Home Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
Article
Licensed
Unlicensed Requires Authentication

Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques

  • Lana O. Ahmed and Rebaz A. Omer ORCID logo EMAIL logo
Published/Copyright: June 6, 2024

Abstract

Before employing a biomedical material in medical applications, a researcher must possess comprehensive knowledge regarding its chemical, physical, biological, structural, and mechanical properties. Hydroxyapatite (HAp, Ca10(PO4)6(OH)2) is a vital constituent of the calcium orthophosphate group. The material exhibits good dielectric and biological compatibility, diamagnetic behavior, thermal stability, osteoconductivity, and bioactivity. Additionally, it has a Ca:P molar ratio of 1.67. Because HAp has a chemical composition that is quite similar to normal bone and teeth, it has the potential to be used as a material for implant implantation in fractured portions of the human skeletal system. Many ways for generating HAp nanoparticles have been found as a result of the increasing usage of HAp in medicine. The conditions under which HAp is generated determine its physical and chemical properties, crystalline structure, and form. This study provides detailed information on the HAp’s characteristics and manufacturing procedures, as well as revealing the structure and its properties.


Corresponding author: Rebaz A. Omer, Department of Chemistry, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region, F.R. Iraq; and Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil 44001, Iraq, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Steele, B. C. Material Science and Engineering: The Enabling Technology for the Commercialisation of Fuel Cell Systems. J. Mater. Sci. 2001, 36, 1053–1068; https://doi.org/10.1023/a:1004853019349.10.1023/A:1004853019349Search in Google Scholar

2. Shi, D. Introduction to Biomaterials; World Scientific, Tsinghua University Press: Beijing, 2005.Search in Google Scholar

3. Kaygili, O.; Dorozhkin, S. V.; Keser, S. Synthesis and Characterization of Ce-Substituted Hydroxyapatite by Sol–Gel Method. Mater. Sci. Eng. C 2014, 42, 78–82; https://doi.org/10.1016/j.msec.2014.05.024.Search in Google Scholar PubMed

4. Kareem, R. O. Synthesis and Characterization of Bismuth-Based Hydroxyapatites Doped with Cerium; Fen Bilimleri Enstitüsü: Elazg, Turkey, 2023.Search in Google Scholar

5. Agrawal, K.; Singh, G.; Puri, D.; Prakash, S. Synthesis and Characterization of Hydroxyapatite Powder by Sol-Gel Method for Biomedical Application. J. Miner. Mater. Char. Eng. 2011, 10, 727–734; https://doi.org/10.4236/jmmce.2011.108057.Search in Google Scholar

6. Williams, D. Dictionary of Biomaterials, Vol. 42; Liverpool University Prees: Liverpool, 1999.Search in Google Scholar

7. Chen, Q.; Thouas, G. Biomaterials: A Basic Introduction; CRC Press, Taylor & Francis Group: Boca Raton, FL, 2014.Search in Google Scholar

8. Khatri, B.; Rajbhandari, A. Preparation, Characterization and Photocatalytic Application of Novel Bismuth Vanadate/Hydroxyapatite Composite. Adv. J. Chem. Sect. A 2020, 3, 789–799.Search in Google Scholar

9. Jones, J. R.; Hench, L. L. Biomaterials: Bioceramics. In Encyclopedia of Medical Devices and Instrumentation; Jones, J. R, Hench, L. L., Eds.; Wiley: Russia, 2006; pp. 283–296.10.1002/0471732877.emd024Search in Google Scholar

10. Memarsadeghi, N.; Mount, D. M.; Netanyahu, N. S.; Le Moigne, J. A Fast Implementation of the ISODATA Clustering Algorithm. Int. J. Comput. Geom. Appl. 2007, 17, 71–103; https://doi.org/10.1142/s0218195907002252.Search in Google Scholar

11. Kokubo, T. Bioceramics and Their Clinical Applications; Elsevier: Abington, 2008.10.1533/9781845694227Search in Google Scholar

12. Brykała, U.; Diduszko, R.; Jach, K.; Jagielski, J. Hot Pressing of Gadolinium Zirconate Pyrochlore. Ceram. Int. 2015, 41, 2015–2021; https://doi.org/10.1016/j.ceramint.2014.09.114.Search in Google Scholar

13. Zhang, J.; Zhang, X.; Tang, H.; Zhang, Q.; Hua, X.; Ma, X.; Zhu, F.; Jones, T.; Zhu, X.; Bowers, J. Allele-Defined Genome of the Autopolyploid Sugarcane Saccharum spontaneum L. Nat. Genet. 2018, 50, 1565–1573; https://doi.org/10.1038/s41588-018-0237-2.Search in Google Scholar PubMed

14. Van Raemdonck, W.; Ducheyne, P.; De Meester, P. Auger Electron Spectroscopic Analysis of Hydroxylapatite Coatings on Titanium. J. Am. Ceram. Soc. 1984, 67, 381–384; https://doi.org/10.1111/j.1151-2916.1984.tb19721.x.Search in Google Scholar

15. Thompson, I.; Hench, L. Mechanical Properties of Bioactive Glasses, Glass-Ceramics and Composites. Proc. IME H J. Eng. Med. 1998, 212, 127–136; https://doi.org/10.1243/0954411981533908.Search in Google Scholar PubMed

16. Vallet-Regí, M. Evolution of Biomaterials. Front. Mater. 2022, 9, 864016; https://doi.org/10.3389/fmats.2022.864016.Search in Google Scholar

17. Vallet-Regí, M.; González, B.; Izquierdo-Barba, I. Nanomaterials as Promising Alternative in the Infection Treatment. Int. J. Mol. Sci. 2019, 20, 3806; https://doi.org/10.3390/ijms20153806.Search in Google Scholar PubMed PubMed Central

18. Wagner, W. R.; Sakiyama-Elbert, S. E.; Zhang, G.; Yaszemski, M. J. Biomaterials Science: An Introduction to Materials in Medicine; Academic Press: Austin, TX, 2020.Search in Google Scholar

19. Zhang, X.; Williams, D. Definitions of Biomaterials for the Twenty-First Century; Elsevier: Amsterdam, Netherlands, 2019.Search in Google Scholar

20. Rezaie, H. R.; Bakhtiari, L.; Öchsner, A. Biomaterials and Their Applications; Springer, Iran University of Science and Technology: Tehran, Iran, 2015.Search in Google Scholar

21. Troy, E.; Tilbury, M. A.; Power, A. M.; Wall, J. G. Nature-Based Biomaterials and Their Application in Biomedicine. Polymers 2021, 13, 3321; https://doi.org/10.3390/polym13193321.Search in Google Scholar PubMed PubMed Central

22. Detsch, R.; Will, J.; Hum, J.; Roether, J. A.; Boccaccini, A. R. 6.1 Biocompatibility–92 6.2 Materials and Synthesis–93. Cell Cult. Technol. 2018, 91.Search in Google Scholar

