Home Physical Sciences Crystal structure of (μ2-1,1′-bis(diphenylphosphino)butane-κ2P,P′)-bis[(Z)-N-(3-fluorophenyl)-O-methylthiocarbamato-κS]-di-gold(I), C44H42Au2F2N2O2P2S2
Article Open Access

Crystal structure of (μ2-1,1′-bis(diphenylphosphino)butane-κ2P,P′)-bis[(Z)-N-(3-fluorophenyl)-O-methylthiocarbamato-κS]-di-gold(I), C44H42Au2F2N2O2P2S2

  • Chien Ing Yeo and Edward R.T. Tiekink ORCID logo EMAIL logo
Published/Copyright: August 21, 2020

Abstract

C44H42Au2F2N2O2P2S2, triclinic, P1̄ (no. 2), a = 8.8035(2) Å, b = 11.4764(3) Å, c = 21.2293(6) Å, α = 83.550(2)°, β = 82.256(2)°, γ = 83.793(2)°, V = 2102.40(10) Å3, Z = 2, Rgt(F) = 0.0268, wRref(F2) = 0.0577, T = 100(2) K.

CCDC no.: 2022892

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless block
Size:0.23 × 0.19 × 0.18 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:7.19 mm−1
Diffractometer, scan mode:SuperNova, ω
θmax, completeness:27.5°, >99%
N(hkl)measured, N(hkl)unique, Rint:48879, 9642, 0.047
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 8323
N(param)refined:527
Programs:CrysAlisPRO [1], SHELX [2], [3], WinGX/ORTEP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Au1−0.39937(2)0.87120(2)0.26697(2)0.02080(4)
Au20.28914(2)0.25478(2)0.27939(2)0.02289(5)
S1−0.57306(11)0.96289(8)0.34050(5)0.0283(2)
S20.46758(12)0.21256(9)0.19285(6)0.0334(2)
P1−0.21561(11)0.79847(8)0.19320(5)0.0209(2)
P20.12237(10)0.31295(8)0.36244(5)0.01881(19)
O1−0.8576(3)0.9704(2)0.37917(15)0.0321(7)
O20.3025(4)0.3984(3)0.14240(17)0.0478(8)
N1−0.7699(4)0.7857(3)0.35487(19)0.0346(9)
N20.5533(4)0.3841(4)0.0983(2)0.0491(11)
C1a−0.7419(4)0.8905(3)0.3573(2)0.0264(9)
C2a−0.6616(4)0.6938(3)0.3358(2)0.0327(10)
C3a−0.5940(5)0.6168(4)0.3818(3)0.0387(11)
H3a−0.6077520.6333930.4251310.046*
C4a−0.5058(5)0.5149(4)0.3635(3)0.0481(14)
F1a−0.4336(5)0.4474(3)0.4035(3)0.068(2)
C5a−0.4823(5)0.4867(4)0.3022(3)0.0460(13)
H5a−0.4225200.4164100.2909090.055*
C6a−0.5494(5)0.5652(4)0.2565(3)0.0487(13)
H6a−0.5341090.5480360.2131780.058*
C7a−0.6375(5)0.6670(4)0.2724(2)0.0363(10)
H7a−0.6817420.7188380.2402050.044*
C2′b−0.6616(4)0.6938(3)0.3358(2)0.0327(10)
C3′b−0.5940(5)0.6168(4)0.3818(3)0.0387(11)
H3′b−0.6077520.6333930.4251310.046*
C4′b−0.5058(5)0.5149(4)0.3635(3)0.0481(14)
H4′b−0.4602160.4629520.3952610.058*
C5′b−0.4823(5)0.4867(4)0.3022(3)0.0460(13)
H5′b−0.4225200.4164100.2909090.055*
C6′b−0.5494(5)0.5652(4)0.2565(3)0.0487(13)
F1′b−0.5165(10)0.5453(7)0.2012(4)0.056(3)
C7′b−0.6375(5)0.6670(4)0.2724(2)0.0363(10)
H7′b−0.6817420.7188380.2402050.044*
C8−1.0013(4)0.9244(4)0.4022(2)0.0354(10)
H8A−1.0417060.8939070.3671710.053*
H8B−1.0747200.9871590.4191890.053*
H8C−0.9861660.8606060.4362240.053*
C9−0.1512(4)0.6440(3)0.21371(18)0.0229(8)
H9A−0.2404580.5967950.2182760.027*
H9B−0.0758130.6158850.1784400.027*
C10−0.0776(4)0.6246(3)0.27535(19)0.0241(8)
H10A−0.1553710.6449060.3116280.029*
H10B0.0062210.6766570.2725610.029*
C11−0.0124(4)0.4957(3)0.28690(19)0.0241(8)
H11A−0.0961820.4442160.2880670.029*
