Home Chlorido-(2,2′-(ethane-bis(5-methoxyphenolato))-κ4 N,N′,O,O′)manganese(III) monohydrate, C19H18Cl2CuN2O2
Article Open Access

Chlorido-(2,2′-(ethane-bis(5-methoxyphenolato))-κ4 N,N,O,O′)manganese(III) monohydrate, C19H18Cl2CuN2O2

  • Liping Zheng , Jialu Wang , Haolong Jiao , Licha Meng and Yongfeng Qiao ORCID logo EMAIL logo
Published/Copyright: December 7, 2021

Abstract

C19H18Cl2CuN2O2, monoclinic, C2/c (No. 15), a = 21.010(3) Å, b = 11.3886(15) Å, c = 7.9578(10) Å, β = 100.725(4)°, V = 1870.8(4) Å3, Z = 4, R gt (F) = 0.0331, wR ref (F 2) = 0.1077, T = 170.0 K.

CCDC no.: 2113130

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Purple block
Size: 0.311 × 0.28 × 0.20 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.83 mm−1
Diffractometer, scan mode: CCD area detector, φ and ω-scans
θ max, completeness: 25°, >99%
N(hkl)measuredN(hkl)uniqueR int: 7696, 3476, 0.018
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 3081
N(param)refined: 269
Programs: CrysAlisPRO [1], OLEX2 [2], SHELX [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Mn1 0.61043 (4) 0.46999 (4) 0.15145 (3) 0.03365 (14)
Cl1 0.82675 (7) 0.34055 (7) 0.29444 (6) 0.04820 (19)
O1 0.63686 (18) 0.3611 (2) 0.04537 (17) 0.0419 (4)
O2 0.49358 (18) 0.35532 (18) 0.23948 (16) 0.0387 (4)
O3 0.9190 (2) 0.0606 (2) −0.14917 (17) 0.0460 (4)
O4 0.2012 (2) 0.1500 (2) 0.53852 (17) 0.0544 (5)
N1 0.6914 (2) 0.6230 (2) 0.03383 (18) 0.0344 (4)
N2 0.5307 (2) 0.6293 (2) 0.22250 (18) 0.0349 (4)
C1 0.8200 (2) 0.4588 (3) −0.0683 (2) 0.0324 (5)
C2 0.7478 (2) 0.3454 (3) −0.0213 (2) 0.0314 (5)
C3 0.7875 (2) 0.2140 (3) −0.0498 (2) 0.0339 (5)
H3 0.7407 0.1397 −0.0176 0.041*
C4 0.8948 (2) 0.1917 (3) −0.1251 (2) 0.0348 (5)
C5 0.9682 (3) 0.3004 (3) −0.1718 (2) 0.0409 (6)
H5 1.0422 0.2850 −0.2209 0.049*
C6 0.9299 (3) 0.4304 (3) −0.1442 (2) 0.0382 (5)
H6 0.9783 0.5031 −0.1768 0.046*
C7 0.7761 (2) 0.6040 (3) −0.0497 (2) 0.0328 (5)
C8 0.6365 (3) 0.7728 (3) 0.0462 (3) 0.0463 (6)
H8A 0.5510 0.8335 −0.0103 0.056*
H8B 0.7080 0.8273 0.0258 0.056*
C9 0.6017 (3) 0.7505 (3) 0.1760 (3) 0.0498 (7)
H9A 0.6893 0.7228 0.2284 0.060*
H9B 0.5393 0.8455 0.1786 0.060*
C10 0.4414 (2) 0.6296 (3) 0.3057 (2) 0.0335 (5)
C11 0.3788 (2) 0.5043 (3) 0.3604 (2) 0.0334 (5)
C12 0.2822 (3) 0.5080 (3) 0.4511 (2) 0.0420 (6)
H12 0.2581 0.5927 0.4743 0.050*
C13 0.2228 (3) 0.3932 (3) 0.5058 (2) 0.0473 (6)
H13 0.1580 0.4013 0.5638 0.057*
C14 0.2594 (3) 0.2635 (3) 0.4748 (2) 0.0395 (6)
C15 0.3526 (3) 0.2536 (3) 0.3868 (2) 0.0356 (5)
H15 0.3772 0.1664 0.3669 0.043*
C16 0.4110 (2) 0.3734 (3) 0.3268 (2) 0.0303 (5)
C17 0.3990 (3) 0.7628 (3) 0.3492 (3) 0.0463 (6)
H17A 0.4770 0.8061 0.3439 0.070*
H17B 0.3768 0.7276 0.4330 0.070*
H17C 0.3163 0.8392 0.2981 0.070*
C18 0.2130 (4) 0.0283 (4) 0.4947 (3) 0.0684 (9)
H18A 0.1684 0.0696 0.4118 0.103*
H18B 0.1662 −0.0419 0.5465 0.103*
H18C 0.3125 −0.0243 0.4964 0.103*
C19 1.0224 (3) 0.0368 (4) −0.2334 (3) 0.0558 (7)
H19A 0.9916 0.1173 −0.3126 0.084*
H19B 1.0315 −0.0599 −0.2408 0.084*
H19C 1.1135 0.0372 −0.2033 0.084*
C21 0.8274 (3) 0.7355 (3) −0.1294 (2) 0.0460 (6)
H21A 0.7466 0.8246 −0.1654 0.069*
H21B 0.8772 0.7093 −0.1935 0.069*
H21C 0.8911 0.7565 −0.0800 0.069*
O5 0.5833 (3) 1.0512 (2) 0.2290 (2) 0.0701 (6)
H5A 0.5555 1.1483 0.2050 0.105*
H5B 0.6463 1.0152 0.2904 0.105*

