Home Crystal structure of 1,1′-(methane-1,1-diyl)bis(3-methyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C9H14F12N4P2
Article Open Access

Crystal structure of 1,1′-(methane-1,1-diyl)bis(3-methyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C9H14F12N4P2

  • Zhang Huang-Xian , Yuan Kun , Du Qi-Long , Nie Xu-Liang ORCID logo and Xiong Wan-Ming EMAIL logo
Published/Copyright: November 17, 2021

Abstract

C9H14F12N4P2, monoclinic, P21/m (no. 11), a = 5.8968(9) Å, b = 11.5554(18) Å, c = 12.994(2) Å, β = 94.577(2)°, V = 882.6(2) Å3, Z = 2, R gt (F) = 0.0676, wR ref (F2) = 0.2020, T = 296(2) K.

CCDC no.: 2094575

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.20 × 0.17 × 0.15 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.37 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 25.0°, >99%
N(hkl)measured, N(hkl)unique, Rint: 6290, 1635, 0.028
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 1345
N(param)refined: 158
Programs: Bruker [1], SHELX [2, 3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
P1 0.1006 (2) 0.2500 0.61407 (10) 0.0605 (5)
F1 0.3674 (7) 0.2500 0.6214 (5) 0.1334 (19)
F2 0.0933 (7) 0.3455 (4) 0.5280 (3) 0.1516 (16)
F3 −0.1652 (6) 0.2500 0.5999 (4) 0.1196 (17)
F4 0.1036 (6) 0.1523 (4) 0.6956 (3) 0.1388 (14)
P2 0.1201 (2) 0.2500 0.04918 (10) 0.0589 (5)
F5a −0.1333 (11) 0.2204 (15) 0.0491 (6) 0.170 (7)
F6a 0.050 (2) 0.3636 (7) 0.0950 (9) 0.156 (4)
F7a 0.3711 (10) 0.2825 (19) 0.0529 (6) 0.179 (10)
F8a 0.190 (3) 0.1336 (8) 0.0085 (11) 0.190 (5)
F9a 0.1523 (16) 0.2038 (12) 0.1611 (5) 0.201 (9)
F10a 0.0882 (13) 0.2905 (13) −0.0588 (5) 0.179 (9)
N1 0.4653 (6) 0.0018 (2) 0.2353 (3) 0.0657 (9)
N2 0.6369 (5) 0.1470 (3) 0.3087 (2) 0.0572 (8)
C1 0.6139 (6) 0.0828 (3) 0.2237 (3) 0.0586 (9)
H1 0.6921 0.0940 0.1651 0.070*
C2 0.3880 (9) 0.0130 (4) 0.3310 (4) 0.0858 (14)
H2 0.2806 −0.0340 0.3590 0.103*
C3 0.4935 (9) 0.1032 (4) 0.3773 (3) 0.0825 (13)
H3 0.4739 0.1310 0.4431 0.099*
C4 0.7751 (9) 0.2500 0.3232 (4) 0.0679 (14)
H4A 0.8911 0.2500 0.2743 0.081*
H4B 0.8508 0.2500 0.3923 0.081*
C5 0.3919 (10) −0.0859 (4) 0.1587 (4) 0.0988 (16)
H5A 0.2809 −0.1355 0.1862 0.148*
H5B 0.3259 −0.0487 0.0974 0.148*
H5C 0.5206 −0.1312 0.1421 0.148*
  1. aOccupancy: 0.5.

Source of material

Dibromomethane (1.74 g, 0.02 mol) and 1-methylimidazole (1.64 g, 0.02 mol) were added into a 10 mL reaction tubes of a microwave oven, and then the reaction proceeded under stirring at 70 °C for 8 min. A white solid was obtained after the reaction was completed and cooled down to room temperature; and the solid was washed with ethyl acetate and diethyl ether three times, respectively. The residual solvent was removed using a rotary evaporator and dried in vacuo at 50 °C for 30 min, and the white powder solid dimethylimidazole bromide was obtained with a yield of 76.62%. In the ion-exchanging reaction, the intermediate product (0.25 g, 0.0007 mol), potassium hexafluorophosphate (0.28 g, 0.0015 mol) and H2O (10 mL) were added to the reaction tube. Subsequently, the mixture was stirred at 85 °C for 8 min in a microwave oven; then, a colorless crystal was obtained with a yield of 43.40%.