H11B0.0664760.4765950.2507480.029*
C120.0596(4)0.4696(3)0.34888(19)0.0216(8)
H12A−0.0166470.4931670.3850030.026*
H12B0.1488730.5160770.3466980.026*
C130.4492(5)0.3433(4)0.1391(2)0.0384(11)
C14c0.7054(5)0.3287(4)0.0980(2)0.0431(12)
C15c0.7667(6)0.2521(5)0.0513(3)0.0499(13)
H15c0.7063260.2375610.0196320.060*
C16c0.9134(6)0.1991(5)0.0517(3)0.0551(14)
F2c0.9678(5)0.1232(5)0.0121(2)0.070(2)
C17c1.0078(6)0.2237(5)0.0948(3)0.0596(16)
H17c1.1104810.1879580.0939360.071*
C18c0.9474(6)0.3032(5)0.1401(3)0.0470(13)
H18c1.0107670.3230520.1694000.056*
C19c0.8004(6)0.3512(5)0.1420(3)0.0538(14)
H19c0.7603970.4015830.1740570.065*
C14′d0.7054(5)0.3287(4)0.0980(2)0.0431(12)
C15′d0.7667(6)0.2521(5)0.0513(3)0.0499(13)
H15′d0.7063260.2375610.0196320.060*
C16′d0.9134(6)0.1991(5)0.0517(3)0.0551(14)
H16′d0.9515060.1439970.0218150.066*
C17′d1.0078(6)0.2237(5)0.0948(3)0.0596(16)
H17′d1.1104810.1879580.0939360.071*
C18′d0.9474(6)0.3032(5)0.1401(3)0.0470(13)
F2′d1.0205(14)0.2983(12)0.1759(7)0.100(5)
C19′d0.8004(6)0.3512(5)0.1420(3)0.0538(14)
H19′d0.7603970.4015830.1740570.065*
C200.2788(6)0.5043(5)0.0984(3)0.0599(15)
H20A0.3301060.5678810.1111970.090*
H20B0.1682780.5281980.0994370.090*
H20C0.3221650.4876820.0549520.090*
C21−0.2791(4)0.8053(3)0.11528(19)0.0267(9)
C22−0.2848(6)0.9129(4)0.0781(2)0.0435(12)
H22−0.2534350.9799080.0935200.052*
C23−0.3357(6)0.9231(5)0.0189(3)0.0554(14)
H23−0.3386040.996806−0.0063660.067*
C24−0.3832(5)0.8247(5)−0.0039(2)0.0479(13)
H24−0.4167850.831225−0.0450010.057*
C25−0.3810(5)0.7199(4)0.0331(2)0.0413(11)
H25−0.4153470.6534860.0181840.050*
C26−0.3290(5)0.7095(4)0.0923(2)0.0349(10)
H26−0.3275450.6357340.1176020.042*
C31−0.0366(4)0.8671(3)0.18075(18)0.0218(8)
C320.0816(4)0.8290(3)0.13536(19)0.0264(8)
H320.0644160.7730930.1079220.032*
C330.2250(5)0.8722(3)0.1298(2)0.0296(9)
H330.3059020.8446000.0992510.036*
C340.2500(5)0.9552(3)0.1688(2)0.0310(9)
H340.3475850.9852760.1645590.037*
C350.1338(5)0.9941(4)0.2134(2)0.0332(10)
H350.1515351.0510180.2401630.040*
C36−0.0105(5)0.9507(3)0.2200(2)0.0273(9)
H36−0.0905130.9779630.2510930.033*
C41−0.0590(4)0.2464(3)0.37704(18)0.0190(7)
C42−0.1464(4)0.2436(3)0.4371(2)0.0269(9)
H42−0.1072920.2703270.4719490.032*
C43−0.2909(4)0.2016(3)0.4458(2)0.0323(10)
H43−0.3499550.1980220.4867360.039*
C44−0.3483(4)0.1650(3)0.3944(2)0.0331(10)
H44−0.4477120.1375730.4003530.040*
C45−0.2639(4)0.1678(3)0.3351(2)0.0290(9)
H45−0.3052530.1429480.3003160.035*
C46−0.1170(4)0.2072(3)0.3261(2)0.0255(8)
H46−0.0569500.2071560.2853800.031*
C510.1976(4)0.2931(3)0.43882(18)0.0193(7)
C520.2563(4)0.1807(3)0.46122(19)0.0252(8)
H520.2556850.1166040.4365640.030*
C530.3153(4)0.1616(4)0.5189(2)0.0302(9)
H530.3544550.0845410.5339670.036*
C540.3174(4)0.2546(4)0.5549(2)0.0329(10)
H540.3582560.2412350.5945490.039*
C550.2608(5)0.3660(4)0.5335(2)0.0342(10)
H550.2631300.4295570.5582580.041*
C560.2001(5)0.3861(4)0.4756(2)0.0290(9)
H560.1603410.4632740.4611320.035*
  1. aOccupancy: 0.639(8), bOccupancy: 0.361(8), cOccupancy: 0.665(9), dOccupancy: 0.335(9).

