Metal–Organic Frameworks as Effective Sensors of Gases and Volatile Compounds. Chem. Soc. Rev. 2020, 49 (17), 6364–6401; https://doi.org/10.1039/c9cs00778d.Search in Google Scholar PubMed

29. Olorunyomi, J. F.; Geh, S. T.; Caruso, R. A.; Doherty, C. M. Metal–Organic Frameworks for Chemical Sensing Devices. Mater. Horiz. 2021, 8 (9), 2387–2419; https://doi.org/10.1039/d1mh00609f.Search in Google Scholar PubMed

30. Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M. Cu3 (Hexaiminotriphenylene) 2: An Electrically Conductive 2D Metal–Organic Framework for Chemiresistive Sensing. Angew. Chem., Int. Ed. 2015, 54 (14), 4349–4352; https://doi.org/10.1002/anie.201411854.Search in Google Scholar PubMed

31. Guo, Z.; Wu, H.; Srinivas, G.; Zhou, Y.; Xiang, S.; Chen, Z.; Yang, Y.; Zhou, W.; O’Keeffe, M.; Chen, B. A Metal–Organic Framework with Optimized Open Metal Sites and Pore Spaces for High Methane Storage at Room Temperature. Angew. Chem., Int. Ed. 2011, 50 (14), 3178–3181; https://doi.org/10.1002/anie.201007583.Search in Google Scholar PubMed

32. Garg, N.; Deep, A.; Sharma, A. L. Metal-Organic Frameworks Based Nanostructure Platforms for Chemo-Resistive Sensing of Gases. Coord. Chem. Rev. 2021, 445, 214073; https://doi.org/10.1016/j.ccr.2021.214073.Search in Google Scholar

33. Tung, T. T.; Tran, M. T.; Feller, J. F.; Castro, M.; Van Ngo, T.; Hassan, K.; Nine, M. J.; Losic, D. Graphene and Metal Organic Frameworks (MOFs) Hybridization for Tunable Chemoresistive Sensors for Detection of Volatile Organic Compounds (VOCs) Biomarkers. Carbon 2020, 159, 333–344; https://doi.org/10.1016/j.carbon.2019.12.010.Search in Google Scholar

34. Yang, S.; Lin, X.; Lewis, W.; Suyetin, M.; Bichoutskaia, E.; Parker, J. E.; Tang, C. C.; Allan, D. R.; Rizkallah, P. J.; Hubberstey, P.; Champness, N. R.; Mark Thomas, K.; Blake, A. J.; Schröder, M. A Partially Interpenetrated Metal-Organic Framework for Selective Hysteretic Sorption of Carbon Dioxide. Nat. Mater. 2012, 11 (8), 710–716; https://doi.org/10.1038/nmat3343.Search in Google Scholar PubMed

35. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal–Organic Frameworks in Biomedicine. Chem. Rev. 2012, 112 (2), 1232–1268; https://doi.org/10.1021/cr200256v.Search in Google Scholar PubMed

36. Dhakshinamoorthy, A.; Garcia, H. Catalysis by Metal Nanoparticles Embedded on Metal–Organic Frameworks. Chem. Soc. Rev. 2012, 41 (15), 5262–5284; https://doi.org/10.1039/c2cs35047e.Search in Google Scholar PubMed

37. Liédana, N.; Galve, A.; Rubio, C.; Téllez, C.; Coronas, J. CAF@ ZIF-8: One-Step Encapsulation of Caffeine in MOF. ACS Appl. Mater. Interfaces 2012, 4 (9), 5016–5021; https://doi.org/10.1021/am301365h.Search in Google Scholar PubMed

38. Lyu, F.; Zhang, Y.; Zare, R. N.; Ge, J.; Liu, Z. One-Pot Synthesis of Protein-Embedded Metal–Organic Frameworks with Enhanced Biological Activities. Nano Lett. 2014, 14 (10), 5761–5765; https://doi.org/10.1021/nl5026419.Search in Google Scholar PubMed

39. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev. 2012, 112 (2), 1105–1125; https://doi.org/10.1021/cr200324t.Search in Google Scholar PubMed

40. More, M. S.; Bodkhe, G. A.; Singh, F.; Dole, B.; Tsai, M. L.; Hianik, T.; Shirsat, M. D. Chemiresistive and chem-FET Sensor: π-d Conjugated Metal-Organic Framework for Ultra-Sensitive and Selective Carbon Monoxide Detection. Synth. Met. 2023, 296, 117357; https://doi.org/10.1016/j.synthmet.2023.117357.Search in Google Scholar

41. Boukayouht, K.; Bazzi, L.; El Hankari, S. Sustainable Synthesis of Metal-Organic Frameworks and Their Derived Materials from Organic and Inorganic Wastes. Coord. Chem. Rev. 2023, 478, 214986; https://doi.org/10.1016/j.ccr.2022.214986.Search in Google Scholar

42. Klimakow, M.; Klobes, P.; Rademann, K.; Emmerling, F. Characterization of Mechanochemically Synthesized MOFs. Microporous Mesoporous Mater. 2012, 154, 113–118; https://doi.org/10.1016/j.micromeso.2011.11.039.Search in Google Scholar

43. Wang, C.; Xie, Z.; deKrafft, K. E.; Lin, W. Doping Metal–Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis. J. Am. Chem. Soc. 2011, 133 (34), 13445–13454; https://doi.org/10.1021/ja203564w.Search in Google Scholar PubMed

44. Meng, Z.; Stolz, R. M.; Mendecki, L.; Mirica, K. A. Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chem. Rev. 2019, 119 (1), 478–598; https://doi.org/10.1021/acs.chemrev.8b00311.Search in Google Scholar PubMed

45. Reinsch, H.; Stock, N. Synthesis of MOFs: A Personal View on Rationalisation, Application and Exploration. Dalton Trans. 2017, 46 (26), 8339–8349; https://doi.org/10.1039/c7dt01115f.Search in Google Scholar PubMed

46. Zhu, J.; Guo, W.; Zhao, Y.; Zou, R. Titanium-Based Metal–Organic Frameworks for Photocatalytic Applications. Coord. Chem. Rev. 2018, 359, 80–101; https://doi.org/10.1016/j.ccr.2017.12.013.Search in Google Scholar

47. Han, L.; Jing, F.; zhang, J.; Luo, X. Z.; Zhong, Y. L.; Wang, K.; Zang, S. H.; Teng, D. H.; Liu, Y.; Chen, J.; Yang, C.; Zhou, Y. T. Environment Friendly and Remarkably Efficient Photocatalytic Hydrogen Evolution Based on Metal Organic Framework Derived Hexagonal/Cubic In2O3 Phase-Junction. Appl. Catal. B Environ. 2021, 282, 119602; https://doi.org/10.1016/j.apcatb.2020.119602.Search in Google Scholar

48. Cao, C.-S.; Wang, J.; Yu, X.; Zhang, Y.; Zhu, L. Photodegradation of Seven Bisphenol Analogues by Bi5O7I/UiO-67 Heterojunction: Relationship Between the Chemical Structures and Removal Efficiency. Appl. Catal. B Environ. 2020, 277, 119222; https://doi.org/10.1016/j.apcatb.2020.119222.Search in Google Scholar

49. Gao, Y.; Wu, J.; Wang, J.; Fan, Y.; Zhang, S.; Dai, W. A Novel Multifunctional P-Type Semiconductor@ MOFs Nanoporous Platform for Simultaneous Sensing and Photodegradation of Tetracycline. ACS Appl. Mater. Interfaces 2020, 12 (9), 11036–11044; https://doi.org/10.1021/acsami.9b23314.Search in Google Scholar PubMed

50. Xu, K., Zhang, S., Zhuang, X., Zhang, G., Tang, Y., Pang, H. Recent Progress of MOF-Functionalized Nanocomposites: From Structure to Properties. Adv. Colloid Interface Sci. 2023, 323, 103050; https://doi.org/10.1016/j.cis.2023.103050.Search in Google Scholar PubMed

51. Yu, D.; Li, L.; Wu, M.; Crittenden, J. C. Enhanced Photocatalytic Ozonation of Organic Pollutants Using An Iron-Based Metal-Organic Framework. Appl. Catal. B Environ. 2019, 251, 66–75; https://doi.org/10.1016/j.apcatb.2019.03.050.Search in Google Scholar

52. Tang, Y.; Zheng, S.; Cao, S.; Xue, H.; Pang, H. Advances in the Application of Manganese Dioxide and its Composites as Electrocatalysts for the Oxygen Evolution Reaction. J. Mater. Chem. A 2020, 8 (36), 18492–18514; https://doi.org/10.1039/d0ta05985d.Search in Google Scholar

53. Du, Q.; Wu, P.; Sun, Y.; Zhang, J.; He, H. Selective Photodegradation of Tetracycline by Molecularly Imprinted ZnO@ NH2-UiO-66 Composites. Chem. Eng. J. 2020, 390, 124614; https://doi.org/10.1016/j.cej.2020.124614.Search in Google Scholar

