Startseite Naturwissenschaften Crystal structure of [2-carboxybenzene-1-thiolato-S]-(triethylphosphane-P)-gold(I), C13H20AuO2PS
Artikel Open Access

Crystal structure of [2-carboxybenzene-1-thiolato-S]-(triethylphosphane-P)-gold(I), C13H20AuO2PS

  • Chien Ing Yeo und Edward R.T. Tiekink ORCID logo EMAIL logo
Veröffentlicht/Copyright: 4. August 2020

Abstract

C13H20AuO2PS, triclinic, P1̄ (no. 2), a = 7.7509(2) Å, b = 12.7840(3) Å, c = 15.8689(4) Å, α = 89.087(2)°, β = 87.065(2)°, γ = 84.797(2)°, V = 1563.78(7) Å3, Z = 4, Rgt(F) = 0.0282, wRref(F2) = 0.0795, T = 100 K.

CCDC no.: 2017067

The molecular structures are shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Yellow prism
Size:0.12 × 0.12 × 0.10 mm
Wavelength:Cu Kα radiation (1.54178 Å)
μ:19.8 mm−1
Diffractometer, scan mode:SuperNova, ω
θmax, completeness:67.1°, >99%
N(hkl)measured, N(hkl)unique, Rint:33726, 5582, 0.026
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 5541
N(param)refined:337
Programs:CrysAlisPRO [1], SHELX [2], [3], WinGX/ORTEP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Au10.50883(3)0.00400(2)0.62533(2)0.01695(8)
S10.51936(19)0.15960(11)0.54900(10)0.0176(3)
P10.4835(2)−0.13732(13)0.71078(10)0.0197(3)
O10.5054(6)0.3766(3)0.4836(3)0.0243(10)
O20.2764(6)0.4800(3)0.5335(3)0.0239(10)
H2O0.342(9)0.528(5)0.523(5)0.036*
C10.2995(8)0.1966(5)0.5296(4)0.0163(12)
C20.2379(8)0.3014(5)0.5143(4)0.0192(13)
C30.0597(9)0.3287(5)0.5028(4)0.0211(13)
H30.0191770.4002670.4940730.025*
C4−0.0566(8)0.2525(5)0.5042(4)0.0218(13)
H4−0.1756660.2708430.4947990.026*
C50.0035(9)0.1494(5)0.5194(4)0.0233(14)
H5−0.0758130.0968540.5218930.028*
C60.1779(8)0.1211(5)0.5310(4)0.0203(13)
H60.2159390.0492480.5401480.024*
C70.3519(8)0.3881(5)0.5094(4)0.0176(12)
C80.3280(9)−0.2210(5)0.6735(4)0.0226(14)
H8A0.215762−0.1781350.6690320.027*
H8B0.367329−0.2439770.6158470.027*
C90.2958(10)−0.3189(6)0.7268(5)0.0315(16)
H9A0.406259−0.3609310.7341690.047*
H9B0.217131−0.3607280.6981320.047*
H9C0.243541−0.2975850.7820970.047*
C100.4053(9)−0.0953(6)0.8157(4)0.0267(15)
H10A0.392158−0.1578900.8521790.032*
H10B0.492153−0.0540460.8402840.032*
C110.2321(10)−0.0287(6)0.8148(5)0.0351(17)
H11A0.2420970.0305080.7753290.053*
H11B0.200238−0.0019860.8715130.053*
H11C0.142545−0.0717190.7967890.053*
C120.6804(9)−0.2244(6)0.7250(5)0.0321(16)
H12A0.659261−0.2738340.7722340.039*
H12B0.708177−0.2661180.6732470.039*
C130.8354(9)−0.1638(7)0.7434(5)0.0376(18)
H13A0.866651−0.1217710.6936940.056*
H13B0.934210−0.2135250.7569020.056*
H13C0.804665−0.1173590.7914300.056*
Au20.59078(3)0.51272(2)0.87572(2)0.01876(8)
S20.57186(19)0.65473(12)0.96535(10)0.0193(3)
P20.6184(2)0.38291(13)0.77943(10)0.0214(3)
O30.5334(5)0.8749(3)1.0236(3)0.0194(9)
O40.7240(6)0.9782(3)0.9625(3)0.0219(9)
H4O0.638(7)1.023(5)0.968(5)0.033*
C140.7837(8)0.6944(5)0.9649(4)0.0158(12)
C150.8173(8)0.7990(5)0.9791(4)0.0167(12)
C160.9883(8)0.8263(5)0.9809(4)0.0197(13)
H161.0083770.8974080.9898560.024*
C171.1285(8)0.7518(5)0.9700(4)0.0229(14)
H171.2437810.7705000.9734330.027*
C181.0966(8)0.6488(5)0.9539(4)0.0232(14)
H181.1913910.5970380.9449680.028*
C190.9291(8)0.6208(5)0.9507(4)0.0209(13)
H190.9112230.5501060.9387230.025*
C200.6769(8)0.8850(5)0.9908(4)0.0171(12)
C210.4200(9)0.3413(6)0.7394(5)0.0284(15)
H21A0.3551270.4026470.7132040.034*
H21B0.4509850.2886620.6948580.034*
C220.3016(11)0.2940(7)0.8070(5)0.0404(19)
H22A0.3662640.2353490.8353390.061*
H22B0.2020210.2685950.7805350.061*
H22C0.2604570.3478050.8484800.061*
C230.7411(10)0.2658(5)0.8204(5)0.0280(15)
H23A0.8513270.2869810.8408250.034*
H23B0.6742970.2392660.8698280.034*
C240.7841(13)0.1755(6)0.7588(6)0.046(2)
H24A0.6768410.1552950.7361490.069*
H24B0.8419280.1153120.7883450.069*
H24C0.8611530.1980470.7124490.069*
C250.7360(10)0.4232(6)0.6843(4)0.0290(15)
H25A0.7551350.3627780.6457250.035*
H25B0.6634760.4793540.6556880.035*
C260.9112(11)0.4634(7)0.7002(5)0.0416(19)
H26A0.8930560.5264440.7350210.062*
H26B0.9694760.4806150.6461450.062*
H26C0.9832840.4089260.7295470.062*

