Home Crystal structure of the nickel(II) complex aqua-(2,6-di(pyrazin-2-yl)-4,4′-bipyridine-κ3 N,N′,N′′)-(phthalato-κ2 O,O′)nickel(II) tetrahydrate, C26H26N6O9Ni
Article Open Access

Crystal structure of the nickel(II) complex aqua-(2,6-di(pyrazin-2-yl)-4,4′-bipyridine-κ3 N,N′,N′′)-(phthalato-κ2 O,O′)nickel(II) tetrahydrate, C26H26N6O9Ni

  • Wang Yu-Fang ORCID logo EMAIL logo and Shu-Qi Zhang
Published/Copyright: July 29, 2021

Abstract

C26H26N6O9Ni, triclinic, P 1 (no. 2), a = 11.2329(5) Å, b = 11.7535(5) Å, c = 12.1109(7) Å, α = 70.936(5)°, β = 75.684(4)°, γ = 63.266(4)°, V = 1340.13(13) Å3, Z = 2, R gt (F) = 0.0314, wR ref (F 2) = 0.0743, T = 290 K.

CCDC no.: 2084132

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Green block
Size: 0.18 × 0.18 × 0.18 mm
Wavelength: MoKα radiation (0.71073 Å)
μ: 0.79 mm−1
Diffractometer, scan mode: SuperNova, ω
θ max, completeness: 25.5°, >99%
N(hkl)measured, N(hkl)unique, R int: 25097, 4994, 0.033
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 4479
N(param) refined: 383
Programs: CrysAlisPRO [1], Olex2 [2], SHELX [3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Ni1 0.35072 (2) 0.12411 (2) 0.20228 (2) 0.02452 (8)
O1 0.29144 (14) 0.00449 (14) 0.34780 (12) 0.0329 (3)
O2 0.19155 (15) −0.13132 (15) 0.43954 (13) 0.0397 (4)
O3 0.37212 (14) 0.00281 (15) 0.10788 (14) 0.0390 (4)
O4 0.33128 (15) −0.13947 (14) 0.05772 (13) 0.0374 (4)
O5 0.40718 (15) 0.23714 (15) 0.04638 (13) 0.0414 (4)
H5A 0.4926 0.1996 0.0246 0.062*
H5B 0.3903 0.3138 0.0548 0.062*
N1 0.36508 (15) 0.21314 (15) 0.31269 (14) 0.0246 (4)
N2 0.55193 (16) 0.01222 (15) 0.24189 (15) 0.0272 (4)
N3 0.79606 (17) −0.13547 (17) 0.33220 (17) 0.0379 (4)
N4 0.15872 (16) 0.29271 (15) 0.20248 (14) 0.0255 (4)
N5 −0.06954 (18) 0.52281 (19) 0.21721 (19) 0.0448 (5)
N6 0.4074 (2) 0.51259 (19) 0.70930 (17) 0.0420 (5)
C25 0.10765 (19) 0.02286 (18) 0.26608 (16) 0.0238 (4)
C1 0.26134 (19) 0.31988 (18) 0.33826 (17) 0.0253 (4)
C2 0.2670 (2) 0.3784 (2) 0.41770 (18) 0.0295 (5)
H2 0.1944 0.4531 0.4342 0.035*
C3 0.38219 (19) 0.32516 (19) 0.47303 (17) 0.0268 (4)
C4 0.48814 (19) 0.21200 (19) 0.44689 (17) 0.0270 (4)
H4 0.5657 0.1727 0.4836 0.032*
C5 0.47601 (18) 0.15946 (18) 0.36584 (17) 0.0247 (4)
C6 0.58125 (18) 0.04232 (18) 0.32681 (17) 0.0248 (4)
C7 0.7028 (2) −0.0332 (2) 0.37236 (19) 0.0318 (5)
H7 0.7197 −0.0119 0.4327 0.038*