Source of material

The structure was solved with the OLEX2 program [2] as an interface together with the SHELXT and SHELXL programs [3, 4]. All H atoms were placed in geometrically idealized positions and refined using a riding model, with C–H = 0.98 (methylene), 0.95 Å (benzene), and with U iso (H) = 1.2 U eq(C) for H atoms onmethylene, phenolic hydroxyl and benzene.

Experimental details

Ethylenediamine (0.3005 g, 5 mmol) in ethanol (10 mL) was added dropwise to a DMF (20 mL) solution of 2′-hydroxy-4′-methoxy-acetophenon (1.90 g, 10 mmol) with constant stirring at room temperature and the yellow suspension was then refluxed for 1 h under stirring. When no more liquid was distilled under 78–80 °C the refluxing under 110 °C was continued for an additional hour. The mixture was cooled gradually to room temperature. A mount of pale-yellow product (H2L) was appeared and isolated by filtration, washed with ethanol rapidly. MnCl2·4H2O (0.099 g, 0.5 mmol) was dissolved in 4 mL distilled water and added dropwise to a ethanol suspension (40 mL) of H2L (0.178 g 0.5 mmol). The above mixture was mechanically stirred for 4 h at an ambient temperature and turned to dark brown solution. The obtained filtrate was then sealed with parafilm. The brown black crystals of the title compound were obtained after 1 week by slow evaporation.

Comment

Paeonol is a class of methyl ketone compound with relatively small steric hindrance, and the carbonyl group tends to condensed to generate Schiff base derivatives. That is, the reaction of paeonol (–CO–CH3) with amine can produces the compounds containing the Schiff base characteristic imine group (–RC=N–) [5, 6]. Although these compounds belong to ketone Schiff base, their reactivities are very high and can act as a multi-dentate ligand to create complexes with various structures and properties [7, 8]. However, related studies on complexes constructed from the paeonol Schiff base ligand is still largely unexplored. In order to explore the regulating effect of different types of Schiff base ligands on the structure of transition metal complexes, we report herein a new manganese complex based on the paeonol Schiff base ligand.