54. Guo, F.; Yang, S.; Liu, Y.; Wang, P.; Huang, J.; Sun, W. Y. Size Engineering of Metal–Organic Framework MIL-101 (Cr)–Ag Hybrids for Photocatalytic CO2 Reduction. ACS Catal. 2019, 9 (9), 8464–8470; https://doi.org/10.1021/acscatal.9b02126.Search in Google Scholar

55. Yuan, R.; Qiu, J.; Yue, C.; Shen, C.; Li, D.; Zhu, C.; Liu, F.; Li, A. Self-Assembled Hierarchical and Bifunctional MIL-88A (Fe)@ ZnIn2S4 Heterostructure as a Reusable Sunlight-Driven Photocatalyst for Highly Efficient Water Purification. Chem. Eng. J. 2020, 401, 126020; https://doi.org/10.1016/j.cej.2020.126020.Search in Google Scholar

56. Dubale, A. A.; Ahmed, I. N.; Zhang, Y. J.; Yang, X. L.; Xie, M. H. A Facile Strategy for Fabricating C@ Cu2O/CuO Composite for Efficient Photochemical Hydrogen Production with High External Quantum Efficiency. Appl. Surf. Sci. 2020, 534, 147582; https://doi.org/10.1016/j.apsusc.2020.147582.Search in Google Scholar

57. Du, X.-D.; Yi, X. H.; Wang, P.; Zheng, W.; Deng, J.; Wang, C. C. Robust Photocatalytic Reduction of Cr (VI) on UiO-66-NH2 (Zr/Hf) Metal-Organic Framework Membrane Under Sunlight Irradiation. Chem. Eng. J. 2019, 356, 393–399; https://doi.org/10.1016/j.cej.2018.09.084.Search in Google Scholar

58. Qian, Y.; Zhang, F.; Pang, H. A Review of MOFs and Their Composites-Based Photocatalysts: Synthesis and Applications. Adv. Funct. Mater. 2021, 31 (37), 2104231; https://doi.org/10.1002/adfm.202104231.Search in Google Scholar

59. Phan, P. T.; Hong, J.; Tran, N.; Le, T. H. The Properties of Microwave-Assisted Synthesis of Metal–Organic Frameworks and Their Applications. Nanomaterials 2023, 13 (2), 352; https://doi.org/10.3390/nano13020352.Search in Google Scholar PubMed PubMed Central

60. De la Hoz, A.; Diaz-Ortiz, A.; Moreno, A. Microwaves in Organic Synthesis. Thermal and Non-Thermal Microwave Effects. Chem. Soc. Rev. 2005, 34 (2), 164–178; https://doi.org/10.1002/chin.200521275.Search in Google Scholar

61. Perreux, L., Loupy, A., Petit, A. Nonthermal Effects of Microwaves in Organic Synthesis. Microwaves. Org. Synth. 2012, 1, 127–207; https://doi.org/10.1002/9783527651313.ch4.Search in Google Scholar

62. Yoon, J.-W.; Jang, I. T.; Lee, K. Y.; Hwang, Y. K.; Chang, J. S. Adsorptive Separation of Propylene and Propane on a Porous Metal-Organic Framework, Copper Trimesate. Bull. Kor. Chem. Soc. 2010, 31 (1), 220–223; https://doi.org/10.5012/bkcs.2010.31.01.220.Search in Google Scholar

63. Lee, Y.-R.; Kim, J.; Ahn, W.-S. Synthesis of Metal-Organic Frameworks: A Mini Review. Kor. J. Chem. Eng. 2013, 30, 1667–1680; https://doi.org/10.1007/s11814-013-0140-6.Search in Google Scholar

64. Taddei, M.; Dau, P. V.; Cohen, S. M.; Ranocchiari, M.; van Bokhoven, J. A.; Costantino, F.; Sabatini, S.; Vivani, R. Efficient Microwave Assisted Synthesis of Metal–Organic Framework UiO-66: Optimization and Scale Up. Dalton Trans. 2015, 44 (31), 14019–14026; https://doi.org/10.1039/c5dt01838b.Search in Google Scholar PubMed

65. Vakili, R.; Xu, S.; Al-Janabi, N.; Gorgojo, P.; Holmes, S. M.; Fan, X. Microwave-Assisted Synthesis of Zirconium-Based Metal Organic Frameworks (MOFs): Optimization and Gas Adsorption. Microporous Mesoporous Mater. 2018, 260, 45–53; https://doi.org/10.1016/j.micromeso.2017.10.028.Search in Google Scholar

66. Ren, J.; Segakweng, T.; Langmi, H. W.; Musyoka, N. M.; North, B. C.; Mathe, M.; Bessarabov, D. Microwave-Assisted Modulated Synthesis of Zirconium-Based Metal–Organic Framework (Zr-MOF) for Hydrogen Storage Applications. Int. J. Mater. Res. 2014, 105 (5), 516–519; https://doi.org/10.3139/146.111047.Search in Google Scholar

67. Aguiar, L. W., Thiago Pereira da Silva, C., Henrique Carline de Lima, H., Pereira Moises, M., Wellington Rinaldi, A. Evaluation of the Synthetic Methods for Preparing Metal Organic Frameworks with Transition Metals. AIMS Mater. Sci. 2018, 5(3), 467–468; https://doi.org/10.3934/matersci.2018.3.467.Search in Google Scholar

68. Kaushal, S.; Kaur, G.; Kaur, J.; Singh, P. P. First Transition Series Metal–Organic Frameworks: Synthesis, Properties and Applications. Mater. Adv. 2021, 2 (22), 7308–7335; https://doi.org/10.1039/d1ma00719j.Search in Google Scholar

69. Gusain, D.; Bux, F. Synthesis of Magnesium Based Metal Organic Framework by Microwave Hydrothermal Process. Inorg. Chem. Commun. 2019, 101, 172–176; https://doi.org/10.1016/j.inoche.2019.01.034.Search in Google Scholar

70. Minh, T. T.; Thien, T. V. Synthesis of Metal-Organic FRAMEWORK-199: Comparison of Microwave Process and Solvothermal Process. Hue Univ. J. Sci.: Nat. Sci. 2017, 126 (1C), 107–116; https://doi.org/10.26459/hueuni-jns.v126i1c.4455.Search in Google Scholar

71. Gu, Z.-G.; Zhang, J. Epitaxial Growth and Applications of Oriented Metal–Organic Framework Thin Films. Coord. Chem. Rev. 2019, 378, 513–532; https://doi.org/10.1016/j.ccr.2017.09.028.Search in Google Scholar

72. Shekhah, O.; Wang, H.; Kowarik, S.; Schreiber, F.; Paulus, M.; Tolan, M.; Sternemann, C.; Evers, F.; Zacher, D.; Fischer, R. A.; Wöll, C. Step-By-Step Route for the Synthesis of Metal–Organic Frameworks. J. Am. Chem. Soc. 2007, 129 (49), 15118–15119; https://doi.org/10.1021/ja076210u.Search in Google Scholar PubMed

73. Han, Y.; Yu, D.; Zhou, J.; Xu, P.; Qi, P.; Wang, Q.; Li, S.; Fu, X.; Gao, X.; Jiang, C.; Feng, X.; Wang, B. A Lithium Ion Highway by Surface Coordination Polymerization: In Situ Growth of Metal–Organic Framework Thin Layers on Metal Oxides for Exceptional Rate and Cycling Performance. Chem.--Eur. J. 2017, 23 (48), 11513–11518; https://doi.org/10.1002/chem.201703016.Search in Google Scholar PubMed

74. Yang, Q.; Xu, Q.; Jiang, H.-L. Metal–Organic Frameworks Meet Metal Nanoparticles: Synergistic Effect for Enhanced Catalysis. Chem. Soc. Rev. 2017, 46 (15), 4774–4808; https://doi.org/10.1039/c6cs00724d.Search in Google Scholar PubMed

75. Yao, Z.; Pan, L.; Liu, L.; Zhang, J.; Lin, Q.; Ye, Y.; Zhang, Z.; Xiang, S.; Chen, B. Simultaneous Implementation of Resistive Switching and Rectifying Effects in a Metal-Organic Framework with Switched Hydrogen Bond Pathway. Sci. Adv. 2019, 5 (8), eaaw4515; https://doi.org/10.1126/sciadv.aaw4515.Search in Google Scholar PubMed PubMed Central

76. Tan, C.; Liu, Z.; Huang, W.; Zhang, H. Non-Volatile Resistive Memory Devices Based on Solution-Processed Ultrathin Two-Dimensional Nanomaterials. Chem. Soc. Rev. 2015, 44 (9), 2615–2628; https://doi.org/10.1039/c4cs00399c.Search in Google Scholar PubMed

77. Zhao, W.; Peng, J.; Wang, W.; Liu, S.; Zhao, Q.; Huang, W. Ultrathin Two-Dimensional Metal-Organic Framework Nanosheets for Functional Electronic Devices. Coord. Chem. Rev. 2018, 377, 44–63; https://doi.org/10.1016/j.ccr.2018.08.023.Search in Google Scholar