C8 0.7670 (2) −0.1607 (2) 0.2453 (2) 0.0393 (5)
H8 0.8311 −0.2299 0.2137 0.047*
C9 0.6455 (2) −0.0885 (2) 0.19992 (19) 0.0335 (5)
H9 0.6289 −0.1104 0.1397 0.040*
C11 0.14592 (19) 0.36643 (19) 0.27284 (17) 0.0265 (4)
C10 0.0318 (2) 0.4803 (2) 0.2789 (2) 0.0401 (5)
H10 0.0256 0.5293 0.3284 0.048*
C13 −0.0555 (2) 0.4492 (2) 0.1484 (2) 0.0381 (5)
H13 −0.1242 0.4750 0.1040 0.046*
C12 0.0575 (2) 0.3355 (2) 0.14030 (18) 0.0315 (5)
H12 0.0632 0.2875 0.0901 0.038*
C14 0.39157 (19) 0.38853 (19) 0.55568 (17) 0.0268 (4)
C18 0.3224 (2) 0.5229 (2) 0.54338 (19) 0.0340 (5)
H18 0.2690 0.5743 0.4828 0.041*
C17 0.3332 (2) 0.5794 (2) 0.6209 (2) 0.0389 (5)
H17 0.2859 0.6697 0.6110 0.047*
C16 0.4742 (2) 0.3831 (2) 0.7211 (2) 0.0417 (6)
H16 0.5266 0.3344 0.7827 0.050*
C15 0.4701 (2) 0.3177 (2) 0.64765 (18) 0.0341 (5)
H15 0.5190 0.2273 0.6593 0.041*
C20 0.14942 (19) 0.01603 (18) 0.14890 (17) 0.0253 (4)
C21 0.0533 (2) 0.0687 (2) 0.07194 (19) 0.0338 (5)
H21 0.0800 0.0608 −0.0052 0.041*
C22 −0.0813 (2) 0.1327 (2) 0.1085 (2) 0.0384 (5)
H22 −0.1444 0.1696 0.0557 0.046*
C23 −0.1216 (2) 0.1414 (2) 0.2235 (2) 0.0365 (5)
H23 −0.2118 0.1859 0.2480 0.044*
C24 −0.0285 (2) 0.0843 (2) 0.30248 (19) 0.0322 (5)
H24 −0.0571 0.0870 0.3809 0.039*
C26 0.20419 (19) −0.03962 (19) 0.35746 (16) 0.0259 (4)
C19 0.2951 (2) −0.04567 (19) 0.10260 (16) 0.0270 (4)
O7 0.3033 (2) 0.50275 (19) 1.04469 (19) 0.0786 (7)
H7A 0.2585 0.5554 1.0887 0.118*
H7B 0.3462 0.5404 0.9898 0.118*
O8 0.2045 (3) 0.6817 (2) 1.1769 (2) 0.0865 (8)
H8A 0.1639 0.6998 1.2429 0.097 (13)*
H8B 0.2437 0.7274 1.1407 0.105 (15)*
O6 0.4292 (2) 0.63299 (19) 0.85914 (16) 0.0630 (5)
H6A 0.4164 0.6019 0.8109 0.095*
H6B 0.5095 0.5898 0.8756 0.095*
O9 0.06329 (17) 0.72532 (18) 1.39954 (17) 0.0593 (5)
H9A −0.0184 0.7705 1.3875 0.086 (11)*
H9B 0.0806 0.7784 1.4169 0.088 (12)*

Source of material

A mixture of 2,6-di(pyrazin-2-yl)-4,4′-bipyridine (py-pzpypz; 0.1 mmol), phthalic acid (0.1 mmol), Ni(OAc)2·4H2O (0.1 mmol) and H2O (10 mL) was stirred for 30 min, and the pH value of the solution was adjusted to about 4 with 1 M KOH. Then the mixture was transferred to a 25 mL Teflon-lined stainless steel vessel and heated at 140 °C for three days, and then cooled to room temperature over 40 h. Green block crystals of the title compound were obtained. Anal. Calcd. for C26H26NiN6O9 (%): C, 49.95, H 4.19, N 13.44. Found: C 49.76, H 4.21, N 13.40.