Source of material

NaOH (Merck, 0.020 g, 0.5 mmol) in water (1 mL) was added to Et3PAuCl (0.175 g, 0.5 mmol) in acetonitrile (15 mL), followed by the addition of 2-thiosalicylic acid (Merck, 0.077, 0.5 mmol) in chloroform (15 mL). The solution was stirred at room temperature for 2 h and left for slow evaporation, yielding yellow crystals after 3 weeks.

Yield: 0.192 g (82%). M. pt. (Biobase automatic melting point apparatus MP450): 378–379 K. Anal. Calc. for C13H20AuO2PS: C, 33.34; H, 4.30. Found: C, 33.16; H, 4.45%. IR (Bruker Vertex 70v FTIR Spectrophotometer; cm−1): 2962 (w) ν(O–H), 1675 (s) ν(C=O), 1034 (s) ν(C–S). 1H NMR (Bruker Ascend 400 MHz NMR spectrometer with chemical shifts relative to tetramethylsilane in CDCl3 solution at 298 K, ppm): δ 13.38 (s, br, 1H, COOH), 8.31 (d, 1H, aryl-H1, 3JHH = 7.76 Hz), 7.64 (d, 1H, aryl-H4, 3JHH = 7.75 Hz), 7.28 (td, 1H, aryl-H3, 3JHH = 7.46 Hz, 4JHH = 1.42 Hz), 7.19 (t, 1H, aryl-H2, 3JHH = 7.55 Hz), 1.83 (dq, 6H, PCH2, 3JHH = 7.71 Hz, 2JPH = 9.80 Hz), 1.17 (dt, 9H, CH3, 3JHH = 7.65 Hz, 3JPH = 18.77 Hz) ppm. 31P{1H} NMR {CDCl3}: 37.5 ppm.

Experimental details

The carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The O-bound H atoms were refined with O—H = 0.84 ± 0.01 Å and with Uiso(H) = 1.5Ueq(O). Owing to poor agreement, five reflections, i.e. (3 2 1), (3 5 7), (3 6 5), (3 3 7) and (−4 −1 9), were omitted from the final cycles of refinement. The maximum and minimum electron density peaks of 2.10 and 1.18 eÅ−3, respectively, were located 2.07 and 0.82 Å from the Au2 and H25B atoms, respectively.