23. Agid, R. S.; Kaygili, O.; Bulut, N.; Dorozhkin, S. V.; Ates, T.; Koytepe, S.; Ates, B.; Ercan, I.; İnce, T.; Mahmood, B. K. Investigation of the Effects of Pr Doping on the Structural Properties of Hydroxyapatite: An Experimental and Theoretical Study. J. Aust. Ceram. Soc. 2020, 56, 1501–1513; https://doi.org/10.1007/s41779-020-00495-9.Search in Google Scholar

24. Sherin, S.; Sheeja, S.; Devi, R. S.; Balachandran, S.; Soumya, R. S.; Abraham, A. In Vitro and In Vivo Pharmacokinetics and Toxicity Evaluation of Curcumin Incorporated Titanium Dioxide Nanoparticles for Biomedical Applications. Chem. Biol. Interact. 2017, 275, 35–46; https://doi.org/10.1016/j.cbi.2017.07.022.Search in Google Scholar PubMed

25. Eliaz, N. Corrosion of Metallic Biomaterials: A Review. Materials 2019, 12, 407; https://doi.org/10.3390/ma12030407.Search in Google Scholar PubMed PubMed Central

26. Matsushita, T. 14 – Orthopaedic Applications of Metallic Biomaterials. In Metals for Biomedical Devices; Niinomi, M., Ed.; Woodhead Publishing: Sawston, Cambridge, 2010; pp. 329–354.10.1533/9781845699246.4.329Search in Google Scholar

27. Kulinets, I. Biomaterials and Their Applications in Medicine. In Regulatory Affairs for Biomaterials and Medical Devices; Kulinets, I., Ed; Elsevier: Wltham, MA, 2015; pp. 1–10.10.1533/9780857099204.1Search in Google Scholar

28. Sionkowska, A. Current Research on the Blends of Natural and Synthetic Polymers as New Biomaterials. Prog. Polym. Sci. 2011, 36, 1254–1276; https://doi.org/10.1016/j.progpolymsci.2011.05.003.Search in Google Scholar

29. Davis, J. Materials for Medical Devices. In ASM Handbook Series, Davis, J., Ed.; Kinsman: Ohio, US, 2003.Search in Google Scholar

30. Pietrzak, W. S.; Sarver, D.; Verstynen, M. Bioresorbable Implants – Practical Considerations. Bone 1996, 19, S109–S119; https://doi.org/10.1016/s8756-3282(96)00139-1.Search in Google Scholar PubMed

31. Kalirajan, C.; Dukle, A.; Nathanael, A. J.; Oh, T.-H.; Manivasagam, G. A Critical Review on Polymeric Biomaterials for Biomedical Applications. Polymers 2021, 13, 3015; https://doi.org/10.3390/polym13173015.Search in Google Scholar PubMed PubMed Central

32. Barbero, E. J. Introduction to Composite Materials Design; CRC Press: England & Wales, 2010.10.1201/9781439894132Search in Google Scholar

33. Miracle, D. B.; Donaldson, S. L. Introduction to Composites. In ASM Handbook; Miracle, D. B., Donaldson, S. L., Eds.; Cambridge University Press: Cambridge, Vol. 21, 2001; pp. 3–17.10.31399/asm.hb.v21.a0003350Search in Google Scholar

34. Best, S.; Porter, A.; Thian, E.; Huang, J. Bioceramics: Past, Present and for the Future. J. Eur. Ceram. Soc. 2008, 28, 1319–1327; https://doi.org/10.1016/j.jeurceramsoc.2007.12.001.Search in Google Scholar

35. Hench, L. L. An Introduction to Bioceramics; World Scientific: Covent Garden, London, 1, 1993.Search in Google Scholar

36. Hench, L. L. Bioceramics: From Concept to Clinic. J. Am. Ceram. Soc. 1993, 72, 93–98.Search in Google Scholar

37. Hench, L. L. Bioactive Glasses and Glass-Ceramics. In Materials Science Forum; Trans Tech Publ, 1998.10.1007/978-1-4615-5801-9_22Search in Google Scholar

38. Jarcho, M. Calcium Phosphate Ceramics as Hard Tissue Prosthetics. Clin. Orthop. Relat. Res. 1981, 157, 259–278; https://doi.org/10.1097/00003086-198106000-00037.Search in Google Scholar

39. Amato, S.; Ezzell, B. Regulatory Affairs for Biomaterials and Medical Devices; Elsevier: Langford Lane, Kidlington, 2014.10.1533/9780857099204.79Search in Google Scholar

40. Kaygili, O.; Dorozhkin, S. V.; Keser, S.; Yakuphanoglu, F. Investigation of the Crystal Structure, Dielectrical, Electrical and Microstructural Properties of Cobalt-Containing Calcium Orthophosphates. Mater. Sci. 2015, 21, 282–287; https://doi.org/10.5755/j01.ms.21.2.6251.Search in Google Scholar

41. Dorozhkin, S. V. Calcium Orthophosphates as Bioceramics: State of the Art. J. Funct. Biomater. 2010, 1, 22–107; https://doi.org/10.3390/jfb1010022.Search in Google Scholar PubMed PubMed Central

42. Hench, L. L.; Polak, J. M. Third-Generation Biomedical Materials. Science 2002, 295, 1014–1017; https://doi.org/10.1126/science.1067404.Search in Google Scholar PubMed

43. Deville, S.; Chevalier, J.; Fantozzi, G.; Bartolomé, J. F.; Requena, J. N.; Moya, J. S.; Torrecillas, R.; Dı́az, L. A. Low-Temperature Ageing of Zirconia-Toughened Alumina Ceramics and Its Implication in Biomedical Implants. J. Eur. Ceram. Soc. 2003, 23, 2975–2982; https://doi.org/10.1016/s0955-2219(03)00313-3.Search in Google Scholar

44. Daculsi, G.; LeGeros, R.; Heughebaert, M.; Barbieux, I. Formation of Carbonate-Apatite Crystals After Implantation of Calcium Phosphate Ceramics. Calcif. Tissue Int. 1990, 46, 20–27; https://doi.org/10.1007/bf02555820.Search in Google Scholar

45. Salinas, A. J.; Vallet-Regí, M. Bioactive Ceramics: From Bone Grafts to Tissue Engineering. RSC Adv. 2013, 3, 11116–11131; https://doi.org/10.1039/c3ra00166k.Search in Google Scholar

46. Kim, H.-M. Bioactive Ceramics Challenges and Perspectives. J. Ceram. Soc. Jpn. 2001, 109, S49–S57; https://doi.org/10.2109/jcersj.109.1268_s49.Search in Google Scholar

47. Razavi, M.; Fathi, M.; Savabi, O.; Razavi, S. M.; Beni, B. H.; Vashaee, D.; Tayebi, L. Controlling the Degradation Rate of Bioactive Magnesium Implants by Electrophoretic Deposition of Akermanite Coating. Ceram. Int. 2014, 40, 3865–3872; https://doi.org/10.1016/j.ceramint.2013.08.027.Search in Google Scholar

