Startseite Naturwissenschaften Crystal structure of bis(2-hydroxy-6-((phenylimino)methyl)phenolato-κ2N,O)copper(II), C26H20CuN2O4
Artikel Open Access

Crystal structure of bis(2-hydroxy-6-((phenylimino)methyl)phenolato-κ2N,O)copper(II), C26H20CuN2O4

  • Sulaiman A. Olagboye , Tunde L. Yusuf , Segun D. Oladipo und Sizwe J. Zamisa ORCID logo EMAIL logo
Veröffentlicht/Copyright: 25. Februar 2020

Abstract

C26H20CuN2O4, triclinic, P1̄ (no. 2), a = 5.8633(1) Å, b = 12.2597(2) Å, c = 14.5517(3) Å, α = 82.960(1)°, β = 85.058(2)°, γ = 86.436(4)°, V = 1032.85(3) Å3, Z = 2, Rgt(F) = 0.0264, wRref(F2) = 0.0732, T = 100(2) K.

CCDC no.: 1981110

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Brown block
Size:0.34 × 0.27 × 0.21 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:1.10 mm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω
θmax, completeness:27.2°, 98%
N(hkl)measured, N(hkl)unique, Rint:10918, 4486, 0.016
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3944
N(param)refined:303
Programs:Bruker [1], SHELX [2], [4], Mercury [3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Cu1A0.0000000.0000000.5000000.01162(8)
O1A0.2794(2)0.06831(9)0.49994(8)0.0155(2)
O2A0.6574(2)0.16873(10)0.43926(8)0.0176(2)
H2A0.6136440.1062300.4331780.026*
N1A−0.1134(2)0.06156(11)0.61880(9)0.0128(3)
C1A0.2911(3)0.16679(13)0.52483(11)0.0139(3)
C2A0.4944(3)0.22240(13)0.49234(11)0.0156(3)
C3A0.5244(3)0.32598(14)0.51504(12)0.0184(3)
H3A0.6611950.3619120.4935440.022*
C4A0.3528(3)0.37877(14)0.57001(12)0.0198(4)
H4A0.3711130.4515490.5832600.024*
C5A0.1592(3)0.32559(13)0.60455(11)0.0172(3)
H5A0.0461140.3610740.6430520.021*
C6A0.1261(3)0.21826(13)0.58337(11)0.0144(3)
C7A−0.0576(3)0.15815(13)0.63315(11)0.0141(3)
H7A−0.1457210.1922180.6806950.017*
C8A−0.2848(3)0.00817(13)0.68186(11)0.0140(3)
C9A−0.2524(3)−0.10532(13)0.70552(11)0.0162(3)
H9A−0.118935−0.1436340.6815470.019*
C10A−0.4158(3)−0.16178(14)0.76409(12)0.0188(3)
H10A−0.393659−0.2389350.7803100.023*
C11A−0.6119(3)−0.10634(15)0.79929(12)0.0204(4)
H11A−0.724543−0.1455200.8386900.024*
C12A−0.6420(3)0.00697(15)0.77643(12)0.0202(4)
H12A−0.7746980.0453450.8010400.024*
C13A−0.4788(3)0.06425(14)0.71772(11)0.0169(3)
H13A−0.4999500.1415650.7022040.020*
Cu1B−0.5000000.5000001.0000000.01265(8)
O1B−0.2045(2)0.53186(10)0.94547(8)0.0162(2)
O2B0.1649(2)0.64058(10)0.89172(8)0.0179(2)
H2B0.1037690.6182140.9444320.027*
N1B−0.5416(2)0.40806(11)0.89870(9)0.0140(3)
C1B−0.1618(3)0.55310(13)0.85531(11)0.0139(3)
C2B0.0359(3)0.61322(13)0.82463(11)0.0153(3)
C3B0.0933(3)0.64282(13)0.73172(12)0.0172(3)
H3B0.2246710.6839140.7124350.021*
C4B−0.0432(3)0.61205(14)0.66538(12)0.0184(3)
H4B−0.0076440.6352000.6013010.022*
C5B−0.2281(3)0.54862(14)0.69265(11)0.0168(3)
H5B−0.3151450.5256770.6470220.020*
C6B−0.2900(3)0.51718(13)0.78788(11)0.0145(3)
C7B−0.4635(3)0.43834(13)0.81414(11)0.0145(3)
H7B−0.5247400.4063920.7659410.017*
C8B−0.6941(3)0.31960(13)0.91635(11)0.0146(3)
C9B−0.6580(3)0.24038(14)0.99178(12)0.0185(3)
H9B−0.5315820.2441801.0277190.022*
C10B−0.8076(3)0.15598(14)1.01416(13)0.0221(4)
H10B−0.7819070.1013131.0649070.027*
C11B−0.9947(3)0.15110(14)0.96267(13)0.0207(4)
H11B−1.0985960.0941470.9789800.025*
C12B−1.0294(3)0.22952(14)0.88746(12)0.0189(3)
H12B−1.1569550.2258380.8521080.023*
C13B−0.8788(3)0.31366(13)0.86327(12)0.0165(3)
H13B−0.9018310.3665740.8110420.020*