78. Xiao, Y.; Chen, C.; Wu, Y.; Yin, Y.; Wu, H.; Li, H.; Fan, Y.; Wu, J.; Li, S.; Huang, X.; Zhang, W.; Zheng, B.; Huo, F. Fabrication of Two-Dimensional Metal–Organic Framework Nanosheets Through Crystal Dissolution–Growth Kinetics. ACS Appl. Mater. Interfaces 2022, 14 (5), 7192–7199; https://doi.org/10.1021/acsami.1c22781.Search in Google Scholar PubMed

79. Peng, X., Wu, X., Zhang, M., Yuan, H. Metal–Organic Framework Coated Devices for Gas Sensing. ACS Sens. 2023, 8(7), 2471–2492; https://doi.org/10.1021/acssensors.3c00362.Search in Google Scholar PubMed

80. Ma, K.; Wang, Y.; Chen, Z.; Islamoglu, T.; Lai, C.; Wang, X.; Fei, B.; Farha, O. K.; Xin, J. H. Facile and Scalable Coating of Metal–Organic Frameworks on Fibrous Substrates by a Coordination Replication Method at Room Temperature. ACS Appl. Mater. Interfaces 2019, 11 (25), 22714–22721; https://doi.org/10.1021/acsami.9b04780.Search in Google Scholar PubMed

81. Ssentongo, P.; Ssentongo, A. E.; Heilbrunn, E. S.; Ba, D. M.; Chinchilli, V. M. Association of Cardiovascular Disease and 10 Other Pre-Existing Comorbidities with COVID-19 Mortality: A Systematic Review and Meta-Analysis. PLoS One 2020, 15 (8), e0238215; https://doi.org/10.1371/journal.pone.0238215.Search in Google Scholar PubMed PubMed Central

82. Zong, Y.; Xin, H.; Zhang, J.; Li, X.; Feng, J.; Deng, X.; Sun, Y.; Zheng, X. One-Pot, Template- and Surfactant-Free Solvothermal Synthesis of High-Crystalline Fe3O4 Nanostructures with Adjustable Morphologies and High Magnetization. J. Magn. Magn Mater. 2017, 423, 321–326; https://doi.org/10.1016/j.jmmm.2016.09.132.Search in Google Scholar

83. Li, Y.; Jiang, R.; Liu, T.; Lv, H.; Zhou, L.; Zhang, X. One-Pot Synthesis of Grass-Like Fe3O4 Nanostructures by a Novel Microemulsion-Assisted Solvothermal Method. Ceram. Int. 2014, 40 (1), 1059–1063; https://doi.org/10.1016/j.ceramint.2013.06.104.Search in Google Scholar

84. Jiang, F.; Wang, C.; Fu, Y.; Liu, R. Synthesis of Iron Oxide Nanocubes via Microwave-Assisted Solvothermal Method. J. Alloys Compd. 2010, 503 (2), L31–L33; https://doi.org/10.1016/j.jallcom.2010.05.020.Search in Google Scholar

85. Sun, Y.; Sun, L.; Feng, D.; Zhou, H. An In Situ One-Pot Synthetic Approach Towards Multivariate Zirconium MOFs. Angew. Chem. 2016, 128 (22), 6581–6585; https://doi.org/10.1002/ange.201602274.Search in Google Scholar

86. Dong, P., Gu, Y., Wen, G., Luo, R., Bao, S., Ma, J., Lei, J. A Self-Templated Design Approach Toward Multivariate Metal–Organic Frameworks for Enhanced Oxygen Evolution. Small 2023, 19, 2301473; https://doi.org/10.1002/smll.202301473.Search in Google Scholar PubMed

87. Iqbal, B.; Saleem, M.; Arshad, S. N.; Rashid, J.; Hussain, N.; Zaheer, M. One-Pot Synthesis of Heterobimetallic Metal–Organic Frameworks (MOFs) for Multifunctional Catalysis. Chem.--Eur. J. 2019, 25 (44), 10490–10498; https://doi.org/10.1002/chem.201901939.Search in Google Scholar PubMed

88. Hu, Y.; Zhang, J.; Huo, H.; Wang, Z.; Xu, X.; Yang, Y.; Lin, K.; Fan, R. One-Pot Synthesis of Bimetallic Metal–Organic Frameworks (MOFs) as Acid–Base Bifunctional Catalysts for Tandem Reaction. Catal. Sci. Technol. 2020, 10 (2), 315–322; https://doi.org/10.1039/c9cy01940e.Search in Google Scholar

89. Zheng, H.; Zhang, Y.; Liu, L.; Wan, W.; Guo, P.; Nyström, A. M.; Zou, X. One-Pot Synthesis of Metal–Organic Frameworks with Encapsulated Target Molecules and Their Applications for Controlled Drug Delivery. J. Am. Chem. Soc. 2016, 138 (3), 962–968; https://doi.org/10.1021/jacs.5b11720.Search in Google Scholar PubMed

90. Hua, J.; Gengsheng, J. Hydrothermal Synthesis and Characterization of Monodisperse Α-Fe2O3 Nanoparticles. Mater. Lett. 2009, 63 (30), 2725–2727; https://doi.org/10.1016/j.matlet.2009.09.054.Search in Google Scholar

91. Yan, A.; Liu, X.; Qiu, G.; Wu, H.; Yi, R.; Zhang, N.; Xu, J. Solvothermal Synthesis and Characterization of Size-Controlled Fe3O4 Nanoparticles. J. Alloys Compd. 2008, 458 (1–2), 487–491; https://doi.org/10.1016/j.jallcom.2007.04.019.Search in Google Scholar

92. Yan, A.; Liu, X.; Qiu, G.; Zhang, N.; Shi, R.; Yi, R.; Tang, M.; Che, R. A Simple Solvothermal Synthesis and Characterization of Round-Biscuit-Like Fe3O4 Nanoparticles with Adjustable Sizes. Solid State Commun. 2007, 144 (7–8), 315–318; https://doi.org/10.1016/j.ssc.2007.08.039.Search in Google Scholar

93. Gao, G.; Shi, R.; Qin, W.; Shi, Y.; Xu, G.; Qiu, G.; Liu, X. Solvothermal Synthesis and Characterization of Size-Controlled Monodisperse Fe3O4 Nanoparticles. J. Mater. Sci. 2010, 45 (13), 3483–3489; https://doi.org/10.1007/s10853-010-4378-7.Search in Google Scholar

94. Shi, R.; Liu, X.; Gao, G.; Yi, R.; Qiu, G. Large-Scale Synthesis and Characterization of Monodisperse Fe3O4 Nanocrystals. J. Alloys Compd. 2009, 485 (1–2), 548–553; https://doi.org/10.1016/j.jallcom.2009.06.024.Search in Google Scholar

95. Wang, F.; Qin, X.; Meng, Y.; Guo, Z.; Yang, L.; Ming, Y. Hydrothermal Synthesis and Characterization of α-Fe2O3 Nanoparticles. Mater. Sci. Semicond. Process. 2013, 16 (3), 802–806; https://doi.org/10.1016/j.mssp.2012.12.029.Search in Google Scholar

96. García, D. G.; Garzón-Romero, C.; Salazar, M. A.; Lagos, K. J.; Campaña, K. O.; Debut, A.; Vizuete, K.; Rivera, M. R.; Niebieskikwiat, D.; Benitez, M. J.; Romero, M. P. Bioinspired Synthesis of Magnetic Nanoparticles Based on Iron Oxides Using Orange Waste and Their Application as Photo-Activated Antibacterial Agents. Int. J. Mol. Sci. 2023, 24 (5), 4770; https://doi.org/10.3390/ijms24054770.Search in Google Scholar PubMed PubMed Central

97. Alzahrani, F. M., Alsaiari, N. S., Katubi, K. M., Amari, A., Tahoon, M. A. Synthesis, Characterization, and Application of Magnetized Lanthanum (III)-Based Metal-Organic Framework for the Organic Dye Removal from Water. Adsorpt. Sci. Technol. 2022, 2022, 1–14; https://doi.org/10.1155/2022/3513829.Search in Google Scholar

98. Jabbari, V.; Veleta, J.; Zarei-Chaleshtori, M.; Gardea-Torresdey, J.; Villagrán, D. Green Synthesis of Magnetic MOF@GO and MOF@CNT Hybrid Nanocomposites with High Adsorption Capacity Towards Organic Pollutants. Chem. Eng. J. 2016, 304, 774–783; https://doi.org/10.1016/j.cej.2016.06.034.Search in Google Scholar

99. Jabbari, V.; Veleta, J.; Zarei-Chaleshtori, M.; Gardea-Torresdey, J.; Villagrán, D. Green Synthesis of Magnetic MOF@ GO and MOF@ CNT Hybrid Nanocomposites with High Adsorption Capacity Towards Organic Pollutants. Chem. Eng. J. 2016, 304, 774–783; https://doi.org/10.1016/j.cej.2016.06.034.Search in Google Scholar