48. Razavi, M.; Huang, Y. Effect of Hydroxyapatite (HA) Nanoparticles Shape on Biodegradation of Mg/HA Nanocomposites Processed by High Shear Solidification/Equal Channel Angular Extrusion Route. Mater. Lett. 2020, 267, 127541; https://doi.org/10.1016/j.matlet.2020.127541.Search in Google Scholar

49. Bos, R. R.; Boering, G.; Rozema, F. R.; Leenslag, J. W. Resorbable Poly (L-Lactide) Plates and Screws for the Fixation of Zygomatic Fractures. J. Oral Maxillofac. Surg. 1987, 45, 751–753; https://doi.org/10.1016/0278-2391(87)90194-7.Search in Google Scholar PubMed

50. Kotani, S.; Fujita, Y.; Kitsugi, T.; Nakamura, T.; Yamamuro, T.; Ohtsuki, C.; Kokubo, T. Bone Bonding Mechanism of β‐Tricalcium Phosphate. J. Biomed. Mater. Res. 1991, 25, 1303–1315; https://doi.org/10.1002/jbm.820251010.Search in Google Scholar PubMed

51. Pardun, K.; Treccani, L.; Volkmann, E.; Streckbein, P.; Heiss, C.; Destri, G. L.; Marletta, G.; Rezwan, K. Mixed Zirconia Calcium Phosphate Coatings for Dental Implants: Tailoring Coating Stability and Bioactivity Potential. Mater. Sci. Eng. C 2015, 48, 337–346; https://doi.org/10.1016/j.msec.2014.12.031.Search in Google Scholar PubMed

52. Boyd, A. R.; Rutledge, L.; Randolph, L.; Meenan, B. J. Strontium-Substituted Hydroxyapatite Coatings Deposited via a Co-Deposition Sputter Technique. Mater. Sci. Eng. C 2015, 46, 290–300; https://doi.org/10.1016/j.msec.2014.10.046.Search in Google Scholar PubMed

53. LeGeros, R. Z.; Ito, A.; Ishikawa, K.; Sakae, T.; LeGeros, J. P. Fundamentals of Hydroxyapatite and Related Calcium Phosphates. In Advanced Biomaterials: Fundamentals, Processing, and Applications; Deville, S., et al., Ed.; Wiley Publisher: New York, 2009; pp. 19–52.10.1002/9780470891315.ch2Search in Google Scholar

54. Huang, L. L.; Sung, H. W.; Tsai, C. C.; Huang, D. M. Biocompatibility Study of a Biological Tissue Fixed with a Naturally Occurring Crosslinking Reagent. J. Biomed. Mater. Res. 1998, 42, 568–576; https://doi.org/10.1002/(sici)1097-4636(19981215)42:4<568::aid-jbm13>3.0.co;2-7.10.1002/(SICI)1097-4636(19981215)42:4<568::AID-JBM13>3.0.CO;2-7Search in Google Scholar

55. Rogero, S. O.; Malmonge, S. M.; Lugão, A. B.; Ikeda, T. I.; Miyamaru, L.; Cruz, Á. S. Biocompatibility Study of Polymeric Biomaterials. Artif. Organs 2003, 27, 424–427; https://doi.org/10.1046/j.1525-1594.2003.07249.x.Search in Google Scholar

56. Shabalovskaya, S. A. Surface, Corrosion and Biocompatibility Aspects of Nitinol as an Implant Material. Bio Med. Mater. Eng. 2002, 12, 69–109.Search in Google Scholar

57. Sathishkumar, S.; Karthika, A.; Surendiran, M.; Kavitha, L.; Gopi, D. Electrodeposition of Cerium Substituted Hydroxyapatite Coating on Passivated Surgical Grade Stainless Steel for Biomedical Application. Int. J. ChemTech Res. 2015, 7, 533–538.Search in Google Scholar

58. Boutrand, J.-P. Biocompatibility and Performance of Medical Devices; Woodhead Publishing: Langford Lane, Kidlington, 2019.Search in Google Scholar

59. Ezhaveni, S.; Yuvakkumar, R.; Rajkumar, M.; Sundaram, N. M.; Rajendran, V. Preparation and Characterization of Nano-Hydroxyapatite Nanomaterials for Liver Cancer Cell Treatment. J. Nanosci. Nanotechnol. 2013, 13, 1631–1638; https://doi.org/10.1166/jnn.2013.7135.Search in Google Scholar

60. Kaygili, O.; Keser, S.; Ates, T.; Tatar, C.; Yakuphanoglu, F. Controlling of Dielectric Parameters of Insulating Hydroxyapatite by Simulated Body Fluid. Mater. Sci. Eng. C 2015, 46, 118–124; https://doi.org/10.1016/j.msec.2014.10.024.Search in Google Scholar

61. Kaygili, O.; Keser, S.; Kom, M.; Bulut, N.; Dorozhkin, S. V. The Effect of Simulating Body Fluid on the Structural Properties of Hydroxyapatite Synthesized in the Presence of Citric Acid. Prog. Biomater. 2016, 5, 173–182; https://doi.org/10.1007/s40204-016-0055-5.Search in Google Scholar

62. Kebiroglu, M. H.; Orek, C.; Bulut, N.; Kaygili, O.; Keser, S.; Ates, T. Temperature Dependent Structural and Vibrational Properties of Hydroxyapatite: A Theoretical and Experimental Study. Ceram. Int. 2017, 43, 15899–15904; https://doi.org/10.1016/j.ceramint.2017.08.164.Search in Google Scholar

63. İsen, F.; Kaygili, O.; Bulut, N.; Ates, T.; Osmanlıoğlu, F.; Keser, S.; Tatar, B.; Özcan, İ.; Ates, B.; Ercan, F. Experimental and Theoretical Characterization of Dy-Doped Hydroxyapatites. J. Aust. Ceram. Soc. 2023, 1–16; https://doi.org/10.1007/s41779-023-00878-8.Search in Google Scholar

64. Kareem, R. O.; Kaygili, O.; Ates, T.; Bulut, N.; Koytepe, S.; Kuruçay, A.; Ercan, F.; Ercan, I. Experimental and Theoretical Characterization of Bi-Based Hydroxyapatites Doped with Ce. Ceram. Int. 2022, 48, 33440–33454; https://doi.org/10.1016/j.ceramint.2022.07.287.Search in Google Scholar

65. Kaygili, O.; Tatar, C. The Investigation of Some Physical Properties and Microstructure of Zn-Doped Hydroxyapatite Bioceramics Prepared by Sol–Gel Method. J. Sol. Gel Sci. Technol. 2012, 61, 296–309; https://doi.org/10.1007/s10971-011-2627-0.Search in Google Scholar

66. Ma, G. Three Common Preparation Methods of Hydroxyapatite. In IOP Conference Series: Materials Science and Engineering; IOP Publishing, 2019.10.1088/1757-899X/688/3/033057Search in Google Scholar