Comment

The structural chemistry of the n-mercaptobenzoic acids (HSC6H4CO2H-n; n-HmbaH) and anions derived from these has been reviewed recently, i.e. n = 2 [5] and n = 3 & 4 [6]. Prominent among these are phosphanegold(I) species owing, in part, to unpredictable crystallisation outcomes despite the universal adoption of a linear P—Au—S coordination geometry. For example [7], [8], for Cy3PAu(2-mbaH), two conformational polymorphs were isolated, one with the anticipated eight-membered {⋯HOCO}2 synthon arising from hydroxyl-O—H⋯O(carbonyl) hydrogen bonds occurring about a centre of inversion so the dimeric aggregate has an open conformation; Cy is cyclohexyl. The other conformation had a more spherical shape as an intramolecular hydroxyl-O—H⋯S(thiolate) hydrogen bond formed instead [7], [8]. In another study of binuclear molecules (dppe)[Au(2-mbaH)]2 [9], supramolecular chains mediated by {⋯HOCO}2 synthons were formed but, when co-crystallised dimethyl sulphoxide (DMSO), zero dimensional aggregates formed instead owing to the presence of hydroxyl-O—H⋯O(DMSO) hydrogen bonding; dppe is Ph2PCH2CH2PPh2. Different solvates of (o-tolyl)3PAu(2-mbaH) exhibited solvent-dependent solid-state photoluminescence [10], a trait often observed for phosphanegold(I) thiolates [11]. Complimenting the above are long-standing evaluations of biological potential, especially for anti-cancer [12] /anti-bacterial [13] activity, again, as often observed for phosphanegold(I) thiolate analogues [14]. The present crystal structure determination of the title compound Et3PAu(2-mbaH), (I), was investigated in continuation of studies in this area.

The crystallographic asymmetric unit of (I) comprises two independent molecules as shown in the figure (70% displacement ellipsoids). The molecules have very similar conformations in which the gold atom is linearly coordinated by thiolate-S [Au1—S1 = 2.3180(15) Å; Au2—S2 = 2.3137(15) Å] and phosphane-P [Au1—P1 = 2.2583(16) Å; Au2—P2 = 2.2622(16) Å] atoms; the P1—Au1—S1 angle = 173.90(6)° and P2—Au2—S2 = 175.11(6)°. The differences in the C—O bond lengths [C1—O1, O2 = 1.235(8) and 1.317(7) Å; C20—O3, O4 = 1.221(8) and 1.341(8) Å] confirm protonation at each of the O2 and O4 atoms. The 2-mbaH ligand is not aligned to sit directly over the P—Au—S axis, rather is twisted as seen in the Au1—S1—C1—C2 torsion angle of 155.4(5)° [Au2—S2—C14—C15 = 151.5(5)°]. Finally, the carboxylic acid residues are directed away from the rest of the molecule to facilitate hydrogen bonding interactions.

The most prominent intermolecular interactions in the crystal of (I) are hydroxyl-O—H⋯O(carbonyl) hydrogen bonds occurring about a centre of inversion, indicating each molecule self-associates to form a dimeric aggregate [O2—H2o⋯O1i: H2o⋯O1i = 1.77(7) Å, O2⋯O1i = 2.607(6) Å with angle at H2o = 171(6)° and O4—H4o⋯O3ii: H4o⋯O3ii = 1.78(6) Å, O4⋯O3ii = 2.616(6) Å with angle at H4o = 176(7)° for symmetry operations (i): 1 − x, 1 − y, 1 − z and (ii): 1 − x, 2 − y, 2 − z]. Globally, the Au1-aggregates assemble into homo-molecular layers in the ab-plane with the goldphosphane residues projecting to either side of the plane. A similar situation pertains for the Au2-aggregates. The layers stack alternatively along the c-axis. Within the Au1-layers, methylene-C—H⋯O(carbonyl) interactions are apparent [C8—H8b⋯O1iii: H8b⋯O1iii = 2.44 Å, C8⋯O1iii = 3.347(8) Å with angle at H8b = 152° for (iii): 1 − x, − y, 1 − z]. Within the Au2-layers, the connections between molecules are of the type phenyl-C—H⋯S(thiolate) [C17—H17⋯S2iv: H17⋯S2iv = 2.82 Å, C17⋯S2iv = 3.544(6) Å with angle at H17 = 134° for (iv): 1 + x, y, z]. The only apparent directional contacts between layers are methylene-C—H⋯S(thiolate) interactions [C21—H21b⋯S1: H21b⋯S1 = 2.86 Å, C21⋯S1 = 3.844(8) Å with angle at H21b = 171°].

