Startseite Synthesis and crystal structure of the novel chiral acetyl-3-thiophene-5-(9-anthryl)-2-pyrazoline, C23H18N2OS
Artikel Open Access

Synthesis and crystal structure of the novel chiral acetyl-3-thiophene-5-(9-anthryl)-2-pyrazoline, C23H18N2OS

  • Rabia Usman , Arshad Khan ORCID logo EMAIL logo , Moamen S. Refat und Nongyue He EMAIL logo
Veröffentlicht/Copyright: 6. Mai 2021

Abstract

C23H18Cl4N2OS, orthorhombic, P212121 (no. 19), a = 16.872(3) Å, b = 10.414(2) Å, c = 10.589(2) Å, V = 1860.5(6) Å3, Z = 4, Rgt(F) = 0.0588, wRref(F2) = 0.1464, T = 293 K.

CCDC no.: 2079409

The molecular structure is shown in the Figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colorless block
Size0.20 × 0.20 × 0.15 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.19 mm−1
Diffractometer, scan mode:Enraf Nonius TurboCAD4, ω
θmax, completeness:25.4°, >99%
N(hkl)measured, N(hkl)unique, Rint:3799, 3418, 0.046
Criterion for Iobs, N(hkl)gt:Iobs > 2σ(Iobs), 2373
N(param)refined:247
Programs:CAD4 [1], [2], Shelx [3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
S0.93740 (16)0.45333 (15)0.19170 (9)0.0508 (5)
O0.6173 (4)0.4287 (4)0.5315 (2)0.0615 (12)
N10.7410 (4)0.3942 (4)0.4262 (3)0.0395 (12)
N20.8068 (4)0.4369 (4)0.3582 (3)0.0407 (11)
C10.7081 (5)0.0807 (5)0.5277 (3)0.0385 (13)
C20.8094 (6)0.0897 (6)0.5845 (4)0.0528 (16)
H2B0.87120.15260.57920.063*
C30.8167 (7)0.0076 (7)0.6465 (4)0.065 (2)
H3A0.88250.01670.68330.078*
C40.7281 (8)−0.0898 (7)0.6561 (4)0.073 (2)
H4A0.7357−0.14480.69880.088*
C50.6317 (7)−0.1046 (6)0.6040 (4)0.0607 (19)
H5A0.5729−0.16960.61100.073*
C60.6188 (6)−0.0208 (5)0.5377 (4)0.0469 (15)
C70.5203 (6)−0.0370 (6)0.4829 (4)0.0540 (17)
H7A0.4604−0.10090.49110.065*
C80.5089 (5)0.0400 (6)0.4159 (3)0.0447 (14)
C90.4101 (6)0.0184 (6)0.3592 (4)0.0587 (18)
H9A0.3520−0.04710.36720.070*
C100.3994 (6)0.0916 (7)0.2940 (4)0.0635 (19)
H10A0.33380.07710.25770.076*
C110.4879 (6)0.1897 (7)0.2811 (4)0.0573 (18)
H11A0.48130.23910.23570.069*
C120.5828 (5)0.2135 (6)0.3340 (3)0.0455 (15)
H12A0.64030.27860.32350.055*
C130.5979 (5)0.1424 (5)0.4053 (3)0.0372 (13)
C140.6937 (5)0.1645 (5)0.4633 (3)0.0375 (13)
C150.7908 (5)0.2717 (5)0.4557 (3)0.0406 (14)
H15A0.82820.28630.50830.049*
C160.9009 (6)0.2461 (6)0.3981 (3)0.0495 (16)
H16A0.98280.24440.42550.059*
H16B0.88870.16660.37060.059*
C170.8940 (5)0.3553 (5)0.3416 (3)0.0380 (13)
C180.9768 (5)0.3645 (5)0.2727 (3)0.0409 (14)
C191.0905 (6)0.3020 (6)0.2620 (4)0.0542 (16)
H19A1.12610.24700.29900.065*
C201.1475 (6)0.3310 (6)0.1881 (4)0.0597 (18)
H20A1.22650.29940.17170.072*
C211.0746 (7)0.4094 (6)0.1440 (4)0.0559 (17)
H21A1.09670.43640.09330.067*
C220.6640 (6)0.4689 (6)0.4698 (4)0.0450 (14)
C230.6379 (7)0.5997 (6)0.4395 (4)0.066 (2)
H23A0.63040.59770.38280.099*
H23B0.70720.65460.45430.099*
H23C0.55920.63050.46210.099*

Source of material

Acetyl-3-thiophene-5-(9-anthryl)-2-pyrazoline (ATAP) was prepared by a reported method [5, 6], in 80% yield. An ATAP single crystal was grown from ethyl acetate solution (10 mL) by slow evaporation at room temperature resulting in needle crystals after three days.