Experimental details

Using Olex2, the structure was solved with the SIR2004 structure solution program using Direct Methods and refined with the ShelXL refinement package using least squares minimisation.

Comment

Coordination compounds or frameworks have been receiving extensive attention not only for their aesthetics of structures but also for their potential applications, such as photoluminescence, gas storage, catalysis, etc. [4], [5], [6]. The construction of the compounds involve a variety of building blocks (metal ions, organic ligands, counter anions, solvents, etc.) [7], [8]. The carboxylate ligands have been extensively employed due to their versatile coordination conformations and strong coordination ability. Moreover, carboxylate ligands are usually utilized as hydrophilic groups to form hydrogen bonds. Hydrogen bonds often play a dominant role in crystal engineering because of their selectivity and directionality to control the design in the synthesis of assembiles that contain N-based ligands and carboxylates [9]. The pyrazine analogues ligands have received some attention on account of the weaker σ-donor and stronger π-acceptor nature of pyrazine [10], [11]. This contribution is part of a study on 4-(4-pyridyl)-2,5-dipyrazylpyridine [12], [13], [14]. The interesting feature of the ligand is that it is able to a chelating coordination and a monodentate one.

The ORPEP-type drawing of the title compound is shown in the Figure. The structure consists of the title complex and four isolated water molecules. The center Ni(II) ion resides in a distorted octahedron center and is coordinated by three nitrogen atoms from a py-pzpypz ligand and two oxygen atoms from the phthalate ligand and one coordinated water molecular. The equatorial plane is composed of three nitrogen atoms and one oxygen atom (N1, N2, N4, O3), while atoms O1 and O5 occupy the axial positions. The average Ni–N bond length is 2.1071(16) Å, and the Ni–O bond lengths are in a range of 2.0045(14)–2.0638(15) Å, which are comparable to those found in other reported Ni(II) compounds [15], [16].

The intermolecular hydrogen bonds occur between two oxygen atoms from coordinated water molecules and non-coordinated water molecules and between uncoordinated water molecule. The intermolecular hydrogen bonds also occur between two oxygen atoms from coordinated water molecule and one carboxylate group and between two oxygen atoms from non-coordinated water molecule and a carboxylate group. Thereby, the title compound can be viewed as a three-dimensional architecture extended via these hydrogen bonds.


Corresponding author: Wang Yu-Fang, College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function–Oriented Porous Materials, Luoyang Normal University, Luoyang, Henan 471934, P. R. China, E-mail:

Funding source: Program for Innovative Research Team (in Science and Technology) in Universities of Henan Province

Award Identifier / Grant number: 21IRTSTHN004

Funding source: Science and Technology Project of Henan Province

Award Identifier / Grant number: 202102110210

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Program for Innovative Research Team (in Science and Technology) in Universities of Henan Province (No. 21IRTSTHN004) and the Science and Technology Project of Henan Province (No. 202102110210).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Agilent Technologies. CrysAlisPRO Software System, version 1.171.38.41r; Agilent Technologies UK Ltd: Oxford, UK, 2011.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8. https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

4. Yang, X. G., Ma, L. F., Yan, D. P. Facile synthesis of 1D organic–inorganic perovskite micro-belts with high water stability for sensing and photonic applications. Chem. Sci. 2019, 10, 4567–4572. https://doi.org/10.1039/c9sc00162j.Search in Google Scholar PubMed PubMed Central

5. Zhang, L., Zou, C., Zhao, M., Jiang, K., Lin, R. B., He, Y. B., Wu, C. D., Cui, Y. J., Chen, B. L., Qian, G. D. Doubly interpenetrated metal-organic framework for highly selective C2H2/CH4 and C2H2/CO2 separation at room temperature. Cryst. Growth Des. 2016, 16, 7194–7197. https://doi.org/10.1021/acs.cgd.6b01382.Search in Google Scholar