Source of material

NaOH (Merck; 0.020 g, 0.50 mmol) in water (5 mL) was added to a suspension of (Ph2P(CH2)4PPh2)(AuCl)2 (0.229 g, 0.25 mmol) in acetonitrile (20 mL), followed by the addition of MeOC(=S)N(H)C6H4F-3 (0.093 g, 0.50 mmol) [5] in acetonitrile (20 mL) and stirred for 3 h. The resulting mixture was left for slow evaporation at room temperature, yielding crystals after 3 weeks. Yield: 0.229 g (77%). M. pt (Biobase automatic melting point apparatus MP450): 410–411 K. Elemental Analysis for C44H42Au2F2N2O2P2S2 (Leco TruSpec Micro CHN Elemental Analyser): C, 44.45; H, 3.56; N, 2.36%. Found: C, 44.71; H, 3.72; N, 2.10%. IR (Bruker Vertex 70v FTIR Spectrophotometer; cm−1): 1575 (s) ν(C=N), 1122 (s) ν(C—O), 1106 (s) ν(C—S). 1H NMR (Bruker Ascend 400 MHz NMR spectrometer with chemical shifts relative to tetramethylsilane in CDCl3 solution at 298 K, ppm): δ 7.58–7.41 (m, br, 20H, Ph2P), 6.95 (dt, 2H, aryl-H5, 4JHF = 6.80 Hz, 3JHH = 7.42 Hz), 6.60–6.56 (m, br, 4H, aryl-H2,6), 6.43–6.39 (m, br, 2H, aryl-H4), 3.88 (s, 6H, OCH3), 2.30 (s, br, 4H, PCH2), 1.67 (s, br, 4H, PCH2CH2). 13C{1H} NMR (as for 1H NMR): δ 165.5 (Cq), 163.1 (d, aryl-C3, 1JCF = 244.50 Hz), 152.9 (d, aryl-C1, 3JCF = 9.80 Hz), 133.2 (d, m-PC6H5, 3JCP = 13.43 Hz), 131.8 (p-PC6H5), 129.8 (d, aryl-C5, 3JCF = 9.54 Hz), 130.1 (d, i-PC6H5, 1JCP = 52.72 Hz), 129.2 (d, o-PC6H5, 2JCP = 11.09 Hz), 117.9 (d, aryl-C6, 4JCF = 2.51 Hz), 109.2 (d, aryl-C2, 2JCF = 21.95 Hz), 109.0 (d, aryl-C4, 2JCF = 21.19 Hz), 55.5 (OCH3), 27.8 (d, PCH2, 1JCP = 34.01 Hz), 26.9 (d, PCH2CH2, 2JCP = 17.70 Hz). 31P{1H} NMR (as for 1H NMR but with chemical shift referenced to 85% aqueous H3PO4 as the external reference): δ 32.9.

Experimental details

The C-bound H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The maximum and minimum residual electron density peaks of 1.36 and 0.85 eÅ−3, respectively, were located 0.78 and 0.67 Å, from the Au2 and S2 atoms, respectively. Each of the 3-fluorophenyl rings was disordered over two co-planar orientations so the C atoms were exactly coincident but, two positions were apparent for the F atoms; the latter were refined independently. At the conclusion of the refinement, the major component of the F1- and F2-rings had a site occupancy factor of 0.639(8) and 0.665(9), respectively.

Comment

Phosphane gold(I) thioamide molecules of the general formula R3PAu[SC(OR′)=NAr] and their binuclear analogues are a well-studied class of compound [6], [7] owing, in part, to their biological activity against cancerous cells [8] and Gram-positive bacteria [9]. The compounds are relatively easy to prepare and furnish crystals readily. For example, the 3 × 3 matrix of crystals (dppb){Au[SC(OR)=NC6H4Y-4]}2 for R = Me, Et or iPr and Y = H, NO2 or Me has been studied [10]; dppb is Ph2P(CH2)4PPh2. The specific motivation for the preparation of the title binuclear dppb molecule, i.e. (dppb){Au[SC(OMe)=N(C6H4F-3)]}2 (I), with a fluorinated phenyl ring in the thiolate ligand arose from investigations into biological activity [5]. Herein, the crystal and molecular structures of (I) are described.

The molecular structure of the binuclear species in (I) is shown in the figure (50% displacement ellipsoids; the minor components of the disordered fluorophenyl rings are omitted for clarity). The Au1 atom is coordinated by thiolate-S1 [2.2933(10) Å] and phosphane-P1 [2.2552(10) Å] atoms which define a linear geometry with P1—Au1—S1 = 173.96(3)°. The equivalent parameters for the Au2 atom are Au2—S2 = 2.3097(11) Å, Au2—P2 = 2.2505(10) Å and P2—Au2—S2 = 174.67(3)°, indicating a close similarity. The mode of coordination of the thiolate ligand and the gold atom coordination geometry in (I) is as found in all previous studies [5], [6], [7], [10]. The most notable feature of the molecular structure is the relative orientation of the thiolate ligands. For the Au1 atom, the aryl ring is disposed to be proximate to the gold atom with the Au⋯Cg(C2–C7) separation being 3.70 Å. A different disposition is noted for the second thiolate ligand arising from a rotation about the C—S bond which is now orientated to place the O2 atom in close proximity to the Au2 atom with the Au2⋯O2 separation being 3.172(4) Å. While both orientations have been observed previously [7], this is the first instance where both Au⋯π and Au⋯O interactions occur within the same molecule. However, there are conformational polymorphs for specific molecules, i.e. Ph3PAu[SC(OEt)=NPh], with intramolecular Au⋯O [11] and Au⋯π [12] interactions, and for (4-tolyl)3PAu[SC(OEt)=NC6H4NO2-4] with Au⋯O [13] and Au⋯π [14] contacts; the recently determined tetrahydrofuran (1/1) solvate of this compound features an intramolecular Au⋯O contact [15]. DFT calculations suggest the Au⋯π interaction is favoured over Au⋯O by about 6 kcal/mol [16].