Single-crystal X-ray diffraction analyses results reveal that the asymmetric unit is formed by a mononuclear Mn(III) complex plus a water molecule. The coordination environment of Mn(III) is defined by N2O2 at the equatorial plane. The bond lengths distributions for Mn–O and Mn–N are in the range of 1.8667(15) and 1.8732(17) Å, 1.9813(19) and 1.9871(19) Å, respectively, suggesting the bond length of Mn–N is longer than that of Mn–O. The apical positions of the title compound are occupied by one chlorido ligand Cl(1) and one oxygen atom from the other halves of paeonol Schiff base ligand, which bond length of Mn(1)–O(1)i and Mn(1)–Cl(1) is 3.002(3) and 2.4338(8) Å, respectively (i: 1 − x, 1 − y, −z). We can clearly see the Jahn–Teller effect of the high-spin d4 metal center. The hexa-coordinate Mn(III) center possesses an elongated axis, furnishing a common distorted octahedral geometric structure. Besides, the bond angles around Mn(III) centers were also found to be similar with previously reported structures [9, 10].


Corresponding author: Yongfeng Qiao, Department of Chemical Science and Technology, Kunming University, Kunming 65200, Yunnan, P. R. China, E-mail:

Funding source: National Nature Science Foundation of China

Award Identifier / Grant number: 21761017

Funding source: Scientific Research Fund of Yunnan Education Department

Award Identifier / Grant number: 2021Y707, 2021Y709

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by Fund for Less Developed National Nature Science Foundation of China (No. 21761017) as well as Scientific Research Fund of Yunnan Education Department (2021Y707, 2021Y709).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Agilent Technologies. CrysAlisPRO Software System; Agilent Technologies UK Ltd: Oxford, UK, 2015.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2010, 42, 339–341.10.1107/S0021889808042726Search in Google Scholar

3. Sheldrick, G. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

4. Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. González-García, G., Álvarez, E., Marcos-Fernández, Á., Gutiérrez, J. A. Hexacoordinated oligosilanes from a hexacoordinated silicon(IV) complex containing an O,N,N,O Salen-type and thiocyanato-N Ligands. Inorg. Chem. 2009, 48, 4231–4238; https://doi.org/10.1021/ic8024364.Search in Google Scholar

6. Kachi-Terajima, C., Ishii, R., Tojo, Y., Fukuda, M., Kitagawa, Y., Asaoka, M., Miyasaka, H. Ferromagnetic exchange coupling in a family of MnIII salen-type schiff-base out-of-plane dimers. J. Phys. Chem. C 2017, 121, 12454–12468; https://doi.org/10.1021/acs.jpcc.7b03336.Search in Google Scholar

7. Wagler, J., Gerlach, D., Böhme, U., Roewer, G. Intramolecular interligand charge transfer in hexacoordinate silicon complexes. Organometallics 2006, 25, 2929–2933; https://doi.org/10.1021/om050816e.Search in Google Scholar

8. Buchwald, J. R., Kal, S., Civic, M. R., deJoode, I. M., Filatov, A. S., Dinolfo, P. H. Spin modulation and electrochemical behavior of a five-coordinate cobalt(III) salen complex. J. Coord. Chem. 2016, 69, 1695–1708; https://doi.org/10.1080/00958972.2016.1175001.Search in Google Scholar

9. Oki, A. R., Hodgson, D. J. Synthesis, characterization and catalytic properties of manganese(III) schiff base complexes. Inorg. Chim. Acta. 1990, 170, 65; https://doi.org/10.1016/s0020-1693(00)80410-7.Search in Google Scholar

10. Liu, D., Yu, G. The crystal structure of aqua-chlorido-6,6′-((ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dichlorophenolato-κ4N,N′,O,O′)manganese(III), C16H12Cl5MnN2O3. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 165–617 https://doi.org/10.1515/ncrs-2021-0016.Search in Google Scholar

Received: 2021-09-30
Accepted: 2021-11-05
Published Online: 2021-12-07
Published in Print: 2022-02-23