The Hirshfeld surfaces and two-dimensional fingerprint plots were calculated for overall (I) and for each of the independent molecules. This was accomplished with Crystal Explorer 17 [15] following standard protocols [16]. For (I), most of the surface contacts involve H with the greatest contribution coming from H⋯H contacts [53.3%]. The next most dominant contacts are H⋯C/C⋯H [16.8%], H⋯O/O⋯H [15.9%], with characteristic spikes ascribed to the O—H⋯O hydrogen bonding, and H⋯S/S⋯H [8.1%]. Very similar percentage contributions to the surface contacts are noted for each of the Au1- and Au2-containing molecules. In terms of differentiating between the Au1- and Au2-molecules, H⋯H contacts are more dominant for the Au1-molecule [53.6 versus 51.4%] while the H⋯C/C⋯H [16.3 versus 16.9%], H⋯O/O⋯H [14.9 versus 15.7%] and H⋯S/S⋯H [9.1 versus 9.5%] contacts are marginally decreased.

Acknowledgements

Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001-2019.

References

1. Agilent Technologies: CrysAlisPRO. Agilent Technologies, Santa Clara, CA, USA (2014).Suche in Google Scholar

2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Suche in Google Scholar PubMed

3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Suche in Google Scholar PubMed PubMed Central

4. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45 (2012) 849–854.10.1107/S0021889812029111Suche in Google Scholar

5. Wehr-Candler, T.; Henderson, W.: Coordination chemistry of the thiosalicylate ligand. Coord. Chem. Rev. 313 (2016) 111–155.10.1016/j.ccr.2016.01.011Suche in Google Scholar

6. Tiekink, E. R. T.; Henderson, W.: Coordination chemistry of 3- and 4-mercaptobenzoate ligands: versatile hydrogen-bonding isomers of the thiosalicylate (2-mercaptobenzoate) ligand. Coord. Chem. Rev. 341 (2017) 19–52.10.1016/j.ccr.2017.03.025Suche in Google Scholar

7. Cookson, P. D.; Tiekink, E. R. T.: Syntheses and structural studies of triorganophosphinegold(I) mercaptobenzoate complexes. J. Coord. Chem. 26 (1992) 313–320.10.1080/00958979209407933Suche in Google Scholar

8. Smyth, D. R.; Vincent, B. R.; Tiekink, E. R. T.: Polymorphism in (tricyclohexylphosphine)gold(I) 2-mercaptobenzoate. a tale of two structural motifs. Cryst. Growth Des. 1 (2001) 113–117.10.1021/cg0000114Suche in Google Scholar

9. Smyth, D. R.; Vincent, B. R.; Tiekink, E. R. T.: Solvent mediated disruption of intermolecular association in phosphinegold(I) thiolates: the relative importance of carboxylic acid dimer formation on crystal structure. CrystEngComm 2 (2000) 115–120.10.1039/b004742mSuche in Google Scholar

10. Yun, S.-S.; Kim, J.-K.; Jung, J.-S.; Park, C.; Kang, J.-G.; Smyth, D. R.; Tiekink, E. R. T.: Pseudo-polymorphism in the tri(o-tolyl)phosphinegold(I) 2-mercaptobenzoates: crystallographic, thermal decomposition, and luminescence studies. Cryst. Growth Des. 6 (2006) 899–909.10.1021/cg0504206Suche in Google Scholar

11. Tiekink, E. R. T.; Kang, J.-G.: Luminescence properties of phosphinegold(I) halides and thiolates. Coord. Chem. Rev. 253 (2009) 1627–1648.10.1016/j.ccr.2009.01.017Suche in Google Scholar

12. de Vos, D.; Clements, P.; Pyke, S. M.; Smyth, D. R.; Tiekink, E. R. T.: Characterisation and in vitro cytotoxicity of triorganophosphinegold(I) 2-mercaptobenzoate complexes. Met.-Based Drugs 6 (1999) 31–40.10.1155/MBD.1999.31Suche in Google Scholar PubMed PubMed Central

13. Nomiya, K.; Yamamoto, S.; Noguchi, R.; Yokoyama, H.; Kasuga, N. C.; Ohyama, K.; Kato, C.: Ligand-exchangeability of 2-coordinate phosphinegold(I) complexes with AuSP and AuNP cores showing selective antimicrobial activities against Gram-positive bacteria. crystal structures of [Au(2-(Hmpa)(PPh3)] and [Au(6-Hmna)(PPh3)] (2-H2mpa = 2-mercaptopropionic acid, 6-H2mna = 6-mercaptonicotinic acid). J. Inorg. Biochem. 95 (2003) 208–220.10.1016/S0162-0134(03)00125-9Suche in Google Scholar