A detailed analysis of the molecular packing for (I) is precluded owing to the disorder in the 3-fluorophenyl rings. Weak Au⋯S contacts [Au2⋯S1i = 3.5979(10) Å for symmetry operation (i) 1 + x, −1 + y, z] connect molecules into a linear supramolecular chain along [1 −2 0]. The chains are connected into layers in the ab-plane by methylene-C—H⋯π(F-phenyl) [C12—H12b⋯Cg(C2–C7)ii = 2.66 Å with angle at H12b = 163° for (ii) 1 + x, y, z] and methyl-C—H⋯π(P-phenyl) [C8—H8b⋯Cg(C41–C46)iii = 2.70 Å with angle at H8b = 142° for (iii) −1 + x, 1 + y, z] interactions. The primary interactions between layers to consolidate the three-dimensional packing involve the disordered F atoms and are of the type C—H⋯F and F⋯π.

Acknowledgements

This research was supported by the Trans-disciplinary Research Grant Scheme (TR002-2014A) provided by the Ministry of Education, Malaysia. Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001-2019.

References

1. Agilent Technologies. CrysAlisPRO. Agilent Technologies, Santa Clara, CA, USA (2014).Search in Google Scholar

2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Search in Google Scholar PubMed PubMed Central

4. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45 (2012) 849–854.10.1107/S0021889812029111Search in Google Scholar

5. Yeo, C. I.; Tan, S. L.; Kwong, H. C.; Tiekink, E. R. T.: [(Z)-N-(3-Fluorophenyl)-O-methylthiocarbamato-κS]-(triphenylphosphane-κP)gold(I): crystal structure, Hirshfeld surface analysis and computational study. Acta Crystallogr. E76 (2020) 1284–1290.10.1107/S2056989020009469Search in Google Scholar PubMed PubMed Central

6. Ho, S. Y.; Cheng, E. C.-C.; Tiekink, E. R. T.; Yam, V. W.-W.: Luminescent phosphine gold(I) thiolates: correlation between crystal structure and photoluminescent properties in [R3PAu{SC(OMe)=NC6H4NO2-4}] (R = Et, Cy, Ph) and [(Ph2P-R-PPh2){AuSC(OMe)=NC6H4NO2-4}2] (R = CH2, (CH2)2, (CH2)3, (CH2)4, Fc). Inorg. Chem. 45 (2006) 8165–8174.10.1021/ic0608243Search in Google Scholar PubMed

7. Kuan, F. S.; Ho, S. Y.; Tadbuppa, P. P.; Tiekink, E. R. T.: Electronic and steric control over Au⋯Au, C—H⋯O and C—H⋯π interactions in the crystal structures of mononuclear triarylphosphinegold(I) carbonimidothioates: R3PAu[SC(OMe)=NR′] for R = Ph, o-tol, m-tol or p-tol, and R′ = Ph, o-tol, m-tol, p-tol or C6H4NO2-4. CrystEngComm 10 (2008) 548–564.10.1039/b717198fSearch in Google Scholar

8. Ooi, K. K.; Yeo, C. I.; Mahandaran, T.; Ang, K. P.; Akim, A. M.; Cheah, Y.-K.; Seng, H.-L.; Tiekink, E. R. T.: G2/M cell cycle arrest on HT-29 cancer cells and toxicity assessment of triphenylphosphanegold(I) carbonimidothioates, Ph3PAu[SC(OR)=NPh], R = Me, Et, and iPr, during zebrafish development. J. Inorg. Biochem. 166 (2017) 173–181.10.1016/j.jinorgbio.2016.11.008Search in Google Scholar PubMed

9. Yeo, C. I.; Sim, J.-H.; Khoo, C.-H.; Goh, Z.-J.; Ang, K.-P.; Cheah, Y.-K.; Fairuz, Z. A.; Halim, S. N. B. A.; Ng, S. W.; Seng, H.-L.; Tiekink, E. R. T.: Pathogenic Gram-positive bacteria are highly sensitive to triphenylphosphanegold(O-alkylthiocarbamates), Ph3PAu[SC(OR)=N(p-tolyl)] (R = Me, Et and iPr). Gold Bull. 46 (2013) 145–152.10.1007/s13404-013-0091-zSearch in Google Scholar