6. Zhao, Y., Yang, X. G., Lu, X. M., Yang, C. D., Fan, N. N., Yang, Z. T., Wang, L. Y., Ma, L. F. {Zn6} cluster based metal-organic framework with enhanced room-temperature phosphorescence and optoelectronic performances. Inorg. Chem. 2019, 58, 6215–6221. https://doi.org/10.1021/acs.inorgchem.9b00450.Search in Google Scholar PubMed

7. Mukherjee, S., Desai, A. V., Ghosh, S. K. Potential of metal-organic frameworks for adsorptive separation of industrially and environmentally relevant liquid mixtures. Coord. Chem. Rev. 2018, 367, 82–126. https://doi.org/10.1016/j.ccr.2018.04.001.Search in Google Scholar

8. He, C. J., Chen, J. Q. Synthesis, characterization, and crystal structure of one zinc(II) complex with 4-hydroxypyridine-2,6-dicarboxylic acid and 4,4′bipyridine. Russ. J. Coord. Chem. 2014, 40, 659–663. https://doi.org/10.1134/s1070328414090048.Search in Google Scholar

9. Du, M., Zhang, Z. H., Zhao, X. J. Cocrystallization of trimesic acid and pyromellitic acid with bent dipyridines. Cryst. Growth Des. 2005, 5, 1247–1254. https://doi.org/10.1021/cg0495680.Search in Google Scholar

10. Steel, P. J. Aromatic nitrogen heterocycles as bridging ligands; a survey. Coord. Chem. Rev. 1990, 106, 227–265. https://doi.org/10.1016/0010-8545(60)80005-7.Search in Google Scholar

11. Miller, R. G., Brooker, S. Spin crossover, reversible redox, and supramolecular interactions in 3d complexes of 4-(4-pyridyl)-2,5-dipyrazyl-pyridine. Inorg. Chem. 2015, 54, 5398–5410. https://doi.org/10.1021/acs.inorgchem.5b00428.Search in Google Scholar PubMed

12. Miller, R. G., Warren, M. R., Allan, D. R., Brooke, S. Direct crystallographic observation of CO2 captured in zigzag channels of a copper(I) metal-organic framework. Inorg. Chem. 2020, 59, 6376–6381. https://doi.org/10.1021/acs.inorgchem.0c00471.Search in Google Scholar PubMed

13. Miller, R. G., Southon, P. D., Kepert, C. J., Brooker, S. Commensurate CO2 capture, and shape selectivity for HCCH over H2CCH2, in zigzag channels of a robust Cu1(CN)(L) metal-organic framework. Inorg. Chem. 2016, 55, 6195–6200. https://doi.org/10.1021/acs.inorgchem.6b00813.Search in Google Scholar PubMed

14. Wang, Y. F., Zhang, Y. H. Crystal structure of catena-poly [(μ2-isophthalato-κ2O:O′)-(2,5-di(pyrazin-2-yl)-4,4′-bipyridine-κ2N,N′,N″)zinc(II)] — water (2/5), C26H21N6O6.5Zn. Z. Kristallogr. N. Cryst. Struct. 2019, 234, 1043–1045. https://doi.org/10.1515/ncrs-2019-0250.Search in Google Scholar

15. Li, J. X., Du, Z. X., Xiong, L. Y., Fu, L. L., Bo, W. B. Supramolecular isomerism in two nickel(II) coordination polymers constructed with the flexible 2-carboxyphenoxyacetate linker: syntheses, structure analyses and magnetic properties. J. Solid State Chem. 2021, 293, 121799–121808. https://doi.org/10.1016/j.jssc.2020.121799.Search in Google Scholar