14. Yeo, C. I.; Ooi, K. K.; Tiekink, E. R. T.: Gold-based medicine: a paradigm shift in anti-cancer therapy? Molecules 23 (2018) article no. 1410.10.3390/molecules23061410Suche in Google Scholar PubMed PubMed Central

15. Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).Suche in Google Scholar

16. Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. E75 (2019) 308–318.10.1107/S2056989019001129Suche in Google Scholar PubMed PubMed Central

Received: 2020-06-24
Accepted: 2020-07-17
Published Online: 2020-08-04
Published in Print: 2020-10-27

©2020 Chien Ing Yeo et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. Crystal structure of poly[tetraaqua-bis(μ4-5-(4-carboxy-benzylamino)-isophthalato-κ4O,O′:O′′:O′′′)-(μ2-4,4′-di(1H-imidazol-1-yl)-1,1′-biphenyl-κ2N:N′)dicadmium(II)], C25H22N3O8Cd
  3. The crystal structure of 2-(2-(2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-2-ium-1-yl)phenoxy)acetate, C19H18N2O3
  4. Crystal structure of poly[aqua-μ2-4,4′-bipyridine-κ2N:N′)-μ2-bis(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetato-κ2O,O′)zinc(II)], C38H28Cl4N4O4Zn
  5. Crystal structure of 1-(2-(1H-indol-3-yl)ethyl)-4-benzyl-3-hydroxy-3,6-diphenylpiperazine-2,5-dione, C33H29N3O3
  6. The crystal structure 2,2′-bipyridine-κ2N,N′-(2-(3-amino-4-chlorobenzoyl)benzoato-κ1O)-(2-(3-amino-4-chlorobenzoyl)benzoato-κ2O,O′)zinc(II) — ethanol (1/1), C40H32Cl2N4O7Zn
  7. Crystal structure of catena-poly[(μ3-2-carboxy-4-(3-carboxy-5-carboxylatophenoxy)benzoato-κ3O:O′:O′′)-bis(μ2-4,4′-bis(pyrid-4-yl)biphenyl-k1N)copper(II)], C60H40N4O9Cu
  8. The crystal structure of dimethylammonium catena-[di(μ-aqua)-bis(μ9-benzene-1,3,5-tricarboxylato)pentalithium], C20H16Li5NO13
  9. Crystal structure of tetraaqua-bis(3,5-di(pyridin-4-yl)-1,2,4-triazol-1-ido-κ1N)nickel(II) dihydrate, C24H28O6N10Ni
  10. The crystal structure of tetrakis(1-methylimidazole-κ1N)-oxido-(sulfato-κ1O)vanadium(IV), C16H24N8O5SV
  11. Crystal structure of methyl 2-(6,11-dioxo-2,3,6,11-tetrahydro-1H-benzo[f]pyrrolo[2,1-a]isoindole-5-carbonyl)benzoate, C24H17NO5
  12. Crystal structure of (E)-N′-(2-hydroxy-4-(2-(piperidin-1-yl)ethoxy)benzylidene) nicotinohydrazide monohydrate, C20H24N4O3 ⋅ H2O
  13. Crystal structure of poly[bis(μ3-(1-(3,5-di(1H-imidazol-1-yl)phenyl)-1H-imidazole-κ3N:N′:N′′)cobalt(II)] dinitrate — N,N-dimethylformamide (1/4), C42H52N18O10Co
  14. The crystal structure bis{hexakis(1-methyl-1H-imidazole-κ1N)cobalt(II)} tetrakis(μ3-oxido)-octakis(μ2-oxido)-tetradecaoxido-octamolybdate(VI), C24H36CoMo4N12O13
  15. Crystal structure of di-μ-nicotinato-κ2N:O; κ2O:N-bis-[aqua-bis(benzyl)(nicotinato-κ2O,O′)tin(IV)], C52H48N4O10Sn2
  16. Crystal structure of dichlorido-bis[2-(2-(3-(pyridin-2-yl)-1H-1,2,4-triazol-5-yl)phenoxy)benzoic acidmanganese(II) monohydrate, C40H30N8O7MnCl2
  17. The crystal structure of benzyl 3β-acetylglycyrrhetate, C39H54O5