10. Ho, S. Y.; Tiekink, E. R. T.: Supramolecular aggregation patterns in the crystal structures of the dinuclear phosphinegold(I) thiolates, [(Ph2P(CH2)4PPh2){AuSC(OR)=NC6H4Y-4}2] for R = Me, Et or iPr and Y = H, NO2 or Me: the influence on intermolecular interactions exerted by R and Y. CrystEngComm 9 (2007) 368–378.10.1039/B700295ESearch in Google Scholar

11. Hall, V. J.; Tiekink, E. R. T.: Crystal structure of triphenylphosphine(N-phenyl-O-ethylthiocarbamato)gold(I), (C6H5)3PAu(SC(=NPh)OEt). Z. Kristallogr. Cryst. Mater. 203 (1993) 313–315.10.1524/zkri.1993.203.Part-2.313Search in Google Scholar

12. Yeo, C. I.; Tan, S. L.; Otero-de-la-Roza, A.; Tiekink, E. R. T.: A conformational polymorph of Ph3PAu[SC(OEt)=NPh] featuring an intramolecular Au⋯π interaction. Z. Kristallogr. Cryst. Mater. 231 (2016) 653–661.10.1515/zkri-2016-1988Search in Google Scholar

13. Kuan, F. S.; Jotani, M. M.; Tiekink, E. R. T.: New monoclinic form of {O-ethyl N-(4-nitrophenyl)thiocarbamato-κS}-(tri-4-tolylphosphane-κP)gold(I): crystal structure and Hirshfeld surface analysis. Acta Crystallogr. E74 (2017) 1465–1471.10.1107/S2056989017012865Search in Google Scholar

14. Broker, G. A.; Tiekink, E. R. T.: [O-Ethyl N-(4-nitrophenyl)thiocarbamato-κS](tri-p-tolylphosphine-κP)gold(I). Acta Crystallogr. E64 (2008) m1582.10.1107/S1600536808038257Search in Google Scholar PubMed PubMed Central

15. Kuan, F. S.; Tiekink, E. R. T.: Crystal structure of [O-ethyl N-(4-nitrophenyl)thiocarbamato-κS](tri-4-tolylphosphine-κP)gold(I) tetrahydrofuran solvate, C30H30AuN2O3PS, C4H8O. Z. Kristallogr. NCS 235 (2020) 1267–1269.10.1515/ncrs-2020-0318Search in Google Scholar

16. Yeo, C. I.; Khoo, C.-H.; Chu, W.-C.; Chen, B.-J.; Chu, P.-L.; Sim, J.-H.; Cheah, Y.-K.; Ahmad, J.; Halim, S. N. A.; Seng, H.-L.; Ng, S. W.; Otero-de-la-Roza, A.; Tiekink, E. R. T.: The importance of Au⋯π(aryl) interactions in the formation of spherical aggregates in binuclear phosphanegold(I) complexes of a bipodal thiocarbamate dianion: A combined crystallographic and computational study, and anti-microbial activity. RSC Adv. 5 (2015) 41401–41411.10.1039/C5RA05604GSearch in Google Scholar

Received: 2020-07-14
Accepted: 2020-08-12
Published Online: 2020-08-21
Published in Print: 2020-10-27