Experimental details

All H atoms were included in calculated positions and refined as riding atoms, with C–H = 0.90–0.97 Å with Uiso(H) = 1.5 Ueq(C) for methyl H atoms and 1.2 Ueq(C) for all other H atoms.

Comment

Ionic liquids (ILs), as a class of organic ionic salt compounds with low melting point, are generally called room temperature ILs [5], and have the advantages of high selectivity and recyclability. After nearly 20 years of research and development, ILs have formed a wide variety and a large number of systems, which provides a good basis for the green catalytic reaction process [6], [7], [8], [9], and have been widely used Functional ILs containing hexfluorophosphate, have been widely studied due to their superior physical and chemical properties [10]. They are used in functional materials such as electric contact lubricants, gel electrolyte, and other functional materials [11, 12]. So far, most of the research work on hexafluorophosphate containing ILs has focused on monoimidazole based ILs [13]. Therefore, some diimidazole hexafluorophosphate ILs were synthesized by conventional oil bath heating in our group [14], [15], [16], [17], [18]. In order to explore a wider range of diimidazole ionic compounds and keep up with the pace of green chemistry, the synthesis of IL was carried out in microwave, and a crystalline compound was obtained in this experiment.

There is one half of a cation and two half anions in the asymmetric unit (shown in the figure). In the ions of the title compound bond lengths and angles are very similar to those given in the literature [18, 19]. The atoms of the imidazole ring are coplanar. The torsion angles of C3–C2–N1–C5, C2–C3–N2–C4, C3–N2–C4–N2′ are −179.5(4)°, 175.7(4)° and −75.4(4)°, respectively.


Corresponding author: Wan-Ming Xiong, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Department of Chemistry, Jiangxi Agricultural University, Nanchang 330045, People’s Republic of China, E-mail:

Award Identifier / Grant number: 31760193

Award Identifier / Grant number: 20202BABL205003

Award Identifier / Grant number: GJJ190181

Award Identifier / Grant number: GJJ200404

Award Identifier / Grant number: GJJ200462

Award Identifier / Grant number: S202110410095

Acknowledgments

X-ray data were collected at Instrumental Analysis Center Nanchang Hangkong University, Nanchang, 330063, People’s Republic of China.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Natural Science Foundation of China (No. 31760193), the Natural Science Foundation of Jiangxi Province of China (No. 20202BABL205003), the Key Research Foundation of Education Department of Jiangxi Province of China (Nos. GJJ190181, GJJ200404, GJJ200462), and National College Students Innovation and Entrepreneurship Training Program (No. S202110410095).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. Apex2, Saint and Sadabs; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Search in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Brandenburg, K. Diamond. Visual Crystal Structure Information System (ver. 4.0); Crystal Impact: Bonn, Germany, 2015.Search in Google Scholar

5. Abdullayev, Y. Unveiling the catalytic effects of Brønsted acidic ionic liquid on quantitative α-glucose conversion to 5-HMF: experimental and computational studies. Renew. Energy. 2021, 171, 383–390; https://doi.org/10.1016/j.renene.2021.02.119.Search in Google Scholar

6. Sun, J., Wang, J. Q., Wang, L., Zhang, S. J. Green catalytic process based on ionic liquid. Sci. China Chem. 2014, 44, 100–113.10.1360/032013-275Search in Google Scholar

7. Hosseini, M. Simultaneous concentration and determination of cadmium and lead ions using in situ solvent formation microextraction method based on functionalized ionic liquid. J. Anal. Chem. 2021, 76, 1189–1197; https://doi.org/10.1134/s1061934821100075.Search in Google Scholar