Experimental details

The hydrogen atoms were placed in calculated positions and refined using a riding model, with C–H = 0.96 Å (methylene) with Uiso(H) = 1.2 Ueq(C).

Comment

Pyrazoline is a heterocyclic aromatic compound identified by a five-member ring system featuring three carbon atoms and two nitrogen atoms demonstrating strong blue fluorescence and good candidates in hole-transporters [7], [8]. Employing crystal engineering rules, pyrazoline derivatives have extensively employed as host materials to modulate their luminescence characteristics, which in turn have potential applications in the fields of light-emitting diode owing to their promising optoelectronic applications [9], [10], [11]. Furthermore, pyrazoline containing compounds has been extensively reported exhibiting remarkable bioactivities [12], [13], [14], [15].

The title compound crystallizes in the orthorhombic system with space group P212121. In the structure, the homochiral molecules associate through weak C16–H16⋯O hydrogen bonds forming a homochiral chain. The two neighboring anthracene rings form an arrangement with a centroid–centroid distance and an interplanar separation of 6.703 and 6.116 Å indicating no π–π interaction while there is a weak π–π interaction between the anthracene ring of one molecule and the pyrazoline ring of a neighboring molecule with a centroid–centroid distance of 3.819 Å and an interplanar separation of 3.688 Å. Additionally, another hydrogen bond (C–H⋯N) links molecules to form another homochiral chain. The two chains are stacked in a parallel fashion.


Corresponding authors: Arshad Khan and Nongyue He, State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing210096, P. R. China; and School of Materials Science and Engineering, Hunan University, Changsha110016, P. R. China, E-mail: (A. Khan), nyhe1958@163.com (N. He)
Corresponding authors: Arshad Khan and Nongyue He, State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, P. R. China; and School of Materials Science and Engineering, Hunan University, Changsha 110016, P. R. China, E-mail: arshadkhan@seu.edu.cn (A. Khan), nyhe1958@163.com (N. He)

Funding source: National Key Research and Development Program of China

Award Identifier / Grant number: 2017YFA0205301

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 61701176

Funding source: Taif University

Award Identifier / Grant number: TURSP-2020/01

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: National Key Research and Development Program of China (2017YFA0205301), NSFC (61701176), Taif University Researches Supporting Project (TURSP-2020/01), Taif University, Taif, Saudi Arabia.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article

References

1. CAD4 Express Software. Enraf-Nonius: Delft, The Netherlands, 1994.Suche in Google Scholar

2. Harms, K., Wocadlo, S. XCAD4 – CAD4 Data Reduction. Program for Processing CAD-4 Diffractometer Data; University of Marburg: Germany, 1995.Suche in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System. Ver. 4.0; Crystal Impact: Bonn, Germany, 2015.Suche in Google Scholar

5. Usman, R., Khan, A., Wang, M. Study of H-bonded assemblies of the solvates of anthracene derivatives: guest effect on the crystal symmetry and spectroscopic properties. Supramol. Chem. 2017, 29, 497–505; https://doi.org/10.1080/10610278.2017.1284324.Suche in Google Scholar

6. Usman, R., Khan, A., Sun, H., Wang, M. Study of charge transfer interaction modes in the mixed donor-acceptor cocrystals of pyrene derivatives and TCNQ: a combined structural, thermal, spectroscopic, and Hirshfeld surfaces analysis. J. Solid State Chem. 2018, 266, 112–120; https://doi.org/10.1016/j.jssc.2018.07.009.Suche in Google Scholar

7. Varghese, B., Al-Busafi, S. N., Suliman, F. O., Al-Kindy, S. M. Z. Unveiling a versatile heterocycle: pyrazoline – a review. RSC Adv. 2017, 7, 46999–47016; https://doi.org/10.1039/c7ra08939b.Suche in Google Scholar

8. Sano, T., Fujii, T., Nishio, Y., Hamada, Y., Shibata, K., Kuroki, K. Pyrazoline dimers for hole transport materials in organic electroluminescent devices. Jpn. J. Appl. Phys. 1995, 34, 3124–3127; https://doi.org/10.1143/jjap.34.3124.Suche in Google Scholar

9. Khan, A., Wang, M., Usman, R., Sun, H., Du, M., Xu, C. Molecular marriage via charge transfer interaction in organic charge transfer co-crystals toward solid-state fluorescence modulation. Cryst. Growth Des. 2017, 17, 1251–1257; https://doi.org/10.1021/acs.cgd.6b01636.Suche in Google Scholar