100. Pinto, G. C.; Lucena, G. N.; Debone Piazza, R.; Lopes Costa, J. M.; Coimbra e Silva, E. T. C.; Gu, Y.; de Paula, A. V.; Silva, N. J. O.; Costa Marques, R. F. Evaluation of the Alternating Magnetic Field (AMF) Influence in Catalytic Activities of Enzymes Immobilized into Magnetic Graphene Oxide: A New Approach. Mater. Today Commun. 2023, 36, 106441; https://doi.org/10.1016/j.mtcomm.2023.106441.Search in Google Scholar

101. Zlotea, C.; Campesi, R.; Cuevas, F.; Leroy, E.; Dibandjo, P.; Volkringer, C.; Loiseau, T.; Férey, G.; Latroche, M. Pd Nanoparticles Embedded into a Metal-Organic Framework: Synthesis, Structural Characteristics, and Hydrogen Sorption Properties. J. Am. Chem. Soc. 2010, 132 (9), 2991–2997; https://doi.org/10.1021/ja9084995.Search in Google Scholar PubMed

102. Xu, J.; Liu, J.; Li, Z.; Wang, X.; Wang, Z. Synthesis, Structure and Properties of Pd@ MOF-808. J. Mater. Sci. 2019, 54 (19), 12911–12924; https://doi.org/10.1007/s10853-019-03786-0.Search in Google Scholar

103. Guo, T.; Mo, K.; Zhang, N.; Xiao, L.; Liu, W.; Wen, L. Embedded Homogeneous Ultra-Fine Pd Nanoparticles Within MOF Ultra-Thin Nanosheets for Heterogeneous Catalysis. Dalton Trans. 2021, 50 (5), 1774–1779; https://doi.org/10.1039/d0dt03877f.Search in Google Scholar PubMed

104. Chen, G., Liu, G., Pan, Y., Liu, G., Gu, X., Jin, W., Xu, N. Zeolites and Metal–Organic Frameworks for Gas Separation: The Possibility of Translating Adsorbents into Membranes. Chem. Soc. Rev. 2023, 52, 4586–4602; https://doi.org/10.1039/d3cs00370a.Search in Google Scholar PubMed

105. Kitchamsetti, N.; Samtham, M.; Singh, D.; Choudhary, E.; Rondiya, S. R.; Ma, Y. R.; Cross, R. W.; Dzade, N. Y.; Devan, R. S. Hierarchical 2D MnO2@1D Mesoporous NiTiO3 Core-Shell Hybrid Structures for High-Performance Supercapattery Electrodes: Theoretical and Experimental Investigations. J. Electroanal. Chem. 2023, 936, 117359; https://doi.org/10.1016/j.jelechem.2023.117359.Search in Google Scholar

106. Abid, H. R.; Tian, H.; Ang, H. M.; Tade, M. O.; Buckley, C. E.; Wang, S. Nanosize Zr-Metal Organic Framework (UiO-66) for Hydrogen and Carbon Dioxide Storage. Chem. Eng. J. 2012, 187, 415–420; https://doi.org/10.1016/j.cej.2012.01.104.Search in Google Scholar

107. Zlotea, C.; Campesi, R.; Cuevas, F.; Leroy, E.; Dibandjo, P.; Volkringer, C.; Loiseau, T.; Férey, G.; Latroche, M. Pd Nanoparticles Embedded into a Metal-Organic Framework: Synthesis, Structural Characteristics, and Hydrogen Sorption Properties. J. Am. Chem. Soc. 2010, 132 (9), 2991–2997; https://doi.org/10.1021/ja9084995.Search in Google Scholar

108. Lestari, W. W.; Suharbiansah, R. S. R.; Larasati, L.; Rahmawati, F.; Arrozi, U. S. F.; Durini, S.; Rohman, F.; Iskandar, R.; Hey-Hawkins, E. A Zirconium (IV)-Based Metal–Organic Framework Modified with Ruthenium and Palladium Nanoparticles: Synthesis and Catalytic Performance for Selective Hydrogenation of Furfural to Furfuryl Alcohol. Chem. Pap. 2022, 76 (8), 4719–4731; https://doi.org/10.1007/s11696-022-02193-1.Search in Google Scholar

109. Rojas-García, E., Barrera‐Andrade, J. M., Albiter, E., Maubert, A. M., Valenzuela, M. A. Applications of MOFs and Their Composite Materials in Light-Driven Redox Reactions. In Applications of Metal–Organic Frameworks and Their Derived Materials, 2020; pp. 377–461.10.1002/9781119651079.ch14Search in Google Scholar

110. Alfonso-Herrera, L. A.; Torres-Martinez, L. M.; Mora-Hernandez, J. M. Novel Strategies to Tailor the Photocatalytic Activity of Metal–Organic Frameworks for Hydrogen Generation: A Mini-Review. Front. Energy 2022, 16 (5), 734–746; https://doi.org/10.1007/s11708-022-0840-x.Search in Google Scholar

111. Wang, T., Ma, X., Bingwa, N., Yu, H., Wang, Y., Li, G., Guo, M., Xiao, Q., Li, S., Zhao, X., Li, H. A Novel Bimetallic CaFe-MOF Derivative for Transesterification: Catalytic Performance, Characterization, and Stability. Energy 2024, 292, 130544; https://doi.org/10.1016/j.energy.2024.130544.Search in Google Scholar

112. Kharazmi, F.; Hosseini, F. S.; Ebrahimzadeh, H. Synthesis, Characterization of MOF NiCoZn-LDH@ GO on Carbon Cloth as Sensitive and Novel Nanocomposite Applied to Electrospun Nanofibers Network as Thin-Film Microextraction Sorbent for Detection Trace Amount of Opioid and Analgesic Drugs from Biological Fluids. Talanta 2024, 267, 125241; https://doi.org/10.1016/j.talanta.2023.125241.Search in Google Scholar PubMed

113. Yao, C.; Wang, Q.; Peng, C.; Wang, R.; Liu, J.; Tsidaeva, N.; Wang, W. MOF-Derived CoS2/WS2 Electrocatalysts with Sulfurized Interface for High-Efficiency Hydrogen Evolution Reaction: Synthesis, Characterization and DFT Calculations. Chem. Eng. J. 2024, 479, 147924; https://doi.org/10.1016/j.cej.2023.147924.Search in Google Scholar

114. Cheng, B.; Fu, X.; Song, Y.; Li, Z.; Weng, P.; Yin, X. A Versatile MOF Liquids-Based Janus Fibrous Membrane Towards Complex Oil/Water Separation and Heavy Metal Ions Removal. Separ. Purif. Technol. 2024, 331, 125701; https://doi.org/10.1016/j.seppur.2023.125701.Search in Google Scholar

115. Li, G.; Zhao, C.; Yu, Q.; Chen, J.; Yang, F. Improved Ignition and Combustion Performances of Aluminum Nanoparticles by In-Situ Partial Conversion of Native Alumina to Surface Al-MOF Shell. Fuel 2024, 364, 131095; https://doi.org/10.1016/j.fuel.2024.131095.Search in Google Scholar

116. Zhao, J.; Cao, L.; Wang, X.; Huo, H.; Lin, H.; Wang, Q.; Yang, X.; Vogel, F.; Li, W.; Lin, Z.; Zhang, P. MOF@ Polydopamine-Incorporated Membrane with High Permeability and Mechanical Property for Efficient Fouling-Resistant and Oil/Water Separation. Environ. Res. 2023, 236, 116685; https://doi.org/10.1016/j.envres.2023.116685.Search in Google Scholar PubMed

117. Yan, D.; Li, M. Efficient Solar Thermal Energy Utilization and Storage Based on Phase Change Materials Stabilized by MOF@ CuO Composites. J. Energy Storage 2023, 73, 108885; https://doi.org/10.1016/j.est.2023.108885.Search in Google Scholar

118. Ruatpuia, J. V.; Halder, G.; Mohan, S.; Gurunathan, B.; Li, H.; Chai, F.; Basumatary, S.; Lalthazuala Rokhum, S. Microwave-Assisted Biodiesel Production Using ZIF-8 MOF-Derived Nanocatalyst: A Process Optimization, Kinetics, Thermodynamics and Life Cycle Cost Analysis. Energy Convers. Manag. 2023, 292, 117418; https://doi.org/10.1016/j.enconman.2023.117418.Search in Google Scholar

119. Ambaye, A. D.; Kebede, T. G.; Ntsendwana, B.; Nxumalo, E. N. Fe-MOF Derived Graphitic Carbon Nitride Nanocomposites as Novel Electrode Materials for the Electrochemical Sensing of 2, 4-Dichlorophenol in Wastewater. Synth. Met. 2023, 299, 117452; https://doi.org/10.1016/j.synthmet.2023.117452.Search in Google Scholar