8. Abdelhamid, A. A., Salah, H. A., Marzouk, A. A. Synthesis of imidazole derivatives: ester and hydrazide compounds with antioxidant activity using ionic liquid as an efficient catalyst. J. Heterocycl. Chem. 2020, 57, 676–685; https://doi.org/10.1002/jhet.3808.Search in Google Scholar

9. Kong, J. H., Lan, Y. D., Chen, J., Huang, C. G., Xiong, W. M. Preparation and component analysis of biodiesel catalyzed by functionalized dication ionic liquid. Acta Agric. Univ. Jiangxiensis. 2016, 38, 386–390.Search in Google Scholar

10. Cheng, D. H., Chen, X. W., Shu, Y., Wang, J. H. Extraction of cytochrome C with ionic liquid 1-butyl-3-trimethylsilimidazole hexafluorophosphate. Anal. Chem. 2008, 36, 1187–1190, https://doi.org/10.1016/s1872-2040(08)60066-3.Search in Google Scholar

11. Li, X. X., Han, D., Lin, T. R., Cui, Y., Peng, J., Li, J. Q., Zhai, M. L. Radiation synthesis and properties of imidazolium six fluorophosphate polyionic liquid gel electrolyte. Acta Macromol. Sin. 2018, 3, 349–355.Search in Google Scholar

12. Talukdar, S., Ghosh, P. An ionic liquid as a potential multifunctional lubricating oil additive. Petrol. Sci. Technol. 2021, 36, 1920–1927.10.1080/10916466.2018.1519574Search in Google Scholar

13. Huang, T., Zhao, W., Zhang, X. H., Nie, X. L., Xiong, W. M. Synthesis and characterization of diimidazole-based hexafluorophosphate ionic liquids. J. Mol. Liq. 2020, 320, 114465; https://doi.org/10.1016/j.molliq.2020.114465.Search in Google Scholar

14. Zhou, Y. H., Huang, T., Nie, X. L., Chen, J., Xiong, W. M. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-methyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C16H20F12N4P2. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 1217–1219.10.1515/ncrs-2020-0268Search in Google Scholar

15. Zhao, W., Liu, X. T., Wu, S. Q., Xiong, W. M., Nie, X. L. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-ethyl-1H-imidazol-3-ium) bis(hexafluorophosphate), C18H24F12N4P2. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 545–547; https://doi.org/10.1515/ncrs-2020-0639.Search in Google Scholar

16. Huang, T., Chen, J. Z., Nie, X. L., Chen, J., Xiong, W. M. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-vinyl-1H-imidazol-3-ium) bis(hexafluorophosphate)(V), C18H20F12N4P2. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 369–371.10.1515/ncrs-2020-0555Search in Google Scholar

17. Xiong, W. M., Huang, T., Liao, S., Chen, J., Nie, X. L. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-vinyl-1H-imidazol-3-iumhexafluoridophosphate(V), C9H13F6N2O2P. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 1029–1031; https://doi.org/10.1515/ncrs-2020-0147.Search in Google Scholar

18. Zhao, W., Chen, J., Xiong, W. M., Lan, Y. D., Nie, X. L. Crystal structure of 1,1′-(hexane-1,6-diyl)bis(3-ethyl-1H-imidazol-3-ium) bis(hexafluorido phosphate), C16H28F12N4P2. Z. Kristallogr. N. Cryst. Struct. 2019, 234, 609–611.10.1515/ncrs-2018-0527Search in Google Scholar

19. Peppel, T., Hinz, A., Thiele, P., Geppert-Rybczyńska, M., Lehmann, J. K., Köckerling, M. Synthesis, properties, and structures of low-melting tetraisocyanatocobaltate(II)-based ionic liquids. Eur. J. Inorg. Chem. 2017, 2017, 885–893; https://doi.org/10.1002/ejic.201601250.Search in Google Scholar

Received: 2021-10-14
Accepted: 2021-11-09
Published Online: 2021-11-17
Published in Print: 2022-02-23