10. Khan, A., Wang, M., Usman, R., Lu, J., Sun, H., Du, M., Zhang, R., Xu, C. Organic charge-transfer complexes for the selective accommodation of aromatic isomers using anthracene derivatives and TCNQ. New J. Chem. 2016, 40, 5277–5284; https://doi.org/10.1039/c5nj03442f.Suche in Google Scholar

11. Feng, Q., Wang, M., Xu, C., Khan, A., Wu, X., Lu, J., Wei, X. Investigation of molecular arrangements and solid-state fluorescence properties of solvates and cocrystals of 1-acetyl-3-phenyl-5-(9-anthryl)-2-pyrazoline. CrystEngComm 2014, 16, 5820–5826; https://doi.org/10.1039/c3ce42210k.Suche in Google Scholar

12. Abunada, N. M., Hassaneen, H. M., Kandile, N. G., Miqdad, O. A. Synthesis and biological activity of some new pyrazoline and pyrrolo [3,4-c] pyrazole-4,6-dione derivatives: reaction of nitrilimines with some dipolarophiles. Molecules 2008, 13, 1011–1024; https://doi.org/10.3390/molecules13041011.Suche in Google Scholar

13. Ahmad, A., Husain, A., Khan, S. A., Mujeeb, M., Bhandari, A. Synthesis, antimicrobial and antitubercular activities of some novel pyrazoline derivatives. J. Saudi Chem. Soc. 2016, 20, 577–584; https://doi.org/10.1016/j.jscs.2014.12.004.Suche in Google Scholar

14. Akbas, E., Berber, I., Sener, A., Hasanov, B. Synthesis and antibacterial activity of 4-benzoyl-1-methyl-5-phenyl-1H-pyrazole-3-carboxylic acid and derivatives. Farmaco 2005, 60, 23–26; https://doi.org/10.1016/j.farmac.2004.09.003.Suche in Google Scholar

15. Bailey, D. M., Hansen, P. E., Hlavac, A. G., Baizman, E. R., Pearl, J., DeFelice, A. F., Feigenson, M. E. 3,4-Diphenyl-1H-pyrazole-1-propanamine antidepressants. J. Med. Chem. 1985, 28, 256–260; https://doi.org/10.1021/jm00380a020.Suche in Google Scholar

Received: 2021-04-06
Accepted: 2021-04-22
Published Online: 2021-05-06
Published in Print: 2021-07-27