Source of material

(E)-3-((phenylimino)methyl)benzene-1,2-diol (0.204 g, 0.96 mmol) was added to a stirring methanolic solution of Cu(CH3COO)2⋅H2O (0.100 g, 0.48 mmol) and the mixture stirred for 2 hours. The resulting brown precipitate was filtered and washed with ether and dried under vacuum. Brown, block crystals were obtained by vapour diffusion of hexane into acetone in 7 days. Yield = 0.22 g (94%); FT-IRυ (cm−1): 3351(s), 3047(w), 1604(m), 1545(s), 1451(s), 1323(m), 1241(s), 1323(m), 1241(s), 1078(m), 478(m), 439(w). UV-Vis (CH2Cl2, λmax nm): 289, 392, 571 and 757; C28H24CuN2O4Calculated: C, 63.99%; H, 4.13%; N, 5.74% Found: C, 63.54%; H, 4.01%, N, 5.69%.

Experimental details

The structure was solved using the SHELXT [2] program. The visual crystal structure information was performed using Mercury [4] system software. All C—Haromatic and O—H bond distances were restrained to 0.95 Å, 0.98 Å and 0.99 Å with Uiso(Haromatic) = 1.2Ueq and Uiso(Hhydroxyl) = 1.5Ueq of parent atom, respectively.

Comment

The chemistry of Schiff bases has been studied extensively [5], [6], [7], [8], [9], [10] and they are synthesized by the condensation reaction between aromatic or aliphatic amine with a carbonyl compound [11], [12], [13]. They coordinate through the imine nitrogen present in their functional group (—C(H)=N) together with another group, preferentially not linked to aldehyde or ketone [14], [15]. Myriad applications of Schiff bases and their metal complexes in medicine [10], [16], [17], [18], [19], [20], catalysis [7], [21], [22], [23], corrosion [24], [25], [26], and coordination chemistry [27], [28], [29] have been reported. Specifically, Schiff base copper complexes have investigated as potential anticancer [30], antibacterial [31], antifungal [32], and antioxidant agents [33].

The crystal structure of the title compound has two half-molecules in the asymmetric unit with each consisting of a bidentate (E)-2-hydroxy-6-((phenylimino)methyl)phenolate) ligand and a copper(II) center that lies on an inversion centre. The molecular overlay of the two molecules results in a root mean squared deviation of 0.134 Å with slight differences in molecular conformation arising from the orientations of the anilinyl rings. The metal centers adopt an ideal square planar geometry with O—Cu—O, O—Cu—N and N—Cu—N bond angles of 180.00(2)°, 89.77(5)–90.23(5)° and 180.00(2)°, respectively. Furthermore, dihedral angles between the O1A—Cu1A—N1A and O1Ai—Cu1Ai—N1Ai (symmetry code: − x, − y, 1-z) including the O1B—Cu1B—N1B and O1Bii–Cu1Bii–N1Bii (symmetry code: -1-x, 1-y, 2-z) planes were both found to be 180°. Exchanging the 2-hydroxy substituent on the ligand to a 2-methoxy group [34], significantly distorts the square planar geometry around the copper(II) centre with an observed dihedral angle between the O1—Cu1—N1 and O1i–Cu1i–N1i (symmetry code: − x, y, 1/2 − z) planes of 132.30(7)° [34]. Bond lengths and angles are almost within the expected ranges [35]. In the crystal classical intermolecular O—H⋯O hydrogen bonding patterns were observed between the 2-hydroxy substituent and the coordinated phenolate oxygen atom. Linking neighbouring molecules in this manner, in supramolecular chains that extend along the crystallographic a axis.