  18. Synthesis and crystal structure of (E)-1-benzyl-3-(4-methoxystyryl)quinoxalin-2(1H)-one, C24H20N2O2
  19. Crystal structure of trans-dichloridobis(4-chlorophenyl-κC1)(1,10-phenanthroline-κ2N,N′)tin(IV) dimethylsulphoxide solvate, C26H22Cl4N2OSSn
  20. Crystal structure of phenyl(1,3,4a-triphenyl-4a,5,6,10b-tetrahydro-1H-[1,4]oxazino[2,3-c]quinolin-5-yl)methanone, C36H28N2O2
  21. Crystal structure of (4aS,5S,6aS,6a1S, 10aS)-4a,5,6a,6a1,9,10-hexahydro-7H-4,5-methanocyclobuta[4,5]naphtho[8a,1-b]pyran-6(2H)-one, C15H16O2
  22. Crystal structure of [(Z)-O-isopropyl N-(4-chlorophenyl)thiocarbamato-κS]-(triphenylphosphine-κP)-gold(I), C28H26AuClNOPS
  23. Crystal structure of (μ2-1,1′-bis(diphenylphosphino)ferrocene-P,P′)-bis[(Z)-O-isopropyl N-(4-chlorophenyl)thiocarbamato-S]-di-gold(I) acetonitrile di-solvate, C54H50Au2Cl2FeN2O2P2S2⋅2(C2H3N)
  24. Crystal structure of (6aR,6a1S,10aS)-2,4a,6a,6a1,9,10-hexahydro-7H-4,5-methanocyclobuta[4,5]naphtho[8a,1-b]pyran, C15H16O
  25. Crystal structure of 5,17-diformyl-25,26,27,28-tetrahydroxycalix[4]arene- dichloromethane, C31H26Cl2O6
  26. Crystal structure of 2-tert-butyl 1-methyl 5-{4-[(methoxycarbonyl)amino]phenyl}-2,5-dihydro-1H-pyrrole-1,2-dicarboxylate, C19H24N2O6
  27. Crystal structure of [2-carboxybenzene-1-thiolato-S]-(triethylphosphane-P)-gold(I), C13H20AuO2PS
  28. Synthesis and crystal structure of bis(5-methyl-2-aldehyde-phenolato-κ2O1,O2)copper(II), C16H14CuO4
  29. Crystal structure of poly[triaqua-(di(2,2′-bipyridine-κ2N,N′)-μ4-silanetetrayltetrakis(benzene-4,1-diyl)tetrakis (hydrogen phosphonato)-κ4O:O′:O′′:O′′′) dicadmium(II)], C44H42N4O15P4Cd2Si
  30. Crystal structure of bis[μ2-(N,N-diethylcarbamodithioato-κSSS′)]-bis(triethylphosphine-P)-di-silver(I), C22H50Ag2N2P2S4
  31. Crystal structure of bis[μ2-(pyrrolidine-1-carbodithioato-κSSS′)]-bis(triethylphosphine-κP)disilver(I), C22H46Ag2N2P2S4
  32. Crystal structure of bis[μ2-(N-(2-hydroxyethyl)-N-methylcarbamodithioato-κSSS′)]-bis(triethylphosphine-P)-di-silver(I), C20H46Ag2N2O2P2S4
  33. The crystal structure of (2E,2′E)-,2,2′-bis[1-(2-pyrazinyl)ethylidene]carbonimidic dihydrazide, C13H15N9
  34. The crystal structure of (E)-1-(quinolin-2-ylmethyl)-2-((1-(quinolin-2-ylmethyl)pyridin-2(1H)-ylidene)amino)pyridin-1-ium, C30H25BrN5
  35. Crystal structure of catena-poly[(μ2-1-((benzotriazol-1-yl)methyl)-1H-1,3-imdazole-κ2N:N′)-(1-((benzotriazol-1-yl)methyl)-1H-1,3-imdazole-κ1N)-(methanol-κ1O)mercury(II)] dinitrate, C21H22N12O7Hg
  36. Crystal structure of 1-(6-hydroxy-2-phenylbenzofuran-5-yl)ethan-1-one, C16H12O3
  37. The crystal structure of oxonium hexaquaaluminium disulfate hexahydrate
  38. Crystal structure of catena{(μ2-1,10-phenanthroline-κ4N,N,N′,N′)-(μ2-1,10-phenanthroline-κ3N,N,N′)potassium(I) {[bis(2-hydroxyethyl)iminiumyl](sulfanidyl)methyl}sulfanide hemi(1,10-phenanthroline)}, {C24H16KN4, 0.5(C12H8N2), C5H10NO2S2}