16. Wang, Y. F., Li, S., Wang, L. Y. Crystal structures and magnetic properties of two isomorphic nickel(II) and cobalt(II) coordination polymers-based nitrogen-heterocyclic tricarbolylate ligands. Trans. Met. Chem. 2020, 45, 561–568. https://doi.org/10.1007/s11243-020-00408-6.Search in Google Scholar

Received: 2021-04-13
Accepted: 2021-05-17
Published Online: 2021-07-29
Published in Print: 2021-09-27

© 2021 Wang Yu-Fang and Shu-Qi Zhang, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of [aqua-(4-iodopyridine-2,6-dicarboxylato-κ3 O,N,O′)-(1,10-phenanothroline-κ2 N,N′)copper(II)] dihydrate, C19H16O7N3CuI
  4. The crystal structure of tetrakis(1-isopropyl-1H-imidazolium) octamolybdate, C24H44Mo8N8O26
  5. Crystal structure of catena-poly[bis(µ2-3,5-bis(1-imidazolyl)pyridine-κ2 N:N′)-(µ2-3-nitrophthalato-k3 O,O′:O″)cadmium(II)] dihydrate, C30H25N11O8Cd
  6. The crystal structure of diaqua-bis(2-(3-(1H-pyrazol-4-yl)-1H-1,2,4-triazol-5-yl)pyridine-κ2 N:N′)-bis(3,5-dicarboxybenzoato-κ1 O)cobalt(II), C38H30CoN12O14
  7. Crystal structure of the nickel(II) complex aqua-(2,6-di(pyrazin-2-yl)-4,4′-bipyridine-κ3 N,N′,N′′)-(phthalato-κ2 O,O′)nickel(II) tetrahydrate, C26H26N6O9Ni
  8. The crystal structure of 1-[5-(2-fluorophenyl)-1-(pyridine-3-sulfonyl)-1H-pyrrol-3-yl]-N-methylmethanaminium 3-carboxyprop-2-enoate, C21H20FN3O6S
  9. The crystal structure of 1,2-bis(4-pyridyl)ethane - 4,4-dihydroxydiphenylmethane (1/1), C25H21N2O2
  10. Crystal structure of bis(2-((E)-5-chloro-2-hydroxybenzylidene)hydrazineyl)methaniminium trifluoroacetate dihydrate, C34H36Cl4N10O12
  11. Crystal structure of 1-cyclopropyl-7-ethoxy-6,8-difluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid, C15H13F2NO4
  12. Crystal structure of methyl 3-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)benzoate, C18H15BN2O2
  13. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-2-hydroxybenzohydrazide, C14H11ClN2O3
  14. Crystal structure of Al-rich fluorophlogopite, K1.0(Mg2.8Al0.2)(Si2.8Al1.2)O10F2
  15. The crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium hexafluoridoantimonate(V), C20H22F6I2N3Sb
  16. Crystal structure of tris(3-iodopyridin-1-ium) catena-poly[(hexachlorido-κ1 Cl)-(μ2-trichlorido-κ2 Cl:Cl)diantimony(III)], C15H15Cl9I3N3Sb2
  17. Crystal structure of methyl 2-(1H-naphtho[1,8-de][1.3.2]diazaborinin-2(3H-yl)benzoate C18H15BN2O2
  18. The crystal structure of 1,8-bis(4-methoxybenzoyl)naphthalene-2,7-diyl dibenzoate, C40H28O8
  19. Crystal structure of 2-bromo-1,3,6,8-tetramethylBOPHY (BOPHY = bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine), C14H15B2BrF4N4
  20. The crystal structure of (E)-3-chloro-2-(2-(2-fluorobenzylidene)hydrazinyl)pyridine, C12H9ClFN3
  21. Crystal structure of bis(µ2- 4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(4-iodopyridine-2,6-dicarboxylato-κ3O:N:O′)-bis(µ2-1-(4-pyridyl)piperazine-κ2N:N′)-hexa-aqua-tetra-copper(II), C46H46Cu4I4N10O22