Acknowledgements

We thank Ekiti state university and TETFUND for research grant and University of KwaZulu-Natal for the providing the research facilities.

References

1. Bruker. APEXII. Bruker AXS Inc, Madison, WI, USA (2009).Suche in Google Scholar

2. Sheldrick, G. M.: SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr. A64 (2015) 3–8.10.1107/S2053273314026370Suche in Google Scholar

3. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A.: Mercury CSD 2.0 − new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 41 (2008) 466–470.10.1107/S0021889807067908Suche in Google Scholar

4. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Suche in Google Scholar

5. Prakash, A.; Adhikari, D.: Application of Schiff bases and their metal complexes-a review. Int. J. ChemTech. Res. 3 (2011) 1891–1896.Suche in Google Scholar

6. Siddiqi, K.; Kureshy, R.; Khan, N.; Tabassum, S.; Zaidi, S.: Schiff base derived from sulfane thoxazole and salicylaldehyde or thiophene-2-aldehydes. Inorg. Chim. Acta 151 (1988) 95–100.10.1016/S0020-1693(00)91888-7Suche in Google Scholar

7. Tümer, M.; Akgün, E.; Toroǧlu, S.; Kayraldiz, A.; Dönbak, L.: Synthesis and characterization of Schiff base metal complexes: their antimicrobial, genotoxicity and electrochemical properties. J. Coord. Chem. 61 (2008) 2935–2949.10.1080/00958970801989902Suche in Google Scholar

8. Turki, T.; Guerfel, T.; Bouachir, F.: Synthesis and structure of heterodifunctional N,O ligands. C. R. Chim. 12 (2009) 521–526.10.1016/j.crci.2008.06.009Suche in Google Scholar

9. Wesley Jeevadason, A.; Kalidasa Murugavel, K.; Neelakantan, M. A.: Review on Schiff bases and their metal complexes as organic photovoltaic materials. Renew. Sust. Energ. Rev. 36 (2014) 220–227.10.1016/j.rser.2014.04.060Suche in Google Scholar

10. Yousif, E.; Majeed, A.; Al-Sammarrae, K.; Salih, N.; Salimon, J.; Abdullah, B.: Metal complexes of Schiff base: preparation, characterization and antibacterial activity. Arab. J. Chem. 10 (2017) S1639–S1644.10.1016/j.arabjc.2013.06.006Suche in Google Scholar

11. Zhu, X.; Wang, C.; Dang, Y.; Zhou, H.; Wu, Z.; Liu, Z.; Ye, D.; Zhou, Q.: The Schiff base N-salicylidene-O,S-dimethylthiophosphorylimine and its metal complexes: synthesis, characterization and insecticidal activity studies. Synth. React. Inorg. Met.-Org. Chem. 30 (2000) 625–636.10.1080/00945710009351787Suche in Google Scholar

12. Tai, X.; Yin, X.; Chen, Q.; Tan, M.: Synthesis of some transition metal complexes of a novel Schiff base ligand derived from 2,2′-bis (p-methoxyphenylamine) and salicylicaldehyde. Molecules 8 (2003) 439–443.10.3390/80500439Suche in Google Scholar

13. Naeimi, H.; Safari, J.; Heidarnezhad, A.: Synthesis of Schiff base ligands derived from condensation of salicylaldehyde derivatives and synthetic diamine. Dyes Pigments 73 (2007) 251–253.10.1016/j.dyepig.2005.12.009Suche in Google Scholar

14. Salehi, M.; Faghani, F.; Kubicki, M.; Bayat, M.: New complexes of Ni(II) and Cu(II) with tridentate ONO Schiff base ligand: synthesis, crystal structures, electrochemical and theoretical investigation. J. Iran. Chem. Soc. 15 (2018) 2229–2240.10.1007/s13738-018-1412-1Suche in Google Scholar

15. Shit, S.; Sen, S.; Mitra, S.; Hughes, D. L.: Syntheses, characterization and crystal structures of two square-planar Ni (II) complexes with unsymmetrical tridentate Schiff base ligands and monodentate pseudohalides. Transit. Met. Chem. 34 (2009) 269–274.10.1007/s11243-009-9189-9Suche in Google Scholar