  39. Crystal structure of chlorido-[(N,N-di-isobutyl)dithiocarbamato-κ2S,S′]-di(4-methylbenzyl-κC)tin(IV), C25H36ClNS2Sn
  40. Crystal structure of chlorido-(η5-pentamethylcyclopentadienyl)-(4-chloro-4-pyridyl-2,2′:6′,2′′-terpyridine-κ2N,N′) rhodium(III) hexaflourophosphate, C31H29Cl2F6N3PRh
  41. The crystal structure of catena-poly[bis-(3,5-dinitro-1,2,4-triazolato-κ2N:O)-(μ2-1,4-bis(1-imidazolyl)benzene-κ2N:N′)copper(II)], C16H10CuN14O8
  42. Crystal structure of poly[triaqua-bis(μ3-3,3′-((5-carboxylato-1,3-phenylene)bis(oxy))dibenzoato)-tris(1,10-phenanthroline)cobalt(II)], C78H46N6O20Co3
  43. The crystal structure of 2,4-dihydroxybenzoic acid–nicotinamide–methanol (1/1/1), C15H18N2O6
  44. The crystal structure of aqua{N,N,N′,N′-tetrakis[(1H-benzimidazol-κN3) methyl]cyclohexane-1,2-diamine}lead(II) diacetate–methanol (1/2), C44H54N10O7Pb
  45. Crystal structure of (2-amino-5-bromo-3-iodophenyl)(3-(4-chlorophenyl)oxiran-2-yl)methanone, C15H10BrClINO2
  46. Synthesis and crystal structure of 3-octyl-5,5-diphenylimidazolidine-2,4-dione, C23H28N2O2
  47. Synthesis and crystal structure of 2-azido-N-(4-nitrophenyl)acetamide, C8H7N5O3
  48. Crystal structure of tert-butyl (1S,2R,5R)-2-(hydroxymethyl)-4-(4-methoxyphenyl)-6-oxa-3-azabicyclo[3.1.0]hexane-3-carboxylate, C17H23NO5
  49. Crystal structure of 4-[(4-methoxy-2-nitrophenyl)carbamoyl]butanoic acid, C12H14N2O6
  50. Crystal structure of 3-ethyl-1-[(E)-[(2E)-3-phenylprop-2-en-1-ylidene]amino]thiourea, C12H15N3S
  51. Crystal structure of 4,4′-bipyridin-1,1′-dium poly[bis(μ4-benzene-1,3,5-triyltris(hydrogen phosphonato-κ4O:O′:O′′:O′′′))zinc(II)], C11H11NO9P3Zn
  52. Crystal structure of (μ2-1,1′-bis(diphenylphosphino)butane-κ2P,P′)-bis[(Z)-N-(3-fluorophenyl)-O-methylthiocarbamato-κS]-di-gold(I), C44H42Au2F2N2O2P2S2
  53. Crystal structure of (μ2-1,1′-bis(diphenylphosphino)hexane-κ2P,P′)-bis[(Z)-N-(3-fluorophenyl)-O-methylthiocarbamato-κS]digold(I), C46H46Au2F2N2O2P2S2
  54. Crystal structure of tetrakis (N-(2-hydroxyethyl)-N-isopropylcarbamodithioato-κS,S′)-(μ2(2-(pyridin-4-yl)vinyl)pyridine-κN,N′)dicadmium(II), C36H58Cd2N6O4S8
  55. Crystal structure of 4-(2-(benzo[b]thiophen-2-yl)-3,3,4,4,5,5-hexafluorocyclopent-1-en-1-yl)-1,5-dimethyl-1H-pyrrole-2-carbonitrile, C20H12F6N2S
  56. Crystal structure of bis(octahydrocyclopenta[c]pyrrolium)pentachlorobismuthate(III), (C7NH14)2BiCl5
  57. The crystal structure of diaqua-tris(nitrato-κ2O,O′)-bis(4,4,5,5-tetramethyl-2-(p-pyridyl)imidazoline-1-oxyl 3-oxide-κN)samarium(III), C24H36N9O15Sm
  58. Synthesis and crystal structure of methyl 2-(2-((tert-butoxycarbonyl)amino)phenyl)-2-(4-oxo-4H-chromen-3-yl)acetate, C23H23NO6
  59. Crystal structure of O-hexyl benzoylcarbamothioate, C14H19NO2S