© 2021 Zhang Huang-Xian et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-3-yl)methylene)-3, 4-dihydronaphthalen-1(2H)-one, C17H15NO3
  4. Crystal structure of (E)-7-methoxy-2-((2-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1 (2H)-one, C18H17NO3
  5. The crystal structure of N 6,N 6′-di(pyridin-2-yl)-[2,2′-bipyridine]-6,6′-diamine, C20H16N6
  6. The crystal structure of {N 1,N 2-bis[2,4-dimethyl-6-(4-(tert-butyl)phenyl)(phenyl)methyl]acenaphthylene-1,2-diimino-κ2 N, N′}-dibromido-nickel(II) – dichloromethane(1/2), C64H64Br2Cl4N2Ni
  7. Synthesis and crystal structure of nonacarbonyltris[(2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-κ1 P)-2,2-dioxide]triruthenium(0) – acetonitrile (7/6), C25.71H32.57N9.86O15P3S3Ru3
  8. A new polymorph of 1-(4-nitrophenyl)-1H-benzimidazole (C13H9N3O2)
  9. The crystal structure of 2,2′-((1E,1′E)-(naphthalene-2,3 diylbis(azanylylidene)) bis(methanylylidene))bis(4-methylphenol), C26H22N2O2
  10. The crystal structure of bis(μ2-iodido)-bis(η6-benzene)-bis(iodido)-diosmium(II), C12H12I4Os2
  11. Redetermination of the crystal structure of bis{hydridotris(3,5-dimethylpyrazol-1-yl-κN 3)borato}copper(II), C30H44B2CuN12
  12. Crystal structure of (E)-3-((4-(tert-butyl)phenyl)thio)-4-hydroxypent-3-en-2-one, C15H20O2S
  13. Crystal structure of 2,2′-(p-tolylazanediyl)bis(1-phenylethan-1-one), C23H21NO2
  14. Redetermination of the crystal structure of the crystal sponge the poly[tetrakis(μ3-2,4,6-tris(pyridin-4-yl)-1,3,5-triazine)-dodecaiodidohexazinc(II) nitrobenzene solvate], C72H48I12N24Zn6⋅10(C6H5NO2)
  15. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(6-methylpyridin-2-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C44H45N5O2
  16. Crystal structure of (E)-7-fluoro-2-(3-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C17H12F2O1
  17. Crystal structure of tetrabutylammonium sulfanilate – 1-(diaminomethylene)thiourea (1/2)
  18. Crystal structure of [2,2′-{azanediyl)bis[(propane-3,1-diyl)(azanylylidene)methylylidene]} bis(3,5-dichlorophenolato)-κ2O,O′]-isothiocyanato-κN-iron(III), C21H19Cl4FeN4O2S
  19. Crystal structure of (4-chlorophenyl)(4-hydroxyphenyl)methanone, C13H9ClO2
  20. Crystal structure of 6,6′-((pentane-1,3-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dibromolphenolato-κ4 N,N′,O,O′)copper(II),) C19H16Br4CuN2O2
  21. Chlorido-(2,2′-(ethane-bis(5-methoxyphenolato))-κ4 N,N,O,O′)manganese(III) monohydrate, C19H18Cl2CuN2O2
  22. Crystal structure of 2,6-di-tert-butyl-4-(4-methoxybenzylidene)cyclohexa-2,5-dien-1-one, C22H28O2
  23. Crystal structure of [6,6′-(((2,2-dimethylpropane-1,3-diyl)bis(azanylylidene))bis(methanylylidene))bis(2-chlorophenolato)-κ4N,N′,O,O′]copper(II)
  24. Crystal structure of 2-chloro-3-((thiophen-2-ylmethyl)amino)naphthalene-1,4-dione, C30H20O4N2Cl2S2
  25. Crystal structure of bis{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl)borato-κN 3}manganese(II), C30H26B2F18MnN12
  26. Crystal structure of 1-(2-methylphenyl)-2-(2-methylbenzo[b]thienyl)-3,3,4,4,5,5-hexafluorocyclopent-ene, C21H14F6S