67. Rivera-Muñoz, E. M. Hydroxyapatite-Based Materials: Synthesis and Characterization. Biomed. Eng. Front. Chall. 2011, 75–98; https://doi.org/10.5772/19123.Search in Google Scholar

68. Agid, R. S. Investigation of the Effects of Praseodymium Doping on the Structural Properties of Hydroxyapatite: An Experimental and Theoretical Study; Fen Bilimleri Enstitüsü: Turkey, 2020.10.1007/s41779-020-00495-9Search in Google Scholar

69. Ibrahimzade, L.; Kaygili, O.; Dundar, S.; Ates, T.; Dorozhkin, S. V.; Bulut, N.; Koytepe, S.; Ercan, F.; Gürses, C.; Hssain, A. H. Theoretical and Experimental Characterization of Pr/Ce Co-Doped Hydroxyapatites. J. Mol. Struct. 2021, 1240, 130557; https://doi.org/10.1016/j.molstruc.2021.130557.Search in Google Scholar

70. Mahmood, B. K.; Kaygili, O.; Bulut, N.; Dorozhkin, S. V.; Ates, T.; Koytepe, S.; Gürses, C.; Ercan, F.; Kebiroglu, H.; Agid, R. S. Effects of Strontium-Erbium Co-Doping on the Structural Properties of Hydroxyapatite: An Experimental and Theoretical Study. Ceram. Int. 2020, 46, 16354–16363; https://doi.org/10.1016/j.ceramint.2020.03.194.Search in Google Scholar

71. Mondal, S.; Dorozhkin, S. V.; Pal, U. Recent Progress on Fabrication and Drug Delivery Applications of Nanostructured Hydroxyapatite. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2018, 10, e1504; https://doi.org/10.1002/wnan.1504.Search in Google Scholar PubMed

72. Yoshimura, M.; Suda, H. Hydrothermal Processing of Hydroxyapatite: Past, Present, and Future. In Hydroxyapatite and Related Materials; Yoshimura, M., Suda, H., Eds.; CRC Press: Toylor, Francis, 2017; pp. 45–72.10.1201/9780203751367-3Search in Google Scholar

73. Albulym, O.; Kaygili, O.; Hussien, M. S.; Zahran, H.; Kilany, M.; Yahia, I.; Bulut, N.; Darwish, R.; El-Kott, A. F. Antimicrobial Activity of Ga-Doped Hydroxyapatite Nanostructures: Synthesis, Morphological, Spectroscopic, and Dielectric Properties. J. Biomater. Tissue Eng. 2019, 9, 881–889; https://doi.org/10.1166/jbt.2019.2070.Search in Google Scholar

74. Goldberg, M.; Protsenko, P.; Smirnov, V.; Antonova, O.; Smirnov, S.; Konovalov, A.; Vorckachev, K.; Kudryavtsev, E.; Barinov, S.; Komlev, V. The Enhancement of Hydroxyapatite Thermal Stability by Al Doping. J. Mater. Res. Technol. 2020, 9, 76–88; https://doi.org/10.1016/j.jmrt.2019.10.032.Search in Google Scholar

75. Kaygili, O.; Keser, S. Sol–Gel Synthesis and Characterization of Sr/Mg, Mg/Zn and Sr/Zn Co-Doped Hydroxyapatites. Mater. Lett. 2015, 141, 161–164; https://doi.org/10.1016/j.matlet.2014.11.078.Search in Google Scholar

76. Kaygili, O.; Keser, S.; Kom, M.; Eroksuz, Y.; Dorozhkin, S. V.; Ates, T.; Ozercan, I. H.; Tatar, C.; Yakuphanoglu, F. Strontium Substituted Hydroxyapatites: Synthesis and Determination of Their Structural Properties, In Vitro and In Vivo Performance. Mater. Sci. Eng. C 2015, 55, 538–546; https://doi.org/10.1016/j.msec.2015.05.081.Search in Google Scholar

77. Zhang, D.; Zhang, H.; Wen, J.; Cao, J. Preparation and Characteristics of Zinc and Strontium Co-Doped Hydroxyapatite Whiskers. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Ukraine, 2019.10.1088/1755-1315/233/2/022007Search in Google Scholar

78. Ito, A.; Otsuka, M.; Kawamura, H.; Ikeuchi, M.; Ohgushi, H.; Sogo, Y.; Ichinose, N. Zinc-Containing Tricalcium Phosphate and Related Materials for Promoting Bone Formation. Curr. Appl. Phys. 2005, 5, 402–406; https://doi.org/10.1016/j.cap.2004.10.006.Search in Google Scholar

79. Kawamura, H.; Ito, A.; Miyakawa, S.; Layrolle, P.; Ojima, K.; Ichinose, N.; Tateishi, T. Stimulatory Effect of Zinc‐Releasing Calcium Phosphate Implant on Bone Formation in Rabbit Femora. J. Biomed. Mater. Res. 2000, 50, 184–190; https://doi.org/10.1002/(sici)1097-4636(200005)50:2<184::aid-jbm13>3.0.co;2-3.10.1002/(SICI)1097-4636(200005)50:2<184::AID-JBM13>3.0.CO;2-3Search in Google Scholar

80. Ghosh, R.; Sarkar, R. Synthesis and Characterization of Sintered Hydroxyapatite: A Comparative Study on the Effect of Preparation Route. J. Aust. Ceram. Soc. 2018, 54, 71–80; https://doi.org/10.1007/s41779-017-0128-5.Search in Google Scholar

81. Mahmood, B. K. Synthesis and Characterization of Strontium-Based Hydroxyapatites Doped with Erbium; Fen Bilimleri Enstitüsü: Turkey, 2020.Search in Google Scholar

82. Kareem, R. O.; Bulut, N.; Kaygili, O. Hydroxyapatite Biomaterials: A Comprehensive Review of Their Properties, Structures, Medical Applications, and Fabrication Methods. J. Chem. Rev. 2024, 6, 1–26.Search in Google Scholar

83. Ahmed, L. O.; Bulut, N.; Kebiroglu, H.; Alkhedher, M.; Ates, T.; Koytepe, S.; Ates, B.; Kaygili, O.; Din, E. M. T. E. Effects of Yttrium Doping on Erbium-Based Hydroxyapatites: Theoretical and Experimental Study. Materials 2022, 15, 7211; https://doi.org/10.3390/ma15207211.Search in Google Scholar

84. Ahmed, L.; Bulut, N.; Kaygili, O.; Rebaz, O. Quantum Chemical Study of Some Basic Organic Compounds as the Corrosion Inhibitors. J. Phys. Chem. Funct. Mater. 2023, 6, 34–42; https://doi.org/10.54565/jphcfum.1263803.Search in Google Scholar

85. Ahmed, L. O.; Bulut, N.; Osmanlıoğlu, F.; Tatar, B.; Kebiroglu, H.; Ates, T.; Koytepe, S.; Ates, B.; Keser, S.; Kaygili, O. Theoretical and Experimental Investigation of the Effects of Pr Dopant on the Electronic Band Structure, Thermal, Structural, In Vitro Biocompatibility of Er-Based Hydroxyapatites. J. Mol. Struct. 2023, 1280, 135095; https://doi.org/10.1016/j.molstruc.2023.135095.Search in Google Scholar