© 2021 Rabia Usman et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of poly[(μ2-aqua-tetraaqua-(μ3-glutarato-κ4O,O′:O′:O′′)-(μ5-glutarato-κ6O:O,O′:O′:O′′:O′′′)distrontium(II)], C10H22O13Sr2
  4. The crystal structure of acetato-κ1O-{(2-(2-(2-aminophenoxy)ethoxy)phenyl)(4-oxo-4-phenylbut-2-en-2-yl)amido-κ2N,N′,O}copper(II), C26H26CuN2O5
  5. Crystal structure of dimethanolato-k2O:O-bis(1-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κN)-bis(thiocyanato-κN)dicopper(II), C34H32Cu2N12O2S2
  6. Crystal structure of poly[diaqua-bis(μ2-3-(pyrimidin-5-yl)benzoato-κ2N:O)cobalt(II)] dihydrate, [Co(C11H11O2N2)2(H2O)2]
  7. Crystal structure of bis(3,3-dimethyl-1-phenylbut-1-en-2-yl)(trimethylsilyl)amido-k1N)zinc(II), Zn(C15H24NSi)2
  8. Crystal structure of catena-poly[(μ2-methanolato-κ2O:O)-(μ2-1-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κ2N:N′)-(thiocyanato-κ1N)copper(II)] 0.25 hydrate, C17H16CuN6OS ⋅ 0.5H2O
  9. The crystal structure of 2-amino-5-nitroanilinium iodide monohydrate, C6H8IN3O2
  10. The crystal structure of 3-amino-5-carboxypyridin-1-ium perchlorate monohydrate, C6H9ClN2O7
  11. Crystal structure of 7-hydroxy-2,4-dimethoxy-9,10-dihydrophenanthrene from Arundina graminifolia, C16H16O3
  12. Crystal structure of 6,6′-((1E, 1′E)-(((1R, 2R)-1,2-diphenylethane-1,2-diyl) bis(azanylylidene))bis(methanylylidene))bis(2-ethylphenol), C32H32N2O2
  13. The crystal structure of 2-amino-5-carboxypyridin-1-ium iodide monohydrate, C6H9IN2O3
  14. The crystal structure of 2-(3,5-difluorophenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C16H11BF2N2
  15. Crystal structure of bis{(2-pyridinyl)-1-phenyl-1-isopropylmethanolato-κ2N,O}nickel, C30H32N2NiO2
  16. Crystal structure of poly[(m3-3-carboxyadamantane-1-carboxylato-κ3O:O′:O″)-(phenanthroline-κ2N,N′)sodium(II)], C24H23N2NaO4
  17. Crystal structure of 2-phenylethynyl-1,3,6,8-tetramethylBOPHY (BOPHY = bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine), C22H20B2F4N4
  18. Crystal structure of 4-tert-butyl-2-N-(2-pyridylmethyl)aminophenol, C16H20N2O
  19. The crystal structure of (3Z,3′Z)-4,4′-((1,4-phenylenebis(methylene))bis(azanediyl))bis(pent-3-en-2-one), C18H24N2O2
  20. Crystal structure of (morpholine-1-carbodithioato-κ2-S,S′)bis(triphenylphosphine-κ-P)gold(I), C41H38AuNOP2S2
  21. Crystal structure of 1,4-bis(4-bromobenzyl)-4-(4-chlorophenyl)-1,4-dihydropyridine-3-carbonitrile, C26H19Br2ClN2
  22. The crystal structure of fac-tricarbonyl (N′-benzoyl-N,N-diphenylcarbamimidothioato-κ2S,O)-(pyrazole-κN)rhenium(I) — methanol (1/1) C26H23O4N4SRe
  23. The crystal structure of Ba2Mn(SeO3)2Cl2 containing 1[Mn(SeO3)2Cl2]4− chains
  24. Crystal structure of 3,3′,3″-((1E,1′E,1″E)-((nitrilotris(ethane-2,1-diyl))tris(azaneylylidene)) tris(methaneylylidene))tris(4-hydroxy-1-naphthaldehyde) monohydrate, C42H36N4O6·H2O
  25. The crystal structure of 4-(6-acetyl-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrimidin-7-yl)benzonitrile, C14H12N6O
  26. Crystal structure of benzo[d][1,3]dioxol-5-yl-2-(6-methoxynaphthalen-2-yl)propanoate, C21H18O5
  27. The crystal structure of ethyl 5-methyl-7-(4-(phenylthio)phenyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate, C20H19N5O2S
  28. Crystal structure of N′,N‴-((propane-2,2-diylbis(1H-pyrrole-5,2-diyl))bis(methaneylylidene))-di(isonicotinohydrazide)– water – dimethylformamide (1/4/2), C25H24N8O2·4H2O·2C3H7NO
  29. Synthesis and crystal structure of 4-(2,4-dinitrophenoxy)benzaldehyde, C13H8N2O6
  30. The crystal structure of 1-dodecylpyridin-1-ium bromide monohydrate, C17H32BrNO
  31. Crystal structure of (E)-amino(2-(4-(dimethylamino)benzylidene)hydrazineyl)methaniminium nitrate, C10H16N6O3
  32. Crystal structure of (E)-(2-((1H-pyrrol-2-yl)methylene)hydrazineyl)(amino)methaniminium nitrate monohydrate, C6H12N6O4
  33. The crystal structure of hexakis(1-propylimidazole-κ1N)copper(II) dichloride, C36H60Cl2CuN12