120. Chen, J.; Ma, J.; Fan, Q.; Zhang, W.; Guo, R. A Sustainable Chrome-Free Tanning Approach Based on Zr-MOFs Functionalized with Different Metals Through Post-Synthetic Modification. Chem. Eng. J. 2023, 474, 145453; https://doi.org/10.1016/j.cej.2023.145453.Search in Google Scholar

121. Zaamouchi, I.; Kaci, M. M.; Zidane, Y.; Belaid, S.; Bouacida, S.; Benmerad, B. The Impressive Photocatalytic Performance of Zn-MOF as a Novel Photocatalyst for the Effective Purification of Dyes Under Solar Exposure. J. Mol. Struct. 2024, 1299, 137070; https://doi.org/10.1016/j.molstruc.2023.137070.Search in Google Scholar

122. Riccò, R.; Liang, W.; Li, S.; Gassensmith, J. J.; Caruso, F.; Doonan, C.; Falcaro, P. Metal–Organic Frameworks for Cell and Virus Biology: A Perspective. ACS Nano 2018, 12 (1), 13–23; https://doi.org/10.1021/acsnano.7b08056.Search in Google Scholar PubMed

123. Zhuang, J.; Young, A. P.; Tsung, C. K. Integration of Biomolecules with Metal–Organic Frameworks. Small 2017, 13 (32), 1700880; https://doi.org/10.1002/smll.201700880.Search in Google Scholar PubMed

124. Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C. Y. Applications of Metal–Organic Frameworks in Heterogeneous Supramolecular Catalysis. Chem. Soc. Rev. 2014, 43 (16), 6011–6061; https://doi.org/10.1039/c4cs00094c.Search in Google Scholar PubMed

125. Ma, D.-D.; Zhu, Q.-L. Mof-Based Atomically Dispersed Metal Catalysts: Recent Progress Towards Novel Atomic Configurations and Electrocatalytic Applications. Coord. Chem. Rev. 2020, 422, 213483; https://doi.org/10.1016/j.ccr.2020.213483.Search in Google Scholar

126. Chen, B.; Wang, L.; Zapata, F.; Qian, G.; Lobkovsky, E. B. A Luminescent Microporous Metal–Organic Framework for the Recognition and Sensing of Anions. J. Am. Chem. Soc. 2008, 21 (130), 6718–6719; https://doi.org/10.1021/ja802035e.Search in Google Scholar PubMed

127. Nag, R.; Hambrick, D. C.; Chen, M. J. What is Strategic Management, Really? Inductive Derivation of a Consensus Definition of the Field. Strat. Manag. J. 2007, 28 (9), 935–955; https://doi.org/10.1002/smj.615.Search in Google Scholar

128. Chen, B.; Wang, L.; Xiao, Y.; Fronczek, F.; Xue, M.; Cui, Y.; Qian, G. A Luminescent Metal–Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions. Angew. Chem. 2009, 121 (3), 508–511; https://doi.org/10.1002/ange.200805101.Search in Google Scholar

129. Ma, D.; Li, B.; Zhou, X.; Zhou, Q.; Liu, K.; Zeng, G.; Li, G.; Shi, Z.; Feng, S. A Dual Functional MOF as a Luminescent Sensor for Quantitatively Detecting the Concentration of Nitrobenzene and Temperature. Chem. Commun. 2013, 49 (79), 8964–8966; https://doi.org/10.1039/c3cc44546a.Search in Google Scholar PubMed

130. Zhu, X.; Zheng, H.; Wei, X.; Lin, Z.; Guo, L.; Qiu, B.; Chen, G. Metal–Organic Framework (MOF): A Novel Sensing Platform for Biomolecules. Chem. Commun. 2013, 49 (13), 1276–1278; https://doi.org/10.1039/c2cc36661d.Search in Google Scholar PubMed

131. Chen, L.; Zheng, H.; Zhu, X.; Lin, Z.; Guo, L.; Qiu, B.; Chen, G.; Chen, Z. N. Metal–Organic Frameworks-Based Biosensor for Sequence-Specific Recognition of Double-Stranded DNA. Analyst 2013, 138 (12), 3490–3493; https://doi.org/10.1039/c3an00426k.Search in Google Scholar PubMed

132. Garg, N.; Deep, A.; Sharma, A. L. Recent Trends and Advances in Porous Metal-Organic Framework Nanostructures for the Electrochemical and Optical Sensing of Heavy Metals in Water. Crit. Rev. Anal. Chem. 2022, 1–25; https://doi.org/10.1080/10408347.2022.2106543.Search in Google Scholar PubMed

133. Runowski, M.; Marcinkowski, D.; Soler-Carracedo, K.; Gorczyński, A.; Ewert, E.; Woźny, P.; Martín, I. R. Noncentrosymmetric Lanthanide-Based MOF Materials Exhibiting Strong SHG Activity and NIR Luminescence of Er3+: Application in Nonlinear Optical Thermometry. ACS Appl. Mater. Interfaces 2023, 15 (2), 3244–3252; https://doi.org/10.1021/acsami.2c22571.Search in Google Scholar PubMed PubMed Central

134. Sohrabi, H.; Ghasemzadeh, S.; Ghoreishi, Z.; Majidi, M. R.; Yoon, Y.; Dizge, N.; Khataee, A. Metal-Organic Frameworks (MOF)-Based Sensors for Detection of Toxic Gases: A Review of Current Status and Future Prospects. Mater. Chem. Phys. 2023, 299, 127512; https://doi.org/10.1016/j.matchemphys.2023.127512.Search in Google Scholar

135. Robinson, A. L.; Stavila, V.; Zeitler, T. R.; White, M. I.; Thornberg, S. M.; Greathouse, J. A.; Allendorf, M. D. Ultrasensitive Humidity Detection Using Metal–Organic Framework-Coated Microsensors. Anal. Chem. 2012, 84 (16), 7043–7051; https://doi.org/10.1021/ac301183w.Search in Google Scholar PubMed

136. Joyce, J. T.; Laffir, F. R.; Silien, C. Layer-By-Layer Growth and Photocurrent Generation in Metal–Organic Coordination Films. J. Phys. Chem. C 2013, 117 (24), 12502–12509; https://doi.org/10.1021/jp312708e.Search in Google Scholar

137. Biemmi, E.; Darga, A.; Stock, N.; Bein, T. Direct Growth of Cu3(BTC)2(H2O)3 xH2O Thin Films on Modified QCM-Gold Electrodes–Water Sorption Isotherms. Microporous Mesoporous Mater. 2008, 114 (1–3), 380–386; https://doi.org/10.1016/j.micromeso.2008.01.024.Search in Google Scholar

138. Zhou, H.; Wang, M.; Zhang, Y.; Su, Q.; Xie, Z.; Chen, X.; Yan, R.; Li, P.; Li, T.; Qin, X.; Yang, H.; Wu, C.; You, F.; Li, S.; Liu, Y. Functions and Clinical Significance of Mechanical Tumor Microenvironment: Cancer Cell Sensing, Mechanobiology and Metastasis. Cancer Commun. 2022, 42 (5), 374–400; https://doi.org/10.1002/cac2.12294.Search in Google Scholar PubMed PubMed Central

139. Liu, H.; Hu, J.; Zheng, Q.; Feng, X.; Zhan, F.; Wang, X.; Xu, G.; Hua, F. Piezo1 Channels as Force Sensors in Mechanical Force-Related Chronic Inflammation. Front. Immunol. 2022, 13, 816149; https://doi.org/10.3389/fimmu.2022.816149.Search in Google Scholar PubMed PubMed Central

140. Shen, D.; Cooper, J. A.; Li, P.; Guo, Q. H.; Cai, K.; Wang, X.; Wu, H.; Chen, H.; Zhang, L.; Jiao, Y.; Qiu, Y.; Stern, C. L.; Liu, Z.; Sue, A. C. H.; Yang, Y. W.; Alsubaie, F. M.; Farha, O. K.; Stoddart, J. F. Organic Counteranion Co-assembly Strategy for the Formation of γ-Cyclodextrin-Containing Hybrid Frameworks. J. Am. Chem. Soc. 2020, 142 (4), 2042–2050; https://doi.org/10.1021/jacs.9b12527.Search in Google Scholar PubMed

141. Li, Y.; Huang, H.; Ding, C.; Zhou, X.; Li, H. β-Cyclodextrin-Based Metal-Organic Framework as a Carrier for Zero-Order Drug Delivery. Mater. Lett. 2021, 300, 129766; https://doi.org/10.1016/j.matlet.2021.129766.Search in Google Scholar

142. Cheng, W.; Tang, X.; Zhang, Y.; Wu, D.; Yang, W. Applications of Metal-Organic Framework (MOF)-Based Sensors for Food Safety: Enhancing Mechanisms and Recent Advances. Trends Food Sci. Technol. 2021, 112, 268–282; https://doi.org/10.1016/j.tifs.2021.04.004.Search in Google Scholar