  27. Crystal structure of 2-(3-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  28. Crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium chloride – chloroform (1/1), C21H23Cl4I2N3
  29. Crystal structure of azido-k1 N-{6,6′-((((methylazanediyl)bis(propane-3,1-diyl))bis(azanylylidene))bis(methanylylidene))bis(2,4-dibromophenolato)k5 N,N′,N″,O,O′}cobalt(III)-methanol (1/1)), C21H23Br4CoN6O3
  30. The crystal structure of 2-(4-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  31. Crystal structure of 1,1′-(methane-1,1-diyl)bis(3-methyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C9H14F12N4P2
  32. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(pyren-1-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C54H48N4O2
  33. Crystal structure of poly[bis(μ2-2,6-bis(1-imidazoly)pyridine-κ2 N,N′)-bis(thiocyanato-κ1 N)copper(II)] dithiocyanate, C24H18CuN12S2
  34. Cones with a three-fold symmetry constructed from three hydrogen bonded theophyllinium cations that coat [FeCl4] anions in the crystal structure of tris(theophyllinium) bis(tetrachloridoferrate(III)) chloride trihydrate, C21H33Cl9Fe2N12O9
  35. Crystal structure of 14-O-[(4-(4-hydroxypiperidine-1-yl)-6-methylpyrimidine-2-yl)thioacetyl]-mutilin monohydrate, C32H49N3O6S
  36. The crystal structure of (E)-3-chloro-2-(2-(4-methylbenzylidene)hydrazinyl)pyridine, C13H12ClN3
  37. The crystal structure of 4-phenyl-4-[2-(pyridine-4-carbonyl)hydrazinylidene]butanoic acid, C16H15N3O3
  38. The crystal structure of 6-amino-5-carboxypyridin-1-ium pentaiodide monohydrate C6H9I5N2O3
  39. Crystal structure of bis(μ3-oxido)-bis(μ2-2-formylbenzoato-k2O:O′)-bis(2-(dimethoxymethyl)-benzoato-κO)-oktakismethyl-tetratin(IV)
  40. Crystal structure of 2-((E)-(((E)-2-hydroxy-4-methylbenzylidene) hydrazineylidene)methyl)-4-methylphenol, C16H16N2O2
  41. Crystal structure of (E)-amino(2-((5-methylfuran-2-yl)methylene)hydrazinyl) methaniminium nitrate monohydrate, C14H26N10O10
  42. The crystal structure of N′-(2-chloro-6-hydroxybenzylidene)thiophene-2-carbohydrazide monohydrate, C12H11ClN2O3S
  43. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)zinc(II)], C64H44Br4N8O8Zn2
  44. The crystal structure of catena-poly[(1-(4-carboxybenzyl)pyridin-1-ium-4-carboxylato-κ1O)-(μ2-oxalato-κ4 O:O′:O″:O‴)dioxidouranium(VI)], C16H11NO10U
  45. Crystal structure of 3-allyl-4-(2-bromoethyl)-5-(4-methoxyphenyl)-2-phenylfuran, C22H21BrO2
  46. Halogen bonds in the crystal structure of 4,3′:5′,4″-terpyridine — 1,3-diiodotetrafluorobenzene (1/1), C21H11F4I2N3
  47. Crystal structure of 2-(1H-indol-3-yl)ethan-1-aminium 2-(4-acetylphenoxy)acetate, C20H22N2O4
  48. Chalcogen bonds in the crystal structure of 4,7-dibromo-2,1,3-benzoselenadiazole, C6H2Br2N2Se
  49. The crystal structure of 1,4-bis((1H-benzimidazol-2-yl)methyl)-piperazine-2,5-dione dihydrate, C20H22N6O4
  50. The crystal structure of C19H20O8
  51. The crystal structure of KNa3Te8O18·5H2O exhibiting a 2[Te4O9]2− layer
  52. Erratum
  53. Erratum to: Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
Downloaded on 9.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0400/html?lang=en
Scroll to top button