  34. The crystal structure of bis{(μ2-3,3-dimethyl-1-phenylbut-1-en-2-yl)((dimethylamino)dimethylsilyl)amido-κ3N,N′:N′}dilithium, C32H54Li2N4Si2
  35. The crystal structure of methyl 4-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)benzoate, C18H15BN2O2
  36. Crystal structure of (E)-N-(1-((2-chlorothiazol-5-yl)methyl)pyridin-2(1H)-ylidene)-2,2,2-trifluoroacetamide, C11H7ClF3N3OS
  37. Crystal structure of N′, N‴-((propane-2,2-diylbis(1H-pyrrole-5,2-diyl))bis (methaneylylidene))di(picolinohydrazide) – water – methanol (1/1/1), C25H24N8O2·H2O·CH3OH
  38. Crystal structure of 3-(2-chloro-benzyl)-7-[4-(2-chloro-benzyl)-piperazin-1-yl]-5,6,8-trifluoro-3H-quinazolin-4-one, C26H21Cl2F3N4O
  39. Crystal structure of N1,N2-bis(2-fluorobenzyl)benzene-1,2-diamine,C20H18F2N2
  40. The crystal structure of 2-(benzo[d][1,3]dioxol-5-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C17H13BN2O2
  41. The crystal structure of 6,6′-((1E,1′E)-hydrazine-1,2-diylidenebis(methaneylylidene)) bis(2-bromo-4-nitrophenol) — dimethylsulfoxide (1/2), C14H8Br2N4O6⋅2(C2H6OS)
  42. Selective biocatalytic synthesis and crystal structure of (2R,6R)-hydroxyketaminium chloride, C13H17Cl2NO2
  43. Crystal structure of bis{tetraaqua-[μ3-1-(4-carboxylatophenyl)-5-methyl-1H-pyrazole-3-carboxylate-κ4N,O,O′,O″] [μ2-1-methyl-1H-pyrazole-3,5-dicarboxylate-κ3N,O:O]dicobalt(II)} dihydrate, C36H44Co4N8O26
  44. Crystal structure of diethyl-2,2′-naphthalene-2,3-diylbis(oxy)diacetate, C18H20O6
  45. Synthesis and crystal structure of poly[(μ3-2-(2-carboxylatophenyl)-1H-benzo[d]imidazole-5-carboxylato-κO,O′:O′;:O″, O″′)-(μ2-1-(4-(1Himidazol-1-yl)phenyl)-1H-imidazole-κ2N:N′)cadmium(II)], C27H18CdN6O4
  46. The crystal structure of catena-poly[diaqua-bis(μ2-2-((2-(2-phenylacetyl)hydrazineylidene)methyl)benzoato-κ2O:O')zinc(II)], C32H30N4O8Zn
  47. The crystal structure of 2-(3,4-dimethoxyphenyl)-2,3-dihydro-1H-naphtho [1,8-de][1,3,2]diazaborinine, C18H17BN2O2
  48. The crystal structure of hexakis(1-ethylimidazole-κ1N)nickel(II) dichloride – 1-ethylimidazole (1/2), C40H64Cl2NiN16
  49. Crystal structure of diaqua-bis(2,4-dinitrophenolato-κ2O,O′)copper(II) 1.5 hydrate, C12H13CuN4O13.5
  50. Crystal structure of N′,N‴-((1E,1′E)-((decane-1,10-diylbis(oxy))bis(2,1-phenylene)) bis(methaneylylidene))di(isonicotinohydrazide), C36H40N6O4
  51. The crystal structure of 2-[(R)-1-(naphthalen-1-yl)ethyl]-2,3,7,7a-tetrahydro-3a,6-epoxyisoindol-1(6H)-one, C19H20NO2
  52. Synthesis and crystal structure of (1E,2E)-3-(anthracen-9-yl)-1-(4-methoxyphenyl)prop-2-en-1-one oxime, C24H19NO2
  53. Synthesis and crystal structure of (2E,2′E)-3,3′-(1,3-phenylene)bis(1-(3-bromophenyl)prop-2-en-1-one), C24H16Br2O2
  54. The crystal structure of catena-poly[bis(µ2-1,2-bis((1H-imidazol-1-yl)methyl)benzene- κ2N:N′)-bis(nitrato-κO)copper(II)], C28H28N10O6Cu
  55. Synthesis and crystal structure of the novel chiral acetyl-3-thiophene-5-(9-anthryl)-2-pyrazoline, C23H18N2OS
  56. Crystal structure of (E)-3-(dimethylamino)-1-(thiophen-3-yl)prop-2-en-1-one, C9H11NOS
  57. Crystal structure of catena-poly[aqua-(4-iodopyridine-2,6-dicarboxylato-κ3N,O,O′)-(μ2-4-amino-4H-1,2,4-triazole-κ2N:N′) copper(II)], C9H8N5O5CuI
  58. Crystal structure of cyclopropane-1,2,3-triyltris(phenylmethanone), C24H18O3
  59. Crystal structure of bis(amino(thioureido)methaniminium) terephthalate, C12H18N8O4S2
  60. A three-dimensional Eu(III) framework in the crystal structure of dimethylaminium poly[dimethylformamide-κ1N)bis(μ4-terephthalato-κ4O:O′:O′′:O′′′)europium(III)] monohydrate, C21H25EuN2O10
  61. Crystal structure of 2-methoxyphenyl 2-(6-methoxynaphthalen-2-yl)propanoate, C21H20O4
  62. The crystal structure of Hexakis(diethylamido)dimolybdenum, Mo2(NEt2)6
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0127/html
Button zum nach oben scrollen