143. Sohrabi, H.; Salahshour Sani, P.; Orooji, Y.; Majidi, M. R.; Yoon, Y.; Khataee, A. MOF-Based Sensor Platforms for Rapid Detection of Pesticides to Maintain Food Quality and Safety. Food Chem. Toxicol. 2022, 165, 113176; https://doi.org/10.1016/j.fct.2022.113176.Search in Google Scholar PubMed

144. Khezerlou, A., Tavassoli, M., Alizadeh-Sani, M., Hashemi, M., Ehsani, A., Bangar, S. P. Multifunctional Food Packaging Materials: Lactoferrin Loaded Cr-MOF in Films-Based Gelatin/κ-Carrageenan for Food Packaging Applications. Int. J. Biol. Macromol. 2023, 251, 126334; https://doi.org/10.1016/j.ijbiomac.2023.126334.Search in Google Scholar PubMed

145. Kong, G. Q.; Han, Z.; He, Y.; Zhou, W.; Yildirim, T.; Krishna, R.; Zou, C.; Chen, B.; Wu, C. Expanded Organic Building Units for the Construction of Highly Porous Metal–Organic Frameworks. Chem.--Eur. J. 2013, 19 (44), 14886–14894; https://doi.org/10.1002/chem.201302515.Search in Google Scholar PubMed

146. He, Y.; Zhou, W.; Yildirim, T.; Chen, B. A Series of Metal–Organic Frameworks with High Methane Uptake and an Empirical Equation for Predicting Methane Storage Capacity. Energy Environ. Sci. 2013, 6 (9), 2735–2744; https://doi.org/10.1039/c3ee41166d.Search in Google Scholar

147. Chen, J.-R.; Luo, Y. Q.; He, S.; Zhou, H. L.; Huang, X. C. Ligand Tailoring Strategy of a Metal–Organic Framework for Optimizing Methane Storage Working Capacities. Inorg. Chem. 2022, 61 (27), 10417–10424; https://doi.org/10.1021/acs.inorgchem.2c01130.Search in Google Scholar PubMed

148. Denning, S.; Majid, A. A.; Crawford, J. M.; Wells, J. D.; Carreon, M. A.; Koh, C. A. Methane Storage Scale-Up Using Hydrates & Metal Organic Framework HKUST-1 in a Packed Column. Fuel 2022, 325, 124920; https://doi.org/10.1016/j.fuel.2022.124920.Search in Google Scholar

149. Cui, H.; Ye, Y.; Lin, R.; Shi, Y.; Alothman, Z. A.; Alduhaish, O.; Wang, B.; Zhang, J.; Chen, B. An Indium-Based Microporous Metal–Organic Framework with Unique Three-Way Rod-Shaped Secondary Building Units for Efficient Methane and Hydrogen Storage. Inorg. Chem. Front. 2022, 9 (24), 6527–6533; https://doi.org/10.1039/d2qi01956f.Search in Google Scholar

150. Guo, Z.; Xu, Z.; Xie, F.; Jiang, J.; Zheng, K.; Alabidun, S.; Crespo-Ribadeneyra, M.; Hu, Y.; Au, H.; Titirici, M. Investigating the Superior Performance of Hard Carbon Anodes in Sodium-Ion Compared with Lithium- and Potassium-Ion Batteries. Adv. Mater. 2023, 35 (42), 2304091; https://doi.org/10.1002/adma.202304091.Search in Google Scholar PubMed

151. Zheng, F.; Chen, L.; Chen, R.; Zhang, Z.; Yang, Q.; Yang, Y.; Su, B.; Ren, Q.; Bao, Z. A Robust Two-Dimensional Layered Metal–Organic Framework for Efficient Separation of Methane from Nitrogen. Separ. Purif. Technol. 2022, 281, 119911; https://doi.org/10.1016/j.seppur.2021.119911.Search in Google Scholar

152. Al-Naddaf, Q.; Al-Mansour, M.; Thakkar, H.; Rezaei, F. MOF-GO Hybrid Nanocomposite Adsorbents for Methane Storage. Ind. Eng. Chem. Res. 2018, 57 (51), 17470–17479; https://doi.org/10.1021/acs.iecr.8b03638.Search in Google Scholar

153. Gao, T.; Yao, H.; Song, J.; Liu, C.; Zhu, Y.; Ma, X.; Pang, X.; Xu, H.; Chen, S. Identification of Medicinal Plants in the Family Fabaceae Using a Potential DNA Barcode ITS2. J. Ethnopharmacol. 2010, 130 (1), 116–121; https://doi.org/10.1016/j.jep.2010.04.026.Search in Google Scholar PubMed

154. Parsaei, M.; Akhbari, K.; White, J. Modulating Carbon Dioxide Storage by Facile Synthesis of Nanoporous Pillared-Layered Metal–Organic Framework with Different Synthetic Routes. Inorg. Chem. 2022, 61 (9), 3893–3902; https://doi.org/10.1021/acs.inorgchem.1c03414.Search in Google Scholar PubMed

155. Wijaya, D. T.; Lee, C. W. Metal-Organic Framework Catalysts: A Versatile Platform for Bioinspired Electrochemical Conversion of Carbon Dioxide. Chem. Eng. J. 2022, 446, 137311; https://doi.org/10.1016/j.cej.2022.137311.Search in Google Scholar

156. Alezi, D.; Belmabkhout, Y.; Suyetin, M.; Bhatt, P. M.; Weseliński, Ł. J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P. N.; Emwas, A. H.; Eddaoudi, M. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage. J. Am. Chem. Soc. 2015, 137 (41), 13308–13318; https://doi.org/10.1021/jacs.5b07053.Search in Google Scholar PubMed PubMed Central

157. Fan, W., Wang, X., Liu, X., Xu, B., Zhang, X., Wang, W., Wang, Y., Dai, F., Yuan, D., Sun, D. Regulating C2H2 and CO2 Storage and Separation Through Pore Environment Modification in a Microporous Ni-MOF. ACS Sustain. Chem. Eng. 2018, 7(2), 2134–2140.10.1021/acssuschemeng.8b04783Search in Google Scholar

158. Ghanbari, T.; Abnisa, F.; Daud, W. M. A. W. A Review on Production of Metal Organic Frameworks (MOF) for CO2 Adsorption. Sci. Total Environ. 2020, 707, 135090; https://doi.org/10.1016/j.scitotenv.2019.135090.Search in Google Scholar PubMed

159. Wang, P.; Teng, Y.; Zhu, J.; Bao, W.; Han, S.; Li, Y.; Zhao, Y.; Xie, H. Review on the Synergistic Effect Between Metal–Organic Frameworks and Gas Hydrates for CH4 Storage and CO2 Separation Applications. Renew. Sustain. Energy Rev. 2022, 167, 112807; https://doi.org/10.1016/j.rser.2022.112807.Search in Google Scholar

160. Wong-Foy, A. G.; Matzger, A. J.; Yaghi, O. M. Exceptional H2 Saturation Uptake in Microporous Metal–Organic Frameworks. J. Am. Chem. Soc. 2006, 128 (11), 3494–3495; https://doi.org/10.1021/ja058213h.Search in Google Scholar PubMed

161. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W. Hydrogen Storage in Metal–Organic Frameworks. Chem. Rev. 2012, 112 (2), 782–835; https://doi.org/10.1021/cr200274s.Search in Google Scholar PubMed

162. Gao, H.; Shi, R.; Shao, Y.; Liu, Y.; Zhu, Y.; Zhang, J.; Li, L. Catalysis Derived from Flower-Like Ni MOF Towards the Hydrogen Storage Performance of Magnesium Hydride. Int. J. Hydrogen Energy 2022, 47 (15), 9346–9356; https://doi.org/10.1016/j.ijhydene.2022.01.020.Search in Google Scholar

163. Zhu, Z.; Zheng, Q. Investigation of Cryo-Adsorption Hydrogen Storage Capacity of Rapidly Synthesized MOF-5 by Mechanochemical Method. Int. J. Hydrogen Energy 2023, 48 (13), 5166–5174; https://doi.org/10.1016/j.ijhydene.2022.11.026.Search in Google Scholar

164. Ma, Z.; Zhang, Q.; Zhu, W.; Khan, D.; Hu, C.; Huang, T.; Ding, W.; Zou, J. Nano Fe and Mg2 Ni Derived from TMA-TM (TM= Fe, Ni) MOFs as Synergetic Catalysts for Hydrogen Storage in MgH2. Sustain. Energy Fuels 2020, 4 (5), 2192–2200; https://doi.org/10.1039/d0se00081g.Search in Google Scholar

165. Yang, X.; Hou, Q.; Yu, L.; Zhang, J. Improvement of the Hydrogen Storage Characteristics of MgH2 with a Flake Ni Nano-Catalyst Composite. Dalton Trans. 2021, 50 (5), 1797–1807; https://doi.org/10.1039/d0dt03627g.Search in Google Scholar PubMed