© 2021 Liping Zheng et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-3-yl)methylene)-3, 4-dihydronaphthalen-1(2H)-one, C17H15NO3
  4. Crystal structure of (E)-7-methoxy-2-((2-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1 (2H)-one, C18H17NO3
  5. The crystal structure of N 6,N 6′-di(pyridin-2-yl)-[2,2′-bipyridine]-6,6′-diamine, C20H16N6
  6. The crystal structure of {N 1,N 2-bis[2,4-dimethyl-6-(4-(tert-butyl)phenyl)(phenyl)methyl]acenaphthylene-1,2-diimino-κ2 N, N′}-dibromido-nickel(II) – dichloromethane(1/2), C64H64Br2Cl4N2Ni
  7. Synthesis and crystal structure of nonacarbonyltris[(2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-κ1 P)-2,2-dioxide]triruthenium(0) – acetonitrile (7/6), C25.71H32.57N9.86O15P3S3Ru3
  8. A new polymorph of 1-(4-nitrophenyl)-1H-benzimidazole (C13H9N3O2)
  9. The crystal structure of 2,2′-((1E,1′E)-(naphthalene-2,3 diylbis(azanylylidene)) bis(methanylylidene))bis(4-methylphenol), C26H22N2O2
  10. The crystal structure of bis(μ2-iodido)-bis(η6-benzene)-bis(iodido)-diosmium(II), C12H12I4Os2
  11. Redetermination of the crystal structure of bis{hydridotris(3,5-dimethylpyrazol-1-yl-κN 3)borato}copper(II), C30H44B2CuN12
  12. Crystal structure of (E)-3-((4-(tert-butyl)phenyl)thio)-4-hydroxypent-3-en-2-one, C15H20O2S
  13. Crystal structure of 2,2′-(p-tolylazanediyl)bis(1-phenylethan-1-one), C23H21NO2
  14. Redetermination of the crystal structure of the crystal sponge the poly[tetrakis(μ3-2,4,6-tris(pyridin-4-yl)-1,3,5-triazine)-dodecaiodidohexazinc(II) nitrobenzene solvate], C72H48I12N24Zn6⋅10(C6H5NO2)
  15. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(6-methylpyridin-2-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C44H45N5O2
  16. Crystal structure of (E)-7-fluoro-2-(3-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C17H12F2O1
  17. Crystal structure of tetrabutylammonium sulfanilate – 1-(diaminomethylene)thiourea (1/2)
  18. Crystal structure of [2,2′-{azanediyl)bis[(propane-3,1-diyl)(azanylylidene)methylylidene]} bis(3,5-dichlorophenolato)-κ2O,O′]-isothiocyanato-κN-iron(III), C21H19Cl4FeN4O2S
  19. Crystal structure of (4-chlorophenyl)(4-hydroxyphenyl)methanone, C13H9ClO2
  20. Crystal structure of 6,6′-((pentane-1,3-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dibromolphenolato-κ4 N,N′,O,O′)copper(II),) C19H16Br4CuN2O2
  21. Chlorido-(2,2′-(ethane-bis(5-methoxyphenolato))-κ4 N,N,O,O′)manganese(III) monohydrate, C19H18Cl2CuN2O2
  22. Crystal structure of 2,6-di-tert-butyl-4-(4-methoxybenzylidene)cyclohexa-2,5-dien-1-one, C22H28O2
  23. Crystal structure of [6,6′-(((2,2-dimethylpropane-1,3-diyl)bis(azanylylidene))bis(methanylylidene))bis(2-chlorophenolato)-κ4N,N′,O,O′]copper(II)
  24. Crystal structure of 2-chloro-3-((thiophen-2-ylmethyl)amino)naphthalene-1,4-dione, C30H20O4N2Cl2S2
  25. Crystal structure of bis{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl)borato-κN 3}manganese(II), C30H26B2F18MnN12
  26. Crystal structure of 1-(2-methylphenyl)-2-(2-methylbenzo[b]thienyl)-3,3,4,4,5,5-hexafluorocyclopent-ene, C21H14F6S