©2020 Chien Ing Yeo et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. Crystal structure of poly[tetraaqua-bis(μ4-5-(4-carboxy-benzylamino)-isophthalato-κ4O,O′:O′′:O′′′)-(μ2-4,4′-di(1H-imidazol-1-yl)-1,1′-biphenyl-κ2N:N′)dicadmium(II)], C25H22N3O8Cd
  3. The crystal structure of 2-(2-(2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-2-ium-1-yl)phenoxy)acetate, C19H18N2O3
  4. Crystal structure of poly[aqua-μ2-4,4′-bipyridine-κ2N:N′)-μ2-bis(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetato-κ2O,O′)zinc(II)], C38H28Cl4N4O4Zn
  5. Crystal structure of 1-(2-(1H-indol-3-yl)ethyl)-4-benzyl-3-hydroxy-3,6-diphenylpiperazine-2,5-dione, C33H29N3O3
  6. The crystal structure 2,2′-bipyridine-κ2N,N′-(2-(3-amino-4-chlorobenzoyl)benzoato-κ1O)-(2-(3-amino-4-chlorobenzoyl)benzoato-κ2O,O′)zinc(II) — ethanol (1/1), C40H32Cl2N4O7Zn
  7. Crystal structure of catena-poly[(μ3-2-carboxy-4-(3-carboxy-5-carboxylatophenoxy)benzoato-κ3O:O′:O′′)-bis(μ2-4,4′-bis(pyrid-4-yl)biphenyl-k1N)copper(II)], C60H40N4O9Cu
  8. The crystal structure of dimethylammonium catena-[di(μ-aqua)-bis(μ9-benzene-1,3,5-tricarboxylato)pentalithium], C20H16Li5NO13
  9. Crystal structure of tetraaqua-bis(3,5-di(pyridin-4-yl)-1,2,4-triazol-1-ido-κ1N)nickel(II) dihydrate, C24H28O6N10Ni
  10. The crystal structure of tetrakis(1-methylimidazole-κ1N)-oxido-(sulfato-κ1O)vanadium(IV), C16H24N8O5SV
  11. Crystal structure of methyl 2-(6,11-dioxo-2,3,6,11-tetrahydro-1H-benzo[f]pyrrolo[2,1-a]isoindole-5-carbonyl)benzoate, C24H17NO5
  12. Crystal structure of (E)-N′-(2-hydroxy-4-(2-(piperidin-1-yl)ethoxy)benzylidene) nicotinohydrazide monohydrate, C20H24N4O3 ⋅ H2O
  13. Crystal structure of poly[bis(μ3-(1-(3,5-di(1H-imidazol-1-yl)phenyl)-1H-imidazole-κ3N:N′:N′′)cobalt(II)] dinitrate — N,N-dimethylformamide (1/4), C42H52N18O10Co
  14. The crystal structure bis{hexakis(1-methyl-1H-imidazole-κ1N)cobalt(II)} tetrakis(μ3-oxido)-octakis(μ2-oxido)-tetradecaoxido-octamolybdate(VI), C24H36CoMo4N12O13
  15. Crystal structure of di-μ-nicotinato-κ2N:O; κ2O:N-bis-[aqua-bis(benzyl)(nicotinato-κ2O,O′)tin(IV)], C52H48N4O10Sn2
  16. Crystal structure of dichlorido-bis[2-(2-(3-(pyridin-2-yl)-1H-1,2,4-triazol-5-yl)phenoxy)benzoic acidmanganese(II) monohydrate, C40H30N8O7MnCl2
  17. The crystal structure of benzyl 3β-acetylglycyrrhetate, C39H54O5
  18. Synthesis and crystal structure of (E)-1-benzyl-3-(4-methoxystyryl)quinoxalin-2(1H)-one, C24H20N2O2
  19. Crystal structure of trans-dichloridobis(4-chlorophenyl-κC1)(1,10-phenanthroline-κ2N,N′)tin(IV) dimethylsulphoxide solvate, C26H22Cl4N2OSSn
  20. Crystal structure of phenyl(1,3,4a-triphenyl-4a,5,6,10b-tetrahydro-1H-[1,4]oxazino[2,3-c]quinolin-5-yl)methanone, C36H28N2O2
  21. Crystal structure of (4aS,5S,6aS,6a1S, 10aS)-4a,5,6a,6a1,9,10-hexahydro-7H-4,5-methanocyclobuta[4,5]naphtho[8a,1-b]pyran-6(2H)-one, C15H16O2
  22. Crystal structure of [(Z)-O-isopropyl N-(4-chlorophenyl)thiocarbamato-κS]-(triphenylphosphine-κP)-gold(I), C28H26AuClNOPS
  23. Crystal structure of (μ2-1,1′-bis(diphenylphosphino)ferrocene-P,P′)-bis[(Z)-O-isopropyl N-(4-chlorophenyl)thiocarbamato-S]-di-gold(I) acetonitrile di-solvate, C54H50Au2Cl2FeN2O2P2S2⋅2(C2H3N)
  24. Crystal structure of (6aR,6a1S,10aS)-2,4a,6a,6a1,9,10-hexahydro-7H-4,5-methanocyclobuta[4,5]naphtho[8a,1-b]pyran, C15H16O
  25. Crystal structure of 5,17-diformyl-25,26,27,28-tetrahydroxycalix[4]arene- dichloromethane, C31H26Cl2O6
  26. Crystal structure of 2-tert-butyl 1-methyl 5-{4-[(methoxycarbonyl)amino]phenyl}-2,5-dihydro-1H-pyrrole-1,2-dicarboxylate, C19H24N2O6
  27. Crystal structure of [2-carboxybenzene-1-thiolato-S]-(triethylphosphane-P)-gold(I), C13H20AuO2PS