166. Liu, J.; Ma, Z.; Liu, Z.; Tang, Q.; Zhu, Y.; Lin, H.; Zhang, Y.; Zhang, J.; Liu, Y.; Li, L. Synergistic Effect of rGO Supported Ni3Fe on Hydrogen Storage Performance of MgH2. Int. J. Hydrogen Energy 2020, 45 (33), 16622–16633; https://doi.org/10.1016/j.ijhydene.2020.04.104.Search in Google Scholar

167. Zhou, J.-M.; Shi, W.; Li, H. M.; Li, H.; Cheng, P. Experimental Studies and Mechanism Analysis of High-Sensitivity Luminescent Sensing of Pollutional Small Molecules and Ions in Ln4O4 Cluster Based Microporous Metal–Organic Frameworks. J. Phys. Chem. C 2014, 118 (1), 416–426; https://doi.org/10.1021/jp4097502.Search in Google Scholar

168. Yao, Q.; Bermejo Gómez, A.; Su, J.; Pascanu, V.; Yun, Y.; Zheng, H.; Chen, H.; Liu, L.; Abdelhamid, H. N.; Martín-Matute, B.; Zou, X. Series of Highly Stable Isoreticular Lanthanide Metal–Organic Frameworks with Expanding Pore Size and Tunable Luminescent Properties. Chem. Mater. 2015, 27 (15), 5332–5339; https://doi.org/10.1021/acs.chemmater.5b01711.Search in Google Scholar

169. Nie, W.; Tsai, H. Perovskite Nanocrystals Stabilized in Metal–Organic Frameworks for Light Emission Devices. J. Mater. Chem. A 2022, 10 (37), 19518–19533; https://doi.org/10.1039/d2ta02154d.Search in Google Scholar

170. Sravani, V. V.; Gupta, S. K.; Sreenivasulu, B.; Gangopadhyay, P.; Rao, C. B.; Suresh, A.; Sivaraman, N. Bright Green Emitting Terbium-MOF with High Quantum Yield Achieved Through Post Synthetic Modifications. Opt. Mater. 2022, 133, 112944; https://doi.org/10.1016/j.optmat.2022.112944.Search in Google Scholar

171. Tsai, H.; Shrestha, S.; Vilá, R. A.; Huang, W.; Liu, C.; Hou, C. H.; Huang, H. H.; Wen, X.; Li, M.; Wiederrecht, G.; Cui, Y.; Cotlet, M.; Zhang, X.; Ma, X.; Nie, W. Bright and Stable Light-Emitting Diodes Made with Perovskite Nanocrystals Stabilized in Metal–Organic Frameworks. Nat. Photonics 2021, 15 (11), 843–849; https://doi.org/10.1038/s41566-021-00857-0.Search in Google Scholar

172. Xu, G.; Nie, P.; Dou, H.; Ding, B.; Li, L.; Zhang, X. Exploring Metal Organic Frameworks for Energy Storage in Batteries and Supercapacitors. Mater. Today 2017, 20 (4), 191–209; https://doi.org/10.1016/j.mattod.2016.10.003.Search in Google Scholar

173. Wang, L.; Han, Y.; Feng, X.; Zhou, J.; Qi, P.; Wang, B. Metal–Organic Frameworks for Energy Storage: Batteries and Supercapacitors. Coord. Chem. Rev. 2016, 307, 361–381; https://doi.org/10.1016/j.ccr.2015.09.002.Search in Google Scholar

174. Worrall, S. D.; Mann, H.; Rogers, A.; Bissett, M. A.; Attfield, M. P.; Dryfe, R. A. Electrochemical Deposition of Zeolitic Imidazolate Framework Electrode Coatings for Supercapacitor Electrodes. Electrochim. Acta 2016, 197, 228–240; https://doi.org/10.1016/j.electacta.2016.02.145.Search in Google Scholar

175. Huang, Z.-D.; Gong, Z.; Kang, Q.; Fang, Y.; Yang, X. S.; Liu, R.; Lin, X.; Feng, X.; Ma, Y.; Wang, D. High Rate Li-Ion Storage Properties of MOF-Carbonized Derivatives Coated on MnO Nanowires. Mater. Chem. Front. 2017, 1 (10), 1975–1981; https://doi.org/10.1039/c7qm00178a.Search in Google Scholar

176. Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dincă, M. Conductive MOF Electrodes for Stable Supercapacitors with High Areal Capacitance. Nat. Mater. 2017, 16 (2), 220–224; https://doi.org/10.1038/nmat4766.Search in Google Scholar PubMed

177. Gao, S.; Sui, Y.; Wei, F.; Qi, J.; Meng, Q. Facile Synthesis of Cuboid Ni-MOF for High-Performance Supercapacitors. J. Mater. Sci. 2018, 53, 6807–6818; https://doi.org/10.1007/s10853-018-2005-1.Search in Google Scholar

178. Lokhande, P.; Kulkarni, S.; Chakrabarti, S.; Pathan, H.; Sindhu, M.; Kumar, D.; Singh, J.; Kumar, A.; Kumar Mishra, Y.; Toncu, D. C.; Syväjärvi, M.; Sharma, A.; Tiwari, A. The Progress and Roadmap of Metal–Organic Frameworks for High-Performance Supercapacitors. Coord. Chem. Rev. 2022, 473, 214771; https://doi.org/10.1016/j.ccr.2022.214771.Search in Google Scholar

179. Yue, L.; Chen, L.; Wang, X.; Lu, D.; Zhou, W.; Shen, D.; Yang, Q.; Xiao, S.; Li, Y. Ni/Co-MOF@ Aminated Mxene Hierarchical Electrodes for High-Stability Supercapacitors. Chem. Eng. J. 2023, 451, 138687; https://doi.org/10.1016/j.cej.2022.138687.Search in Google Scholar

180. Lee, G.; Yoo, D. K.; Ahmed, I.; Lee, H. J.; Jhung, S. H. Metal-Organic Frameworks Composed of Nitro Groups: Preparation and Applications in Adsorption and Catalysis. Chem. Eng. J. 2023, 451, 138538; https://doi.org/10.1016/j.cej.2022.138538.Search in Google Scholar

181. Jiao, L.; Wang, Y.; Jiang, H.; Xu, Q. Metal–Organic Frameworks as Platforms for Catalytic Applications. Adv. Mater. 2018, 30 (37), 1703663; https://doi.org/10.1002/adma.201703663.Search in Google Scholar PubMed

182. Xu, C.; Fang, R.; Luque, R.; Chen, L.; Li, Y. Functional Metal–Organic Frameworks for Catalytic Applications. Coord. Chem. Rev. 2019, 388, 268–292; https://doi.org/10.1016/j.ccr.2019.03.005.Search in Google Scholar

183. Qin, Y.; Li, Z.; Duan, Y.; Guo, J.; Zhao, M.; Tang, Z. Nanostructural Engineering of Metal-Organic Frameworks: Construction Strategies and Catalytic Applications. Matter 2022, 5 (10), 3260–3310; https://doi.org/10.1016/j.matt.2022.07.014.Search in Google Scholar

184. Jiang, D.; Urakawa, A.; Yulikov, M.; Mallat, T.; Jeschke, G.; Baiker, A. Size Selectivity of a Copper Metal–Organic Framework and Origin of Catalytic Activity in Epoxide Alcoholysis. Chem.--Eur. J. 2009, 15 (45), 12255–12262; https://doi.org/10.1002/chem.200901510.Search in Google Scholar PubMed

185. Dai, P.; Yao, Y.; Hu, E.; Xu, D.; Li, Z.; Wang, C. Self-Assembled ZIF-67@ Graphene Oxide as a Cobalt-Based Catalyst Precursor with Enhanced Catalytic Activity Toward Methanolysis of Sodium Borohydride. Appl. Surf. Sci. 2021, 546, 149128; https://doi.org/10.1016/j.apsusc.2021.149128.Search in Google Scholar

186. Cheng, X.; Lei, A.; Mei, T. S.; Xu, H. C.; Xu, K.; Zeng, C. Recent Applications of Homogeneous Catalysis in Electrochemical Organic Synthesis. CCS Chem. 2022, 4 (4), 1120–1152; https://doi.org/10.31635/ccschem.021.202101451.Search in Google Scholar

187. Priyarega, S.; Haribabu, J.; Karvembu, R. Development of Thiosemicarbazone-Based Transition Metal Complexes as Homogeneous Catalysts for Various Organic Transformations. Inorg. Chim. Acta. 2022, 532, 120742; https://doi.org/10.1016/j.ica.2021.120742.Search in Google Scholar

188. Dhakshinamoorthy, A.; Montero Lanzuela, E.; Navalon, S.; Garcia, H. Cobalt-Based Metal Organic Frameworks as Solids Catalysts for Oxidation Reactions. Catalysts 2021, 11 (1), 95; https://doi.org/10.3390/catal11010095.Search in Google Scholar

189. Wang, J.; Lee, S. A.; Jang, H. W.; Shokouhimehr, M. Emerging Two-Dimensional-Based Nanostructured Catalysts: Applications in Sustainable Organic Transformations. Langmuir 2022, 38 (30), 9064–9072; https://doi.org/10.1021/acs.langmuir.2c01442.Search in Google Scholar PubMed