86. Korkmaz, A. A.; Ahmed, L. O.; Kareem, R. O.; Kebiroglu, H.; Ates, T.; Bulut, N.; Kaygili, O.; Ates, B. Theoretical and Experimental Characterization of Sn-Based Hydroxyapatites Doped with Bi. J. Aust. Ceram. Soc. 2022, 58, 803–815; https://doi.org/10.1007/s41779-022-00730-5.Search in Google Scholar

87. Elliott, J. C. Structure and Chemistry of the Apatites and Other Calcium Orthophosphates; Elsevier: London, UK, 2013.Search in Google Scholar

88. Šimková, L.; Šulcová, P. The Effect of Calcination on the Hydroxyapatite Structure. In Scientific Papers of the University of Pardubice. Series A, Faculty of Chemical Technology. 25/2019; University of Pardubice: Czechia, 2019.Search in Google Scholar

89. Lowenstam, H. A. Minerals Formed by Organisms. Science 1981, 211, 1126–1131; https://doi.org/10.1126/science.7008198.Search in Google Scholar

90. Bazin, D.; Daudon, M.; Combes, C.; Rey, C. Characterization and Some Physicochemical Aspects of Pathological Microcalcifications. Chem. Rev. 2012, 112, 5092–5120; https://doi.org/10.1021/cr200068d.Search in Google Scholar PubMed

91. Elliott, J. C. Calcium Phosphate Biominerals. Rev. Mineral. Geochem. 2002, 48, 427–453; https://doi.org/10.2138/rmg.2002.48.11.Search in Google Scholar

92. Carlstrom, D. A Crystallographic Study of Vertebrate Otoliths. Biol. Bull. 1963, 125, 441–463; https://doi.org/10.2307/1539358.Search in Google Scholar

93. Li, Z.; Pasteris, J. D. Tracing the Pathway of Compositional Changes in Bone Mineral with Age: Preliminary Study of Bioapatite Aging in Hypermineralized Dolphin’s Bulla. Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 2331–2339; https://doi.org/10.1016/j.bbagen.2014.03.012.Search in Google Scholar PubMed PubMed Central

94. Sakae, T.; Nakada, H.; LeGeros, J. P. Historical Review of Biological Apatite Crystallography. J. Hard Tissue Biol. 2015, 24, 111–122; https://doi.org/10.2485/jhtb.24.111.Search in Google Scholar

95. Uskoković, V. The Role of Hydroxyl Channel in Defining Selected Physicochemical Peculiarities Exhibited by Hydroxyapatite. RSC Adv. 2015, 5, 36614–36633; https://doi.org/10.1039/c4ra17180b.Search in Google Scholar PubMed PubMed Central

96. Xie, B.; Halter, T. J.; Borah, B. M.; Nancollas, G. H. Tracking Amorphous Precursor Formation and Transformation During Induction Stages of Nucleation. Cryst. Growth Des. 2014, 14, 1659–1665; https://doi.org/10.1021/cg401777x.Search in Google Scholar PubMed PubMed Central

97. Omelon, S.; Ariganello, M.; Bonucci, E.; Grynpas, M.; Nanci, A. A Review of Phosphate Mineral Nucleation in Biology and Geobiology. Calcif. Tissue Int. 2013, 93, 382–396; https://doi.org/10.1007/s00223-013-9784-9.Search in Google Scholar PubMed PubMed Central

98. Boskey, A. L. Mineralization of Bones and Teeth. Elements 2007, 3, 385–391; https://doi.org/10.2113/gselements.3.6.385.Search in Google Scholar

99. Gómez-Morales, J.; Iafisco, M.; Delgado-López, J. M.; Sarda, S.; Drouet, C. Progress on the Preparation of Nanocrystalline Apatites and Surface Characterization: Overview of Fundamental and Applied Aspects. Prog. Cryst. Growth Char. Mater. 2013, 5, 91–46; https://doi.org/10.1016/j.pcrysgrow.2012.11.001.Search in Google Scholar

100. Combes, C.; Cazalbou, S.; Rey, C. Apatite Biominerals. Minerals 2016, 6, 34; https://doi.org/10.3390/min6020034.Search in Google Scholar

101. Wopenka, B.; Pasteris, J. D. A Mineralogical Perspective on the Apatite in Bone. Mater. Sci. Eng. C 2005, 25, 131–143; https://doi.org/10.1016/j.msec.2005.01.008.Search in Google Scholar

102. Eliaz, N.; Metoki, N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. Materials 2017, 10, 334; https://doi.org/10.3390/ma10040334.Search in Google Scholar PubMed PubMed Central

103. Fiume, E.; Magnaterra, G.; Rahdar, A.; Verné, E.; Baino, F. Hydroxyapatite for Biomedical Applications: A Short Overview. Ceramics 2021, 4, 542–563; https://doi.org/10.3390/ceramics4040039.Search in Google Scholar

104. Sobczak-Kupiec, A.; Malina, D.; Kijkowska, R.; Wzorek, Z. Comparative Study of Hydroxyapatite Prepared by the Authors with Selected Commercially Available Ceramics. Dig. J. Nanomater. Biostruct. 2012, 7, 385–391.Search in Google Scholar

105. Ducheyne, P.; Cuckler, J. M. Bioactive Ceramic Prosthetic Coatings. Clin. Orthop. Relat. Res. 1992, 276, 102–114; https://doi.org/10.1097/00003086-199203000-00014.Search in Google Scholar

106. Hench, L. L. Bioceramics: From Concept to Clinic. J. Am. Ceram. Soc. 1991, 74, 1487–1510; https://doi.org/10.1111/j.1151-2916.1991.tb07132.x.Search in Google Scholar

107. Cahyanto, A.; Kosasih, E.; Aripin, D.; Hasratiningsih, Z. Fabrication of Hydroxyapatite from Fish Bones Waste Using Reflux Method. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Russia, 2017.10.1088/1757-899X/172/1/012006Search in Google Scholar

108. Pokhrel, S. Hydroxyapatite: Preparation, Properties and Its Biomedical Applications. Adv. Chem. Eng. Sci. 2018, 8, 225; https://doi.org/10.4236/aces.2018.84016.Search in Google Scholar

109. Singh, B.; Tandon, A.; Pandey, A. K.; Singh, P. Enhanced Dielectric Constant and Structural Transformation in Fe-Doped Hydroxyapatite Synthesized by Wet Chemical Method. J. Mater. Sci. 2018, 53, 8807–8816; https://doi.org/10.1007/s10853-018-2225-4.Search in Google Scholar

110. Kaygili, O.; Dorozhkin, S. V.; Ates, T.; Al-Ghamdi, A. A.; Yakuphanoglu, F. Dielectric Properties of Fe Doped Hydroxyapatite Prepared by Sol–Gel Method. Ceram. Int. 2014, 40, 9395–9402; https://doi.org/10.1016/j.ceramint.2014.02.009.Search in Google Scholar