  28. Synthesis and crystal structure of bis(5-methyl-2-aldehyde-phenolato-κ2O1,O2)copper(II), C16H14CuO4
  29. Crystal structure of poly[triaqua-(di(2,2′-bipyridine-κ2N,N′)-μ4-silanetetrayltetrakis(benzene-4,1-diyl)tetrakis (hydrogen phosphonato)-κ4O:O′:O′′:O′′′) dicadmium(II)], C44H42N4O15P4Cd2Si
  30. Crystal structure of bis[μ2-(N,N-diethylcarbamodithioato-κSSS′)]-bis(triethylphosphine-P)-di-silver(I), C22H50Ag2N2P2S4
  31. Crystal structure of bis[μ2-(pyrrolidine-1-carbodithioato-κSSS′)]-bis(triethylphosphine-κP)disilver(I), C22H46Ag2N2P2S4
  32. Crystal structure of bis[μ2-(N-(2-hydroxyethyl)-N-methylcarbamodithioato-κSSS′)]-bis(triethylphosphine-P)-di-silver(I), C20H46Ag2N2O2P2S4
  33. The crystal structure of (2E,2′E)-,2,2′-bis[1-(2-pyrazinyl)ethylidene]carbonimidic dihydrazide, C13H15N9
  34. The crystal structure of (E)-1-(quinolin-2-ylmethyl)-2-((1-(quinolin-2-ylmethyl)pyridin-2(1H)-ylidene)amino)pyridin-1-ium, C30H25BrN5
  35. Crystal structure of catena-poly[(μ2-1-((benzotriazol-1-yl)methyl)-1H-1,3-imdazole-κ2N:N′)-(1-((benzotriazol-1-yl)methyl)-1H-1,3-imdazole-κ1N)-(methanol-κ1O)mercury(II)] dinitrate, C21H22N12O7Hg
  36. Crystal structure of 1-(6-hydroxy-2-phenylbenzofuran-5-yl)ethan-1-one, C16H12O3
  37. The crystal structure of oxonium hexaquaaluminium disulfate hexahydrate
  38. Crystal structure of catena{(μ2-1,10-phenanthroline-κ4N,N,N′,N′)-(μ2-1,10-phenanthroline-κ3N,N,N′)potassium(I) {[bis(2-hydroxyethyl)iminiumyl](sulfanidyl)methyl}sulfanide hemi(1,10-phenanthroline)}, {C24H16KN4, 0.5(C12H8N2), C5H10NO2S2}
  39. Crystal structure of chlorido-[(N,N-di-isobutyl)dithiocarbamato-κ2S,S′]-di(4-methylbenzyl-κC)tin(IV), C25H36ClNS2Sn
  40. Crystal structure of chlorido-(η5-pentamethylcyclopentadienyl)-(4-chloro-4-pyridyl-2,2′:6′,2′′-terpyridine-κ2N,N′) rhodium(III) hexaflourophosphate, C31H29Cl2F6N3PRh
  41. The crystal structure of catena-poly[bis-(3,5-dinitro-1,2,4-triazolato-κ2N:O)-(μ2-1,4-bis(1-imidazolyl)benzene-κ2N:N′)copper(II)], C16H10CuN14O8
  42. Crystal structure of poly[triaqua-bis(μ3-3,3′-((5-carboxylato-1,3-phenylene)bis(oxy))dibenzoato)-tris(1,10-phenanthroline)cobalt(II)], C78H46N6O20Co3
  43. The crystal structure of 2,4-dihydroxybenzoic acid–nicotinamide–methanol (1/1/1), C15H18N2O6
  44. The crystal structure of aqua{N,N,N′,N′-tetrakis[(1H-benzimidazol-κN3) methyl]cyclohexane-1,2-diamine}lead(II) diacetate–methanol (1/2), C44H54N10O7Pb
  45. Crystal structure of (2-amino-5-bromo-3-iodophenyl)(3-(4-chlorophenyl)oxiran-2-yl)methanone, C15H10BrClINO2
  46. Synthesis and crystal structure of 3-octyl-5,5-diphenylimidazolidine-2,4-dione, C23H28N2O2
  47. Synthesis and crystal structure of 2-azido-N-(4-nitrophenyl)acetamide, C8H7N5O3
  48. Crystal structure of tert-butyl (1S,2R,5R)-2-(hydroxymethyl)-4-(4-methoxyphenyl)-6-oxa-3-azabicyclo[3.1.0]hexane-3-carboxylate, C17H23NO5
  49. Crystal structure of 4-[(4-methoxy-2-nitrophenyl)carbamoyl]butanoic acid, C12H14N2O6
  50. Crystal structure of 3-ethyl-1-[(E)-[(2E)-3-phenylprop-2-en-1-ylidene]amino]thiourea, C12H15N3S
  51. Crystal structure of 4,4′-bipyridin-1,1′-dium poly[bis(μ4-benzene-1,3,5-triyltris(hydrogen phosphonato-κ4O:O′:O′′:O′′′))zinc(II)], C11H11NO9P3Zn
  52. Crystal structure of (μ2-1,1′-bis(diphenylphosphino)butane-κ2P,P′)-bis[(Z)-N-(3-fluorophenyl)-O-methylthiocarbamato-κS]-di-gold(I), C44H42Au2F2N2O2P2S2
  53. Crystal structure of (μ2-1,1′-bis(diphenylphosphino)hexane-κ2P,P′)-bis[(Z)-N-(3-fluorophenyl)-O-methylthiocarbamato-κS]digold(I), C46H46Au2F2N2O2P2S2