190. McKinlay, A. C.; Morris, R.; Horcajada, P.; Férey, G.; Gref, R.; Couvreur, P.; Serre, C. BioMOFs: Metal–Organic Frameworks for Biological and Medical Applications. Angew. Chem., Int. Ed. 2010, 49 (36), 6260–6266; https://doi.org/10.1002/anie.201000048.Search in Google Scholar PubMed

191. Sheta, S. M.; El-Sheikh, S. M.; Abd-Elzaher, M. M. Simple Synthesis of Novel Copper Metal–Organic Framework Nanoparticles: Biosensing and Biological Applications. Dalton Trans. 2018, 47 (14), 4847–4855; https://doi.org/10.1039/c8dt00371h.Search in Google Scholar PubMed

192. Doonan, C.; Riccò, R.; Liang, K.; Bradshaw, D.; Falcaro, P. Metal–Organic Frameworks at the Biointerface: Synthetic Strategies and Applications. Accounts Chem. Res. 2017, 50 (6), 1423–1432; https://doi.org/10.1021/acs.accounts.7b00090.Search in Google Scholar PubMed

193. Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J.; Falcaro, P. Biomimetic Mineralization of Metal-Organic Frameworks as Protective Coatings for Biomacromolecules. Nat. Commun. 2015, 6 (1), 7240; https://doi.org/10.1038/ncomms8240.Search in Google Scholar PubMed PubMed Central

194. Dutta, S.; Kim, J.; Hsieh, P.; Hsu, Y.; Kaneti, Y. V.; Shieh, F.; Yamauchi, Y.; Wu, K. C. Nanoarchitectonics of Biofunctionalized Metal–Organic Frameworks with Biological Macromolecules and Living Cells. Small Methods 2019, 3 (11), 1900213; https://doi.org/10.1002/smtd.201900213.Search in Google Scholar

195. Koczkur, K. M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S. E. Polyvinylpyrrolidone (PVP) in Nanoparticle Synthesis. Dalton Trans. 2015, 44 (41), 17883–17905; https://doi.org/10.1039/c5dt02964c.Search in Google Scholar PubMed

196. Guo, Y.; Sun, Q.; Wu, F.; Dai, Y.; Chen, X. Polyphenol-Containing Nanoparticles: Synthesis, Properties, and Therapeutic Delivery. Adv. Mater. 2021, 33 (22), 2007356; https://doi.org/10.1002/adma.202007356.Search in Google Scholar PubMed

197. Abedini, A.; Saion, E.; Larki, F.; Zakaria, A.; Noroozi, M.; Soltani, N. Room Temperature Radiolytic Synthesized Cu@ CuAlO2-Al2O3 Nanoparticles. Int. J. Mol. Sci. 2012, 13 (9), 11941–11953; https://doi.org/10.3390/ijms130911941.Search in Google Scholar PubMed PubMed Central

198. Huang, S.; Kou, X.; Shen, J.; Chen, G.; Ouyang, G. “Armor-Plating” Enzymes with Metal–Organic Frameworks (MOFs). Angew. Chem., Int. Ed. 2020, 59 (23), 8786–8798; https://doi.org/10.1002/anie.201916474.Search in Google Scholar PubMed

199. Liang, J.; Gao, S.; Liu, J.; Zulkifli, M. Y. B.; Xu, J.; Scott, J.; Chen, V.; Shi, J.; Rawal, A.; Liang, K. Hierarchically Porous Biocatalytic MOF Microreactor as a Versatile Platform Towards Enhanced Multienzyme and Cofactor-Dependent Biocatalysis. Angew. Chem. 2021, 133 (10), 5481–5488; https://doi.org/10.1002/ange.202014002.Search in Google Scholar

200. Zhong, Y.; Liao, P.; Kang, J.; Liu, Q.; Wang, S.; Li, S.; Liu, X.; Li, G. Locking Effect in Metal@ MOF with Superior Stability for Highly Chemoselective Catalysis. J. Am. Chem. Soc. 2023, 145 (8), 4659–4666; https://doi.org/10.1021/jacs.2c12590.Search in Google Scholar PubMed

201. Shieh, F.-K.; Wang, S. C.; Yen, C. I.; Wu, C. C.; Dutta, S.; Chou, L. Y.; Morabito, J. V.; Hu, P.; Hsu, M. H.; Wu, K. C. W.; Tsung, C. K. Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a De Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. J. Am. Chem. Soc. 2015, 137 (13), 4276–4279; https://doi.org/10.1021/ja513058h.Search in Google Scholar PubMed

202. Liao, F.-S.; Lo, W. S.; Hsu, Y. S.; Wu, C. C.; Wang, S. C.; Shieh, F. K.; Morabito, J. V.; Chou, L. Y.; Wu, K. C. W.; Tsung, C. K. Shielding Against Unfolding by Embedding Enzymes in Metal–Organic Frameworks via a De Novo Approach. J. Am. Chem. Soc. 2017, 139 (19), 6530–6533; https://doi.org/10.1021/jacs.7b01794.Search in Google Scholar PubMed

203. Liang, W.; Wied, P.; Carraro, F.; Sumby, C. J.; Nidetzky, B.; Tsung, C. K.; Falcaro, P.; Doonan, C. J. Metal–Organic Framework-Based Enzyme Biocomposites. Chem. Rev. 2021, 121 (3), 1077–1129; https://doi.org/10.1021/acs.chemrev.0c01029.Search in Google Scholar PubMed

204. Velásquez-Hernández, M. D. J.; Linares-Moreau, M.; Astria, E.; Carraro, F.; Alyami, M. Z.; Khashab, N. M.; Sumby, C. J.; Doonan, C. J.; Falcaro, P. Towards Applications of Bioentities@ MOFs in Biomedicine. Coord. Chem. Rev. 2021, 429, 213651; https://doi.org/10.1016/j.ccr.2020.213651.Search in Google Scholar

205. Ni, L.; Ye, F.; Cheng, M. L.; Feng, Y.; Deng, Y. Q.; Zhao, H.; Wei, P.; Ge, J.; Gou, M.; Li, X.; Sun, L.; Cao, T.; Wang, P.; Zhou, C.; Zhang, R.; Liang, P.; Guo, H.; Wang, X.; Qin, C. F.; Chen, F.; Dong, C. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity 2020, 52 (6), 971–977. e3; https://doi.org/10.1016/j.immuni.2020.04.023.Search in Google Scholar PubMed PubMed Central

206. Zhou, Y.; Niu, B.; Wu, B.; Luo, S.; Fu, J.; Zhao, Y.; Quan, G.; Pan, X.; Wu, C. A Homogenous Nanoporous Pulmonary Drug Delivery System Based on Metal-Organic Frameworks with Fine Aerosolization Performance and Good Compatibility. Acta Pharm. Sin. B 2020, 10 (12), 2404–2416; https://doi.org/10.1016/j.apsb.2020.07.018.Search in Google Scholar PubMed PubMed Central

207. Lawson, H. D.; Walton, S. P.; Chan, C. Metal–Organic Frameworks for Drug Delivery: A Design Perspective. ACS Appl. Mater. Interfaces 2021, 13 (6), 7004–7020; https://doi.org/10.1021/acsami.1c01089.Search in Google Scholar PubMed

208. Maranescu, B.; Visa, A. Applications of Metal-Organic Frameworks as Drug Delivery Systems. Int. J. Mol. Sci. 2022, 23 (8), 4458; https://doi.org/10.3390/ijms23084458.Search in Google Scholar PubMed PubMed Central

209. Mallakpour, S.; Nikkhoo, E.; Hussain, C. M. Application of MOF Materials as Drug Delivery Systems for Cancer Therapy and Dermal Treatment. Coord. Chem. Rev. 2022, 451, 214262; https://doi.org/10.1016/j.ccr.2021.214262.Search in Google Scholar

210. Sun, C.-Y.; Qin, C.; Wang, X. L.; Su, Z. M. Metal-Organic Frameworks as Potential Drug Delivery Systems. Expet Opin. Drug Deliv. 2013, 10 (1), 89–101; https://doi.org/10.1517/17425247.2013.741583.Search in Google Scholar PubMed

Received: 2023-09-01
Accepted: 2024-03-20
Published Online: 2024-04-16
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
  3. Advanced synthetic routes of metal organic frameworks and their diverse applications
  4. Carbon materials derived by crystalline porous materials for capacitive energy storage
  5. BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
  6. Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base
  7. Solid-phase extraction of organophosphates from polluted waters on a matrix-imprinted sorbent
  8. Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
  9. Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
  10. Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
  11. Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
  12. Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
  13. A review of carbon-based adsorbents for the removal of organic and inorganic components
  14. Mercury removal from water: insights from MOFs and their composites
  15. Organometallic complexes and reaction methods for synthesis: a review
  16. Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity
Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2023-0024/html
Scroll to top button