  22. Crystal structure of poly[diaqua-(μ2-2,5-dihydroxyterephthalato-κ2O:O′)(μ2-bis(4-pyridylformyl)piperazine-κ2N:N′)cadmium(II)] dihydrate, C24H28CdN4O12
  23. Crystal structure of poly[aqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-(μ3-2,3,5,6-tetrafluoroterephthalato-κ3O:O′:O′′)cadmium(II)], C17H14N4O5F4Cd
  24. Crystal structure of 6-(quinolin-8-yl)benzo[a]phenanthridin-5(6H)-one, C26H16N2O
  25. The crystal structure of aqua-bis(6-chloropicolinato-κ2N,O)copper(II), C12H8Cl2N2O5Cu
  26. Crystal structure of catena-poly[diaqua-bis(μ2-4,4′-bipyridyl-κ2N:N′) disilver(I)] 4-oxidopyridine-3-sulfonate trihydrate, C25H29Ag2N5O9S
  27. The crystal structure of 4-(3-bromophenyl)pyrimidin-2-amine, C10H8BrN3
  28. Crystal structure of 6-oxo-4-phenyl-1-propyl-1,6-dihydropyridine-3-carbonitrile, C15H14N2O
  29. Crystal structure of 4-(2,2-difluoroethyl)-2,4-dimethyl-6-(trifluoromethyl)isoquinoline-1,3(2H,4H)-dione, C14H12F5NO2
  30. Crystal structure of dibromido-(1-methyl-1H-imidazole-κ1N)-(3-(3-methyl-1H-imidazol-3-ium-1-yl)propanoato-κ1O)zinc(II), C11H16Br2N4O2Zn
  31. The crystal structure of 1,1′-(((2 (dimethylamino)ethyl)azanediyl)bis(methylene)) bis(naphthalen-2-olato-κ4 N,N′,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)- titanium(IV) ─ dichloromethane (2/1), C33H29N3O6Ti
  32. The layered crystal structure of bis(theophyllinium) hexachloridostannate (IV), C14H18N8O8SnCl6
  33. The crystal structre of 3-(1-ethenyl-1H-imidazol-3-ium-3-yl)propane-1-sulfonate, C8H12N2O3S
  34. Synthesis and crystal structure of di-tert-butyl 1″-acetyl-2,2″,9′-trioxo-4a′,9a′-dihydro-1′H,3′H,9′H-dispiro[indoline-3,2′-xanthene-4′,3″-indoline]-1,3′-dicarboxylate, C39H38N2O9
  35. The crystal structure of 4-chloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H9ClN2O2
  36. The crystal structure of 1-fluoro-4-(p-tolylethynyl)benzene, C15H11F
  37. The crystal structure of bis[4-bromo-2-(1H-pyrazol-3-yl) phenolato-κ2N,O] copper(II), C18H12Br2CuN4O2
  38. The crystal structure of poly[(μ 3-imidazolato-κ 3 N:N:N′)(tetrahydrofuran- κ 1 O)lithium(I)], C7H11LiN2O
  39. Crystal structure of N′,N′′′-((1E,1′E)-(propane-2,2-diylbis(1H-pyrrole-5,2diyl))bis(methaneylylidene))di(nicotinohydrazide) pentahydrate, C25H24N8O2·5H2O
  40. Crystal structure of 3-(2-ethoxy-2-oxoethyl)-1-ethyl-1H-imidazol-3-ium hexafluoridophos-phate(V), C9H15F6N2O2P
  41. Crystal structure of (1,10-phenanthroline-κ2N,N′)-bis(3-thiophenecarboxylato-κ2O,O′)copper(II), C22H14N2O4S2Cu
  42. The crystal structure of 2-amino-3-carboxypyridin-1-ium iodide hemihydrate, C6H8IN2O2.5
  43. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-2-yl)methylene)-tetralone, C18H17NO3
  44. The crystal structure of [μ-hydroxido-bis[(5,5′-dimethyl-2,2′-bipyridine-κ2N,N′)-tricarbonylrhenium(I)] bromide hemihydrate, C30H26N4O9Re2Br
  45. The crystal structure of 2,5-bis(3,5-dimethylphenyl)thiazolo[5,4-d]thiazole, C20H18N2S2