111. Kaygili, O.; Keser, S.; Ates, T.; Al-Ghamdi, A. A.; Yakuphanoglu, F. Controlling of Dielectrical and Optical Properties of Hydroxyapatite Based Bioceramics by Cd Content. Powder Technol. 2013, 245, 1–6; https://doi.org/10.1016/j.powtec.2013.04.012.Search in Google Scholar

112. Kaygili, O.; Keser, S.; Tankut, A.; Kirbag, S.; Yakuphanoglu, F. Dielectric Properties of Calcium Phosphate Ceramics. Mater. Sci. 2016b, 22, 65–69; https://doi.org/10.5755/j01.ms.22.1.7222.Search in Google Scholar

113. Arul, K. T.; Ramya, J. R.; Kalkura, S. N. Impact of Dopants on the Electrical and Optical Properties of Hydroxyapatite. Biomaterials 2020, 1–24; https://doi.org/10.5772/intechopen.93092.Search in Google Scholar

114. Kaygili, O.; Ates, T.; Keser, S.; Al-Ghamdi, A. A.; Yakuphanoglu, F. Controlling of Dielectrical Properties of Hydroxyapatite by Ethylenediamine Tetraacetic Acid (EDTA) for Bone Healing Applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014a, 129, 268–273; https://doi.org/10.1016/j.saa.2014.03.082.Search in Google Scholar PubMed

115. Bowen, C.; Gittings, J.; Turner, I.; Baxter, F.; Chaudhuri, J. Dielectric and Piezoelectric Properties of Hydroxyapatite-BaTiO3 Composites. Appl. Phys. Lett. 2006, 89, 132906; https://doi.org/10.1063/1.2355458.Search in Google Scholar

116. Gao, Y.; Cao, W.-L.; Wang, X.-Y.; Gong, Y.-D.; Tian, J.-M.; Zhao, N.-M.; Zhang, X.-F. Characterization and Osteoblast-Like Cell Compatibility of Porous Scaffolds: Bovine Hydroxyapatite and Novel Hydroxyapatite Artificial Bone. J. Mater. Sci. Mater. Med. 2006, 17, 815–823; https://doi.org/10.1007/s10856-006-9840-3.Search in Google Scholar PubMed

117. Joschek, S.; Nies, B.; Krotz, R.; Göpferich, A. Chemical and Physicochemical Characterization of Porous Hydroxyapatite Ceramics Made of Natural Bone. Biomaterials 2000, 21, 1645–1658; https://doi.org/10.1016/s0142-9612(00)00036-3.Search in Google Scholar PubMed

118. Werner, J.; Linner-Krčmar, B.; Friess, W.; Greil, P. Mechanical Properties and In Vitro Cell Compatibility of Hydroxyapatite Ceramics with Graded Pore Structure. Biomaterials 2002, 23, 4285–4294; https://doi.org/10.1016/s0142-9612(02)00191-6.Search in Google Scholar PubMed

119. Ahmed, L. O.; Bulut, N.; Bañares, L.; Kaygili, O.; Kebiroglu, H.; Ates, T.; Koytepe, S.; Ates, B. Exploring the Electronic Band Structure, Spectroscopic Signatures, and Structural Properties of Er3+-Based Hydroxyapatites Co-Doped with Ce3+ Ions. Inorg. Chem. Commun. 2023, 155, 111067; https://doi.org/10.1016/j.inoche.2023.111067.Search in Google Scholar

120. Sharma, P.; Trivedi, A.; Begam, H. Synthesis and Characterization of Pure and Titania Doped Hydroxyapatite. Mater. Today: Proc. 2019, 16, 302–307; https://doi.org/10.1016/j.matpr.2019.05.094.Search in Google Scholar

121. Ooi, C.; Hamdi, M.; Ramesh, S. Properties of Hydroxyapatite Produced by Annealing of Bovine Bone. Ceram. Int. 2007, 33, 1171–1177; https://doi.org/10.1016/j.ceramint.2006.04.001.Search in Google Scholar

122. Rahavi, S. S.; Ghaderi, O.; Monshi, A.; Fathi, M. H. A Comparative Study on Physicochemical Properties of Hydroxyapatite Powders Derived from Natural and Synthetic Sources. Russ. J. Non-Ferrous Metals 2017, 58, 276–286; https://doi.org/10.3103/s1067821217030178.Search in Google Scholar

123. Hench, L. L.; Wilson, J. An Introduction to Bioceramics; World Scientific: London, Vol. 1, 1993.10.1142/9789814317351_0001Search in Google Scholar

124. Xie, J.-N.; Chen, J.-J. Sustained-Release Capacity of Bone Morphogenetic Protein Composite Scaffolds. Chin. J. Tissue Eng. Res. 2014, 18, 3341.Search in Google Scholar

125. Köm, M.; Erkmen, O.; Polat, E.; Kaygili, Ö.; Eröksüz, Y. Hidroksiapatit Esaslı Biyoseramik Malzemelerin İn Vitro Ve İn Vivo Biyouyumluluklarının Belirlenmesi. Fırat Üniversitesi Sağlık Bilimleri Veteriner Dergisi 2021, 35, 1–6.Search in Google Scholar

126. Laranjeira, M. S.; Moco, A.; Ferreira, J.; Coimbra, S.; Costa, E.; Santos-Silva, A.; Ferreira, P. J.; Monteiro, F. J. Different Hydroxyapatite Magnetic Nanoparticles for Medical Imaging: Its Effects on Hemostatic, Hemolytic Activity and Cellular Cytotoxicity. Colloids Surf. B Biointerfaces 2016, 146, 363–374; https://doi.org/10.1016/j.colsurfb.2016.06.042.Search in Google Scholar PubMed

127. Ramasamy, S.; Dhamecha, D.; Kaliyamoorthi, K.; Pillai, A. S.; Alexander, A.; Dhanaraj, P.; Menon, J. U.; Enoch, I. V. M. V. Magnetic Hydroxyapatite Nanomaterial–Cyclodextrin Tethered Polymer Hybrids as Anticancer Drug Carriers. Mater. Adv. 2021, 2, 3315–3327; https://doi.org/10.1039/d1ma00142f.Search in Google Scholar

128. Bulina, N. V.; Makarova, S. V.; Baev, S. G.; Matvienko, A. A.; Gerasimov, K. B.; Logutenko, O. A.; Bystrov, V. S. A Study of Thermal Stability of Hydroxyapatite. Minerals 2021, 11, 1310; https://doi.org/10.3390/min11121310.Search in Google Scholar

129. Tõnsuaadu, K.; Gross, K. A.; Plūduma, L.; Veiderma, M. A Review on the Thermal Stability of Calcium Apatites. J. Therm. Anal. Calorim. 2012, 110, 647–659; https://doi.org/10.1007/s10973-011-1877-y.Search in Google Scholar