16. Salvat, A.; Antonnacci, L.; Fortunato, R. H.; Suárez, E. Y.; Godoy, H.: Screening of some plants from Northern Argentina for their antimicrobial activity. Lett. Appl. Microbiol. 32 (2001) 293–297.10.1046/j.1472-765X.2001.00923.xSuche in Google Scholar PubMed

17. Al Zoubi, W.; Al–Hamdani, A. A. S.; Ahmed, S. D.; Ko, Y. G.: Synthesis, characterization, and biological activity of Schiff bases metal complexes. J. Phys. Org. Chem. 31 (2018) e3752.10.1002/poc.3752Suche in Google Scholar

18. Gudasi, K. B.; Patil, M. S.; Vadavi, R. S.; Shenoy, R. V.; Patil, S. A.; Nethaji, M.: X-ray crystal structure of the N-(2-hydroxy-1-naphthalidene) phenylglycine Schiff base. synthesis and characterization of its transition metal complexes. Transition Met. Chem. 31 (2006) 580–585.10.1007/s11243-006-0031-3Suche in Google Scholar

19. Malik, M. A.; Dar, O. A.; Gull, P.; Wani, M. Y.; Hashmi, A. A.: Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. MedChemComm 9 (2018) 409–436.10.1039/C7MD00526ASuche in Google Scholar

20. Kumar, K. S.; Ganguly, S.; Veerasamy, R.; De Clercq, E.: Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)H-ones. Eur. J. Med. 45 (2010) 5474–5479.10.1016/j.ejmech.2010.07.058Suche in Google Scholar PubMed PubMed Central

21. Champouret, Y. D.; Fawcett, J.; Nodes, W. J.; Singh, K.; Solan, G. A.: Spacially confined M2 centers (M = Fe, Co, Ni, Zn) on a sterically bulky binucleating support: synthesis, structures and ethylene oligomerization studies. Inorg. Chem. 45 (2006) 9890–9900.10.1021/ic061286xSuche in Google Scholar PubMed

22. Liu, X.; Manzur, C.; Novoa, N.; Celedón, S.; Carrillo, D.; Hamon, J.-R.: Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: synthesis, functional materials properties, and applications to catalysis. Coord. Chem. 357 (2018) 144–172.10.1016/j.ccr.2017.11.030Suche in Google Scholar

23. Laidler, D. A.; Milner, D. J.: Asymmetric synthesis of cyclopropane carboxylates: catalysis of diazoacetate reactions by copper(II) Schiff base complexes derived from α-amino acids. J. Organomet. Chem. 270 (1984) 121–129.10.1016/0022-328X(84)80341-1Suche in Google Scholar

24. Elemike, E. E.; Onwudiwe, D. C.; Nwankwo, H. U.; Hosten, E. C.: Synthesis, crystal structure, electrochemical and anti-corrosion studies of Schiff base derived from o-toluidine and o-chlorobenzaldehyde. J. Mol. Struct. 1136 (2017) 253–262.10.1016/j.molstruc.2017.01.085Suche in Google Scholar

25. Nassar, A.; Hassan, A.; Shoeib, M.: Synthesis, characterization and anticorrosion studies of new homobimetallic Co (II), Ni (II), Cu (II), and Zn (II) Schiff base complexes. J. Bio. Tribo. Corros. 1 (2015) 19.10.1007/s40735-015-0019-7Suche in Google Scholar

26. Mohamed, R. R.; Fekry, A.: Antimicrobial and anticorrosive activity of adsorbents based on chitosan Schiffs base. Int. J. Electrochem. Sci. 6 (2011) 2488–2508.Suche in Google Scholar

27. Temel, H.; Ziyadanoǧullari, B.; Aydin, I.; Aydin, F.: Synthesis, spectroscopic and thermodynamic studies of new transition metal complexes with N,N′-bis(2-hydroxynaphthalin-1-carbaldehydene)-1,2-bis(m-aminophenoxy)ethane and their determination by spectrophotometric methods. J. Coord. Chem. 58 (2005) 1177–1185.10.1080/00958970500078890Suche in Google Scholar