  54. Crystal structure of tetrakis (N-(2-hydroxyethyl)-N-isopropylcarbamodithioato-κS,S′)-(μ2(2-(pyridin-4-yl)vinyl)pyridine-κN,N′)dicadmium(II), C36H58Cd2N6O4S8
  55. Crystal structure of 4-(2-(benzo[b]thiophen-2-yl)-3,3,4,4,5,5-hexafluorocyclopent-1-en-1-yl)-1,5-dimethyl-1H-pyrrole-2-carbonitrile, C20H12F6N2S
  56. Crystal structure of bis(octahydrocyclopenta[c]pyrrolium)pentachlorobismuthate(III), (C7NH14)2BiCl5
  57. The crystal structure of diaqua-tris(nitrato-κ2O,O′)-bis(4,4,5,5-tetramethyl-2-(p-pyridyl)imidazoline-1-oxyl 3-oxide-κN)samarium(III), C24H36N9O15Sm
  58. Synthesis and crystal structure of methyl 2-(2-((tert-butoxycarbonyl)amino)phenyl)-2-(4-oxo-4H-chromen-3-yl)acetate, C23H23NO6
  59. Crystal structure of O-hexyl benzoylcarbamothioate, C14H19NO2S
  60. Crystal structure of chlorido-(O-methyl phenylcarbamothioamide-κS)-bis(triphenylphosphane-κP)silver(I), C44H39AgClNOP2S
  61. Crystal structure of chlorido-(O-ethyl phenylcarbamothioamide-κS)-bis(triphenylphosphane-κP)-silver(I), C45H41AgClNOP2S
  62. Crystal structure of 4-[(2-methoxyphenyl)carbamoyl]butanoic acid, C12H15NO4
  63. Crystal structure of ethyl 4-methyl-2-oxo-5-phenyl-1,3,4-oxadiazinane-3-carboxylate, C13H16N2O4
  64. Crystal structure of catena-poly[diaqua(μ2-2-(hydroxymethyl)-1H-imidazole-4,5-dicarboxylato)cadmium(II)], C6H8CdN2O7
  65. Crystal structure of (1S)-N-(chloromethyl)-1-((4S,6aR,8aS, 8bR,9aR)-4-methoxy-6a,8a-dimethyl-1,3,4, 5,6,6a,6b,7,8,8a,9a,10,10a,10b-tetradecahydro-8bH-naphtho[2′,1′:4,5] indeno[1,2-b]oxiren-8b-yl)-N-methylethan-1-amine, C24H46ClNO5
  66. Crystal structure of 4-[(3,5-dichlorophenyl)carbamoyl]butanoic acid, C11H11Cl2NO3
  67. Crystal structure of (2Z)-2-amino-3-[(E)-[(2,4-dihydroxyphenyl)methylidene]-amino]but-2-enedinitrile, C11H8N4O2
  68. Crystal structure of 3-methyl-1-[(E)-(4-phenylbutan-2-ylidene)amino]thiourea, C12H17N3S
  69. Crystal structure of carbonyl{hydridotris[3-phenyl-5-methylpyrazol-1-yl]borato-κ3N,N′N′′}copper(I), C31H28BCuN6O
  70. Crystal structure of ethane-1,2-diylbis(diphenylphosphine oxide) – dihydrogenperoxide (1/2), C26H28O6P2
  71. Crystal structure of 2-(pyridin-2-ylamino)pyridinium chloride dibenzyldichlorostannane, [C10H10N3]Cl, C14H14Cl2Sn
  72. Crystal structure of 4-[(3-methoxyphenyl)carbamoyl]butanoic acid, C12H15NO4
  73. Crystal structure of dichlorido-bis(tri-4-tolylphosphane oxide-κO)-di(4-chlorophenyl-κC)tin(IV), C54H50Cl4O2P2Sn
  74. Crystal structure of dichloridodimethylbis(tri-4-tolylphosphane oxide-κO)-tin(IV), C44H48Cl2O2P2Sn
  75. Crystal structure of chlorido(2-methylquinolin-8-olato-κ2N,O)-bis(4-tolyl-κC)tin(IV), C24H22ClNOSn
  76. Crystal structure of (E)-dichloro(1-chloro-3-methoxyprop-1-en-2-yl)(4-methoxyphenyl)-λ4-tellane, C11H13Cl3O2Te
  77. Crystal structure of bis{N-methyl-N′-[3-(4-methoxyphenyl)-1-methylpropane-1-ylidene]carbamohydrazonothioato}zinc(II), C26H36N6O2S2Zn
  78. Crystal structure of (2-carboxy-4-(3-carboxy-5-carboxylatophenoxy)benzoato-κ2O,O′)bis(1,10-phenantroline-κ2N,N′)cobalt(II), C40H24N4O9Co
  79. The crystal structure of (3S,8R,10R,14R)-17-((2S,5S)-5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)-4,4,8,10,14-pentamethyl-12-oxohexadecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate, C32H52O5
  80. Crystal structure of (μ2-1,1′-bis(diphenylphosphino)ferrocene-κ2P,P′)-bis[(Z)N-(3-fluorophenyl)-O-methylthiocarbamato-S]digold(I) chloroform solvate, C50H42Au2F2FeN2O2P2S2, CHCl3
  81. Crystal structure of poly[bis(μ2-1,4-di(1H-imidazol-1-yl)benzene-κ2N:N′)-(μ2-tetraoxidomolybdato(VI)-κ2O:O′)cobalt(II)], C24H20N8O4MoCo
Downloaded on 3.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0353/html
Scroll to top button