130. Blüthmann, H. Chromatography of Histones on Hydroxyapatite Columns. J. Chromatogr. A 1977, 137, 222–227; https://doi.org/10.1016/s0021-9673(00)89262-6.Search in Google Scholar PubMed

131. De Lange, G.; Donath, K. Interface Between Bone Tissue and Implants of Solid Hydroxyapatite or Hydroxyapatite-Coated Titanium Implants. Biomaterials 1989, 10, 121–125; https://doi.org/10.1016/0142-9612(89)90044-6.Search in Google Scholar PubMed

132. Venugopal, J.; Prabhakaran, M. P.; Zhang, Y.; Low, S.; Choon, A. T.; Ramakrishna, S. Biomimetic Hydroxyapatite-Containing Composite Nanofibrous Substrates for Bone Tissue Engineering. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 2065–2081; https://doi.org/10.1098/rsta.2010.0012.Search in Google Scholar PubMed

133. Prabhakaran, M. P.; Venugopal, J.; Ramakrishna, S. Electrospun Nanostructured Scaffolds for Bone Tissue Engineering. Acta Biomater. 2009, 5, 2884–2893; https://doi.org/10.1016/j.actbio.2009.05.007.Search in Google Scholar PubMed

134. Venugopal, J.; Vadgama, P.; Kumar, T. S.; Ramakrishna, S. Biocomposite Nanofibres and Osteoblasts for Bone Tissue Engineering. Nanotechnology 2007, 18, 055101; https://doi.org/10.1088/0957-4484/18/5/055101.Search in Google Scholar

135. Palazzo, B.; Iafisco, M.; Laforgia, M.; Margiotta, N.; Natile, G.; Bianchi, C. L.; Walsh, D.; Mann, S.; Roveri, N. Biomimetic Hydroxyapatite–Drug Nanocrystals as Potential Bone Substitutes with Antitumor Drug Delivery Properties. Adv. Funct. Mater. 2007, 17, 2180–2188; https://doi.org/10.1002/adfm.200600361.Search in Google Scholar

136. Loo, S.; Moore, T.; Banik, B.; Alexis, F. Biomedical Applications of Hydroxyapatite Nanoparticles. Curr. Pharmaceut. Biotechnol. 2010, 11, 333–342; https://doi.org/10.2174/138920110791233343.Search in Google Scholar PubMed

137. Tite, T.; Popa, A.-C.; Balescu, L. M.; Bogdan, I. M.; Pasuk, I.; Ferreira, J. M.; Stan, G. E. Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods. Materials 2018, 11, 2081; https://doi.org/10.3390/ma11112081.Search in Google Scholar PubMed PubMed Central

138. Sadat-Shojai, M.; Khorasani, M.-T.; Dinpanah-Khoshdargi, E.; Jamshidi, A. Synthesis Methods for Nanosized Hydroxyapatite with Diverse Structures. Acta Biomater. 2013, 9, 7591–7621; https://doi.org/10.1016/j.actbio.2013.04.012.Search in Google Scholar PubMed

139. Cox, S. C.; Walton, R. I.; Mallick, K. K. Comparison of Techniques for the Synthesis of Hydroxyapatite. Bioinspired, Biomimetic Nanobiomaterials 2015, 4, 37–47; https://doi.org/10.1680/bbn.14.00010.Search in Google Scholar

140. Pu’ad, N. M.; Haq, R. A.; Noh, H. M.; Abdullah, H.; Idris, M.; Lee, T. Synthesis Method of Hydroxyapatite: A Review. Mater. Today: Proc. 2020, 29, 233–239; https://doi.org/10.1016/j.matpr.2020.05.536.Search in Google Scholar

141. Pramanik, S.; Agarwal, A. K.; Rai, K. Development of High Strength Hydroxyapatite for Hard Tissue Replacement. Trends Biomater. Artif. Organs 2005, 19, 46–51.Search in Google Scholar

142. Cox, S. Synthesis Method of Hydroxyapatite; Ceram, University of Birmingham: Birmingham, UK, 2014.Search in Google Scholar

143. Pramanik, S.; Agarwal, A. K.; Rai, K.; Garg, A. Development of High Strength Hydroxyapatite by Solid-State-Sintering Process. Ceram. Int. 2007, 33, 419–426; https://doi.org/10.1016/j.ceramint.2005.10.025.Search in Google Scholar

144. Achar, T. K.; Bose, A.; Mal, P. Mechanochemical Synthesis of Small Organic Molecules. Beilstein J. Org. Chem. 2017, 13, 1907–1931; https://doi.org/10.3762/bjoc.13.186.Search in Google Scholar PubMed PubMed Central

145. Shen, T.; Koch, C.; McCormick, T.; Nemanich, R.; Huang, J.; Huang, J. The Structure and Property Characteristics of Amorphous/Nanocrystalline Silicon Produced by Ball Milling. J. Mater. Res. 1995, 10, 139–148; https://doi.org/10.1557/jmr.1995.0139.Search in Google Scholar

146. Fathi, M.; Zahrani, E. M. Fabrication and Characterization of Fluoridated Hydroxyapatite Nanopowders via Mechanical Alloying. J. Alloys Compd. 2009, 475, 408–414; https://doi.org/10.1016/j.jallcom.2008.07.058.Search in Google Scholar

147. Fathi, M.; Zahrani, E. M. Mechanical Alloying Synthesis and Bioactivity Evaluation of Nanocrystalline Fluoridated Hydroxyapatite. J. Cryst. Growth 2009, 311, 1392–1403; https://doi.org/10.1016/j.jcrysgro.2008.11.100.Search in Google Scholar

148. Rhee, S.-H. Synthesis of Hydroxyapatite via Mechanochemical Treatment. Biomaterials 2002, 23, 1147–1152; https://doi.org/10.1016/s0142-9612(01)00229-0.Search in Google Scholar PubMed

149. Shu, C.; Yanwei, W.; Hong, L.; Zhengzheng, P.; Kangde, Y. Synthesis of Carbonated Hydroxyapatite Nanofibers by Mechanochemical Methods. Ceram. Int. 2005, 31, 135–138; https://doi.org/10.1016/j.ceramint.2004.04.012.Search in Google Scholar

150. Yeong, K.; Wang, J.; Ng, S. Mechanochemical Synthesis of Nanocrystalline Hydroxyapatite from CaO and CaHPO4. Biomaterials 2001, 22, 2705–2712; https://doi.org/10.1016/s0142-9612(00)00257-x.Search in Google Scholar PubMed

151. Santos, M. H.; Oliveira, M. D.; Souza, L. P. D. F.; Mansur, H. S.; Vasconcelos, W. L. Synthesis Control and Characterization of Hydroxyapatite Prepared by Wet Precipitation Process. Mater. Res. 2004, 7, 625–630; https://doi.org/10.1590/s1516-14392004000400017.Search in Google Scholar