28. Di Bernardo, P.; Zanonato, P. L.; Tamburini, S.; Tomasin, P.; Vigato, P. A.: Complexation behaviour and stability of Schiff bases in aqueous solution. the case of an acyclic diimino(amino) diphenol and its reduced triamine derivative. Dalton Trans. 39 (2006) 4711–4721.10.1039/b604211bSuche in Google Scholar PubMed

29. Keypour, H.; Rezaeivala, M.; Valencia, L.; Pérez-Lourido, P.; Khavasi, H. R.: Synthesis and characterization of some new Co(II) and Cd(II) macroacyclic Schiff-base complexes containing piperazine moiety. Polyhedron 28 (2009) 3755–3758.10.1016/j.poly.2009.08.021Suche in Google Scholar

30. Zhang, Z.; Wang, H.; Yan, M.; Wang, H.; Zhang, C.: Novel copper complexes as potential proteasome inhibitors for cancer treatment. Mol. Med. Rep. 15 (2017) 3–11.10.3892/mmr.2016.6022Suche in Google Scholar PubMed

31. You, Z. L.; Zhu, H. L.: Syntheses, crystal structures, and antibacterial activities of four Schiff base complexes of copper and zinc. Z. Anorg. Allg. Chem. 630 (2004) 2754–2760.10.1002/zaac.200400270Suche in Google Scholar

32. Creaven, B. S.; Duff, B.; Egan, D. A.; Kavanagh, K.; Rosair, G.; Thangella, V. R.; Walsh, M.: Anticancer and antifungal activity of copper (II) complexes of quinolin-2(1H)-one-derived Schiff bases. Inorg. Chim. Acta 363 (2010) 4048–4058.10.1016/j.ica.2010.08.009Suche in Google Scholar

33. Pontiki, E.; Hadjipavlou-Litina, D.; Chaviara, A.: Evaluation of anti-inflammatory and antioxidant activities of copper (II) Schiff mono-base and copper (II) Schiff base coordination compounds of dien with heterocyclic aldehydes and 2-amino-5-methyl-thiazole. J. Enzyme Inhib. 23 (2008) 1011–1017.10.1080/14756360701841251Suche in Google Scholar PubMed

34. Lavaee, P.; Eshtiagh-Hosseini, H.; Housaindokht, M. R.; Mague, J. T.; Esmaeili, A. A.; Abnous, K.: Synthesis, characterization and fluorescence properties of Zn(II) and Cu(II) complexes: DNA binding study of Zn(II) complex. J. Fluoresc. 26 (2016) 333–344.10.1007/s10895-015-1719-6Suche in Google Scholar PubMed

35. Mansilla-Koblavi, F.; Tenon, J. A.; Toure, S.; Ebby, N.; Lapasset, J.; Carles, M.: Une serie de N-(2,3-dihydroxybenzilidene)amines: manifestation d’equilibres tautomères. Acta Crystallogr. C51 (1995) 1595–1602.10.1107/S0108270194002945Suche in Google Scholar

Received: 2019-12-09
Accepted: 2020-01-31
Published Online: 2020-02-25
Published in Print: 2020-04-28

©2020 Sulaiman A. Olagboye et al., published by De Gruyter.