  60. Crystal structure of chlorido-(O-methyl phenylcarbamothioamide-κS)-bis(triphenylphosphane-κP)silver(I), C44H39AgClNOP2S
  61. Crystal structure of chlorido-(O-ethyl phenylcarbamothioamide-κS)-bis(triphenylphosphane-κP)-silver(I), C45H41AgClNOP2S
  62. Crystal structure of 4-[(2-methoxyphenyl)carbamoyl]butanoic acid, C12H15NO4
  63. Crystal structure of ethyl 4-methyl-2-oxo-5-phenyl-1,3,4-oxadiazinane-3-carboxylate, C13H16N2O4
  64. Crystal structure of catena-poly[diaqua(μ2-2-(hydroxymethyl)-1H-imidazole-4,5-dicarboxylato)cadmium(II)], C6H8CdN2O7
  65. Crystal structure of (1S)-N-(chloromethyl)-1-((4S,6aR,8aS, 8bR,9aR)-4-methoxy-6a,8a-dimethyl-1,3,4, 5,6,6a,6b,7,8,8a,9a,10,10a,10b-tetradecahydro-8bH-naphtho[2′,1′:4,5] indeno[1,2-b]oxiren-8b-yl)-N-methylethan-1-amine, C24H46ClNO5
  66. Crystal structure of 4-[(3,5-dichlorophenyl)carbamoyl]butanoic acid, C11H11Cl2NO3
  67. Crystal structure of (2Z)-2-amino-3-[(E)-[(2,4-dihydroxyphenyl)methylidene]-amino]but-2-enedinitrile, C11H8N4O2
  68. Crystal structure of 3-methyl-1-[(E)-(4-phenylbutan-2-ylidene)amino]thiourea, C12H17N3S
  69. Crystal structure of carbonyl{hydridotris[3-phenyl-5-methylpyrazol-1-yl]borato-κ3N,N′N′′}copper(I), C31H28BCuN6O
  70. Crystal structure of ethane-1,2-diylbis(diphenylphosphine oxide) – dihydrogenperoxide (1/2), C26H28O6P2
  71. Crystal structure of 2-(pyridin-2-ylamino)pyridinium chloride dibenzyldichlorostannane, [C10H10N3]Cl, C14H14Cl2Sn
  72. Crystal structure of 4-[(3-methoxyphenyl)carbamoyl]butanoic acid, C12H15NO4
  73. Crystal structure of dichlorido-bis(tri-4-tolylphosphane oxide-κO)-di(4-chlorophenyl-κC)tin(IV), C54H50Cl4O2P2Sn
  74. Crystal structure of dichloridodimethylbis(tri-4-tolylphosphane oxide-κO)-tin(IV), C44H48Cl2O2P2Sn
  75. Crystal structure of chlorido(2-methylquinolin-8-olato-κ2N,O)-bis(4-tolyl-κC)tin(IV), C24H22ClNOSn
  76. Crystal structure of (E)-dichloro(1-chloro-3-methoxyprop-1-en-2-yl)(4-methoxyphenyl)-λ4-tellane, C11H13Cl3O2Te
  77. Crystal structure of bis{N-methyl-N′-[3-(4-methoxyphenyl)-1-methylpropane-1-ylidene]carbamohydrazonothioato}zinc(II), C26H36N6O2S2Zn
  78. Crystal structure of (2-carboxy-4-(3-carboxy-5-carboxylatophenoxy)benzoato-κ2O,O′)bis(1,10-phenantroline-κ2N,N′)cobalt(II), C40H24N4O9Co
  79. The crystal structure of (3S,8R,10R,14R)-17-((2S,5S)-5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)-4,4,8,10,14-pentamethyl-12-oxohexadecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate, C32H52O5
  80. Crystal structure of (μ2-1,1′-bis(diphenylphosphino)ferrocene-κ2P,P′)-bis[(Z)N-(3-fluorophenyl)-O-methylthiocarbamato-S]digold(I) chloroform solvate, C50H42Au2F2FeN2O2P2S2, CHCl3
  81. Crystal structure of poly[bis(μ2-1,4-di(1H-imidazol-1-yl)benzene-κ2N:N′)-(μ2-tetraoxidomolybdato(VI)-κ2O:O′)cobalt(II)], C24H20N8O4MoCo
Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0314/html
Button zum nach oben scrollen