152. Yelten-Yilmaz, A.; Yilmaz, S. Wet Chemical Precipitation Synthesis of Hydroxyapatite (HA) Powders. Ceram. Int. 2018, 44, 9703–9710; https://doi.org/10.1016/j.ceramint.2018.02.201.Search in Google Scholar

153. Afshar, A.; Ghorbani, M.; Ehsani, N.; Saeri, M.; Sorrell, C. Some Important Factors in the Wet Precipitation Process of Hydroxyapatite. Mater. Des. 2003, 24, 197–202; https://doi.org/10.1016/s0261-3069(03)00003-7.Search in Google Scholar

154. Mobasherpour, I.; Heshajin, M. S.; Kazemzadeh, A.; Zakeri, M. Synthesis of Nanocrystalline Hydroxyapatite by Using Precipitation Method. J. Alloys Compd. 2007, 430, 330–333; https://doi.org/10.1016/j.jallcom.2006.05.018.Search in Google Scholar

155. Peng, H.; Wang, J.; Lv, S.; Wen, J.; Chen, J.-F. Synthesis and Characterization of Hydroxyapatite Nanoparticles Prepared by a High-Gravity Precipitation Method. Ceram. Int. 2015, 41, 14340–14349; https://doi.org/10.1016/j.ceramint.2015.07.067.Search in Google Scholar

156. Huang, G.; Lu, C.-H.; Yang, H.-H. Magnetic Nanomaterials for Magnetic Bioanalysis. In Novel Nanomaterials for Biomedical, Environmental and Energy Applications; Huang, G., Lu, C.-H., Yang, H.-H., Eds.; Elsevier: Amsterdam, Netherlands, 2019; pp. 89–109.10.1016/B978-0-12-814497-8.00003-5Search in Google Scholar

157. Zhang, G.; Chen, J.; Yang, S.; Yu, Q.; Wang, Z.; Zhang, Q. Preparation of Amino-Acid-Regulated Hydroxyapatite Particles by Hydrothermal Method. Mater. Lett. 2011, 65, 572–574; https://doi.org/10.1016/j.matlet.2010.10.078.Search in Google Scholar

158. Wang, Y.; Zhang, S.; Wei, K.; Zhao, N.; Chen, J.; Wang, X. Hydrothermal Synthesis of Hydroxyapatite Nanopowders Using Cationic Surfactant as a Template. Mater. Lett. 2006, 60, 1484–1487; https://doi.org/10.1016/j.matlet.2005.11.053.Search in Google Scholar

159. Nagata, F.; Yamauchi, Y.; Tomita, M.; Kato, K. Hydrothermal Synthesis of Hydroxyapatite Nanoparticles and Their Protein Adsorption Behavior. J. Ceram. Soc. Jpn. 2013, 121, 797–801; https://doi.org/10.2109/jcersj2.121.797.Search in Google Scholar

160. Sinitsyna, O.; Veresov, A.; Kovaleva, E.; Kolen’ko, Y. V.; Putlyaev, V.; Tretyakov, Y. D. Synthesis of Hydroxyapatite by Hydrolysis of α-Ca3(PO4)2. Russ. Chem. Bull. 2005, 54, 79–86; https://doi.org/10.1007/s11172-005-0220-9.Search in Google Scholar

161. Mechay, A.; Feki, H. E.; Schoenstein, F.; Jouini, N. Nanocrystalline Hydroxyapatite Ceramics Prepared by Hydrolysis in Polyol Medium. Chem. Phys. Lett. 2012, 541, 75–80; https://doi.org/10.1016/j.cplett.2012.05.047.Search in Google Scholar

162. Wang, M.-C.; Chen, H.-T.; Shih, W.-J.; Chang, H.-F.; Hon, M.-H.; Hung, I.-M. Crystalline Size, Microstructure and Biocompatibility of Hydroxyapatite Nanopowders by Hydrolysis of Calcium Hydrogen Phosphate Dehydrate (DCPD). Ceram. Int. 2015, 41, 2999–3008; https://doi.org/10.1016/j.ceramint.2014.10.135.Search in Google Scholar

163. Sasikumar, S.; Vijayaraghavan, R. Solution Combustion Synthesis of Bioceramic Calcium Phosphates by Single and Mixed Fuels – A Comparative Study. Ceram. Int. 2008, 34, 1373–1379; https://doi.org/10.1016/j.ceramint.2007.03.009.Search in Google Scholar

164. Canillas, M.; Rivero, R.; García-Carrodeguas, R.; Barba, F.; Rodríguez, M. A. Processing of Hydroxyapatite Obtained by Combustion Synthesis. Bol. Soc. Española Cerám. Vidr. 2017, 56, 237–242; https://doi.org/10.1016/j.bsecv.2017.05.002.Search in Google Scholar

165. Kavitha, M.; Subramanian, R.; Narayanan, R.; Udhayabanu, V. Solution Combustion Synthesis and Characterization of Strontium Substituted Hydroxyapatite Nanocrystals. Powder Technol. 2014, 253, 129–137; https://doi.org/10.1016/j.powtec.2013.10.045.Search in Google Scholar

166. Narayanan, R.; Singh, V.; Kwon, T. Y.; Kim, K. H. Combustion Synthesis of Hydroxyapatite and Hydroxyapatite (Silver) Powders. Key Eng. Mater. 2009, 396, 411–419; https://doi.org/10.4028/www.scientific.net/kem.396-398.411.Search in Google Scholar

167. Cho, J. S.; Rhee, S. H. The Size Control of Hydroxyapatite Particles During Spray Pyrolysis. Key Eng. Mater. 2013, 529, 66–69; https://doi.org/10.4028/www.scientific.net/kem.529-530.66.Search in Google Scholar

168. Widiyastuti, W.; Setiawan, A.; Winardi, S.; Nurtono, T.; Setyawan, H. Particle Formation of Hydroxyapatite Precursor Containing Two Components in a Spray Pyrolysis Process. Front. Chem. Sci. Eng. 2014, 8, 104–113; https://doi.org/10.1007/s11705-014-1406-1.Search in Google Scholar

169. Nakazato, T.; Tsukui, S.; Nakagawa, N.; Kai, T. Continuous Production of Hydroxyapatite Powder by Drip Pyrolysis in a Fluidized Bed. Adv. Powder Technol. 2012, 23, 632–639; https://doi.org/10.1016/j.apt.2011.07.005.Search in Google Scholar

Received: 2024-03-30
Accepted: 2024-05-14
Published Online: 2024-06-06
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
  3. Advanced synthetic routes of metal organic frameworks and their diverse applications
  4. Carbon materials derived by crystalline porous materials for capacitive energy storage
  5. BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
  6. Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base
  7. Solid-phase extraction of organophosphates from polluted waters on a matrix-imprinted sorbent
  8. Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
  9. Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
  10. Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
  11. Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
  12. Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
  13. A review of carbon-based adsorbents for the removal of organic and inorganic components
  14. Mercury removal from water: insights from MOFs and their composites
  15. Organometallic complexes and reaction methods for synthesis: a review
  16. Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2024-0018/html
Scroll to top button