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Artikel in diesem Heft

  1. Frontmatter
  2. Crystal structure of catena-poly[(μ2-3-(benzo[d]thiazol-2-yl)-5-carboxybenzoato-κ2N:O)silver(I)], C15H8AgNO4S
  3. Crystal structure of bis(4-phenylpiperazin-1-ium) bis(2-(4-phenylpiperazin-1-yl)succinato-κ2O,O′)copper(II) tetrahydrate, C48H70CuN8O12, [C10H14N2]2[Cu(C14H17N2O4)2] ⋅ 4 H2O
  4. Crystal structure of triaqua-bis(2-(6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylenedecahydronaphthalen-1-yl)-1-(2-oxo-2,5-dihydrofuran-3-yl)ethane-1-sulfonato-κ2O,O′)calcium(II) – ethanol (1/2), C44H76CaO19S2
  5. The crystal structure of ethyl 5-(4-(diphenylamino)phenyl)thiophene-2-carboxylate, C25H21NO2S
  6. The crystal structure of 5-bromo-2-(2-methyl-2H-tetrazol-5-yl)pyridine, C7H6BrN5
  7. The crystal structure of (E)-5-chloro-2-hydroxy-N′-(2-hydroxy-4-methoxybenzylidene)benzohydrazide, C15H13ClN2O4
  8. The crystal structure of (2Z,2′Z)-N′,N′′′′-(pyridine-2,6-dicarbonyl)dipicolinohydrazonamide, C19H17N9O2
  9. Photochromic properties and crystal structure of 3,3′-(perfluorocyclopent-1-ene-1,2-diyl)bis(5-(4-(azidomethyl)phenyl)-2-methylthiophene), C29H20F6N6S2
  10. Crystal structure of aqua-dichlorido-(4-(((3-ethoxy-2-oxidobenzylidene)hydrazono)(oxido)methyl)pyridin-1-ium-κ3N,O,O′)iron(III), C15H16Cl2N3O4Fe
  11. Crystal structure of catena-poly[diaqua-(μ2-4,4′-bipyridine-κ2N:N′)-bis(2,3,4,5-tetrabromo-6-carboxybenzoato-κ1O)-nickel(II)], C26H14Br8NiN2O10
  12. Crystal structure of diethanol-κ1O-bis(μ2-N-((2-oxidonaphthalen-1-yl)methylene)pyrazine-2-carbohydrazonato-κ5N,O,O′:O′:N′)-bis(nitrato-κ2O,O′)dieuropium(III), C36H32N10O12Eu2
  13. The crystal structure of 2-aminoisophthalic acid, C8H7NO4
  14. Crystal structure of (E)-2-(4-((3,4-difluorobenzyl)oxy)styryl)-4,6-dimethoxybenzaldehyde, C24H20F2O4
  15. Crystal structure of 2-benzoylpyrene, C23H14O
  16. Crystal structure of chlorido-(η6-p-cymene)-(N-(2-fluorophenyl)-1-(pyridin-2-yl)methanimine-κ2N,N′)ruthenium(II) – acetone (1/1), C22H23ClN2F7OPRu
  17. The crystal structure of 2-bromoisonicotinic acid, C6H4BrNO2
  18. Crystal structure of 1,3,5,7-tetraphenyl-8-(N-phenylformamido)-2-oxa-5-azabicyclo[4.2.0]oct -3-en-7-yl benzoate, C44H34N2O4
  19. Synthesis and crystal structure of 4-(3-acetyl-5-(thiophen-2-yl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one, C21H21N3O4S
  20. Crystal structure of poly[diaqua-(μ2-4,4′-bipyridine-κ2N:N′)-(μ2-3,4,5,6-tetrafluorophthalato-κ2O:O′)nickel(II)], C18H12F4NiN2O6
  21. Crystal structure of 4-hydroxynaphtho[2,3-b]benzofuran-6,11-dione, C16H8O4
  22. The crystal structure of 3,10-bis(4-methoxyphenyl)-6,12-dibenzyl-2,9-acetyl-6,12-diazapentacyclo[6.3.1.02,7.04,11.05,9]dodecane – acetone (1/1), C45H48N2O5
  23. The crystal structure of (E)-2-(((2-(1H-indol-3-yl)ethyl)iminio)methyl)-6-bromophenolate, C17H15N2BrO
  24. Crystal structure of catena-poly[diaqua-(μ2-oxalyl dihydrazide-κ4N,O:N′,O′)-bis(μ2-pyridine-2,3-dicarboxylato-κ3N,O,O′)dicadmium(II)] hexahydrate, C16H28O18N6Cd2