  46. The crystal structure of 5-benzoyl-1-[(E)-(4-fluorobenzylidene)amino]-4-phenylpyrimidin-2(1H)-one, C24H16FN3O2
  47. Crystal structure of monocarbonyl(N-nitroso-N-oxido-phenylamine-κ 2 O,O′)(tricyclohexylphosphine-κP)rhodium(I), C25H39N2O3PRh
  48. Crystal structure of poly[bis[μ3-1,3,5-tris[(1H-imidazol-1-yl)methyl]benzene-κ3N:N′:N″]nickel(II)] hexafluorosilicate, C36H36N12NiSiF6
  49. The crystal structure of 13-(pyrazole-1-yl-4-carbonitrile)-matrine, C19H25N5O
  50. Crystal structure of 3,5-bis((E)-4-methoxy-2-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C24H21F6NO3
  51. The crystal structure of N,N′-(Disulfanediyldi-2,1-phenylene)di(6′-methylpyridine)-2-carboxamide, C26H22N4O2S2
  52. Crystal structure of (E)-7-fluoro-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2
  53. Crystal structure of ethyl 1-(4-fluorophenyl)-4-phenyl-1H-pyrrole-3-carboxylate, C19H16FNO2
  54. The crystal structure of cis-diaqua-bis (N-butyl-N-(pyridin-2-yl)pyridin-2-amine-κ2N,N′)cobalt(II)] dichloride trihydrate, C28H44Cl2N6O5Co
  55. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C18H17NO3
  56. Crystal structure of (E)-2-((3-fluoropyridin-4-yl)methylene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  57. The crystal structure of 6-bromohexanoic acid, C6H11BrO2
  58. The crystal structure of 4-chloro-thiophenol, C6H5ClS
  59. The crystal structure of 4-bromobenzyl chloride, C7H6BrCl
  60. The crystal structure of di-tert-butyl dicarbonate, C10H18O5
  61. The crystal structure of (2-(4-chlorophenyl)-5-methyl-1,3-dioxan-5-yl)methanol, C12H15ClO3
  62. The crystal structure of the co-crystal: 2-hydroxybenzoic acid – N′-(butan-2-ylidene)pyridine-4-carbohydrazide, C10H13N3O·C7H6O3
  63. Crystal structure and anti-inflammatory activity of (E)-7-fluoro-2-((5-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  64. Crystal structure of (E)-7-fluoro-2-((6-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  65. Crystal structure of 1,1′-(butane-1,4-diyl)bis(3-propyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C32H56F24N8P4
  66. The crystal structure of dichlorido-bis(3-methyl-3-imidazolium-1-ylpropionato-κ2)-cadmium(II), C14H20CdCl2N4O4
  67. Crystal structure of 1-(2-cyanobenzyl)-3-cyano-4-phenyl-4-(2-cyanobenzyl)-1,4-dihydropyridine monohydrate, C56H42N8O
  68. The crystal structure of 3-(carboxymethyl)-1-ethenyl-1H-imidazol-3-ium chloride, C7H9N2O2Cl
  69. The crystal structure of adamantylmethoxydiphenylsilane, C23H28OSi
  70. Redetermination of the crystal structure of (2E,4Z,13E,15Z)-3,5,14,16-tetramethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosa-1(22),2,4,7,9,11,13,15,18,20-decaene, C22H24N4
  71. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C17H15NO3
  72. Crystal structure of catena-poly[diaqua-bis(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2 N:N′)cobalt(II)] dinitrate, C18H28N10O8Co
Downloaded on 15.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0141/html?lang=en
Scroll to top button