  27. Crystal structure of 2-(3-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  28. Crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium chloride – chloroform (1/1), C21H23Cl4I2N3
  29. Crystal structure of azido-k1 N-{6,6′-((((methylazanediyl)bis(propane-3,1-diyl))bis(azanylylidene))bis(methanylylidene))bis(2,4-dibromophenolato)k5 N,N′,N″,O,O′}cobalt(III)-methanol (1/1)), C21H23Br4CoN6O3
  30. The crystal structure of 2-(4-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  31. Crystal structure of 1,1′-(methane-1,1-diyl)bis(3-methyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C9H14F12N4P2
  32. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(pyren-1-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C54H48N4O2
  33. Crystal structure of poly[bis(μ2-2,6-bis(1-imidazoly)pyridine-κ2 N,N′)-bis(thiocyanato-κ1 N)copper(II)] dithiocyanate, C24H18CuN12S2
  34. Cones with a three-fold symmetry constructed from three hydrogen bonded theophyllinium cations that coat [FeCl4] anions in the crystal structure of tris(theophyllinium) bis(tetrachloridoferrate(III)) chloride trihydrate, C21H33Cl9Fe2N12O9
  35. Crystal structure of 14-O-[(4-(4-hydroxypiperidine-1-yl)-6-methylpyrimidine-2-yl)thioacetyl]-mutilin monohydrate, C32H49N3O6S
  36. The crystal structure of (E)-3-chloro-2-(2-(4-methylbenzylidene)hydrazinyl)pyridine, C13H12ClN3
  37. The crystal structure of 4-phenyl-4-[2-(pyridine-4-carbonyl)hydrazinylidene]butanoic acid, C16H15N3O3
  38. The crystal structure of 6-amino-5-carboxypyridin-1-ium pentaiodide monohydrate C6H9I5N2O3
  39. Crystal structure of bis(μ3-oxido)-bis(μ2-2-formylbenzoato-k2O:O′)-bis(2-(dimethoxymethyl)-benzoato-κO)-oktakismethyl-tetratin(IV)
  40. Crystal structure of 2-((E)-(((E)-2-hydroxy-4-methylbenzylidene) hydrazineylidene)methyl)-4-methylphenol, C16H16N2O2
  41. Crystal structure of (E)-amino(2-((5-methylfuran-2-yl)methylene)hydrazinyl) methaniminium nitrate monohydrate, C14H26N10O10
  42. The crystal structure of N′-(2-chloro-6-hydroxybenzylidene)thiophene-2-carbohydrazide monohydrate, C12H11ClN2O3S
  43. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)zinc(II)], C64H44Br4N8O8Zn2
  44. The crystal structure of catena-poly[(1-(4-carboxybenzyl)pyridin-1-ium-4-carboxylato-κ1O)-(μ2-oxalato-κ4 O:O′:O″:O‴)dioxidouranium(VI)], C16H11NO10U
  45. Crystal structure of 3-allyl-4-(2-bromoethyl)-5-(4-methoxyphenyl)-2-phenylfuran, C22H21BrO2
  46. Halogen bonds in the crystal structure of 4,3′:5′,4″-terpyridine — 1,3-diiodotetrafluorobenzene (1/1), C21H11F4I2N3
  47. Crystal structure of 2-(1H-indol-3-yl)ethan-1-aminium 2-(4-acetylphenoxy)acetate, C20H22N2O4
  48. Chalcogen bonds in the crystal structure of 4,7-dibromo-2,1,3-benzoselenadiazole, C6H2Br2N2Se
  49. The crystal structure of 1,4-bis((1H-benzimidazol-2-yl)methyl)-piperazine-2,5-dione dihydrate, C20H22N6O4
  50. The crystal structure of C19H20O8
  51. The crystal structure of KNa3Te8O18·5H2O exhibiting a 2[Te4O9]2− layer
  52. Erratum
  53. Erratum to: Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0380/html?lang=en&srsltid=AfmBOopdHwO2MJAHBOU5c6w7aovk6aj3dHUo-BYJXwWS8Zw2muE3eTop
Scroll to top button