  25. Crystal structure of poly[tetra-(μ4-naphthalene-1,8-dicarboxylato-κ4O:O,O′: O′′:O′′,O′′′)-(μ4-oxo-κ4O:O:O:O) penta-lead(II)], C48H24O17Pb5
  26. Crystal structure of 5H-dibenzo[c,f][1,5]oxabismocin-12 (7H)-yl acetate, C16H15O3Bi
  27. The crystal structure of 2-(4-chloro-6-nitrophenyl)-1-(4-chloro-3-nitrophenyl)diazene 1-oxide, C12H6Cl2N4O5
  28. Crystal structure of bis(3-methyl-N-(1-(pyrazin-2-yl)ethylidene)benzohydrazonato-κ3O,N,N′)nickel(II), C28H26N8O2Ni
  29. Crystal structure of 3,10-bis(4-chlorophenyl)-6,12-dibenzyl-2,9-acetyl-6,12-diazapentacyclo[6.3.1.02,7.04,11.05,9]-dodecane, C40H36Cl2N2O2
  30. Crystal structure of bis[(μ2-4⋯O,O′:O′)-(4-hydroxybenzoato-κ2O,O′)-(1,10-phenanthroline-κ2N,N′)]-di-lead(II)μ-4-hydroxybenzoato-κ3O,O′:O′3O,O′:O′-bis-[(4-hydroxybenzoato-κ2O,O′)bis(1,10-phenanthroline-κ2N,N′)di-lead(II)] monohydrate, C52H36N4O12Pb2 ⋅ H2O
  31. Crystal structure of poly[diaqua-(μ3-3,4,5,6-tetrafluoro-phthalato-κ3O:O′:O′′)-(μ2-1,2-bis(4-pyridyl)ethene-κ2N:N′)cobalt(II)], C14H9CoF4NO6
  32. Crystal structure of 7-hydroxy-4-phenyl-2H-chromen-2-one, C15H10O3
  33. Crystal structure of 3,7-dimethyl-1-(5-oxohexyl)-3,7-dihydro-1H-purine-2,6-dione 4-hydroxybenzoic acid, C20H24N4O6
  34. Crystal structure of catena-poly[(μ2-1,5-dimethyl-2-phenyl-4-((pyridin-4-ylmethylene)amino)-1,2-dihydro-3H-pyrazol-3-one-κ2N:O)-bis(nitrato-κ1O)zinc(II)], C17H16N6O7Zn
  35. The crystal structure of diaqua-bis(6-aminopicolinato-κ2N,O)magnesium(II), C12H14O6N4Mg
  36. Crystal structure of (pyridine-2-carboxamide-κ2N,O)-[tris((1H-benzo[d]imidazol-2-yl)methyl)amine-κ4N,N′,N′′,N′′′]nickel(II) diperchlorate — methanol (1/3), C33H39Cl2N9NiO12
  37. Crystal structure of catena-poly[diaqua-bis(3-(4-trifluoromethyl-phenyl)-acrylato-κO1)-(μ2-1,4-bis(1-imidazolyl)benzene-κ2N3:N3)cobalt(II)], C32H26CoF6N4O6
  38. Crystal structure of (E)-3-(2-(2-hydroxy-4-methoxystyryl)-3,3-dimethyl-3H-indol-1-ium-1-yl)propane-1-sulfonate monohydrate, C22H25NO5S⋅H2O
  39. The crystal structure of bis(N-oxy-2-(1H-tetrazol-1-yl) acetamide κ2O,O′)-diaqua-zinc(II), C6H12ZnN10O6
  40. Crystal structure of (E)-4-((4-chlorophenylimino)methyl)pyridinium 3,5-dinitrobenzoate, C19H13ClN4O6
  41. Crystal structure of dichlorido-bis((E)-2-((pyridin-4-ylmethylene)amino)phenol)zinc(II), C24H20Cl2N4O2Zn
  42. Crystal structure of cyclo-[tetrachlorido-bis(μ2-p-xylylenediamine-κ2N:N′)dipalladium(II)] dimethyl sulfoxide solvate, C20H36Cl4N4O2Pd2S2
  43. Crystal structure of 4-(3-fluorophenyl)-7-hydroxy-2H-chromen-2-one, C15H9FO3
  44. Crystal structure of (E)-2-((2-(pyrimidin-2-yl)hydrazono)methyl)quinolin-1-ium perchlorate – methanol (1/1), C15H16N5O5Cl
  45. The crystal structure of bis(N-(amino(pyridin-2-yl)methylene)-5-chloro-2-hydroxybenzohydrazonato-κ3N,N′,O)zinc(II) – methanol (2/5), C57H60Cl2N16O13Zn2
  46. Synthesis and crystal structure of 4,4′-di(4-pyridyl)-6,6′-di(tert-butyl)-2,2′-[propylenedioxybis(nitrilomethylidyne)]diphenol, C35H40N4O4
  47. Crystal structure of (3E,3′E)-3,3′-((1,3,4-thiadiazole-2,5-diyl)bis(sulfanediyl))bis(4-hydroxy-4-phenylbut-3-en-2-one), C22H18N2O4S3
  48. Crystal structure of (N-benzyl-N-methyl-dithiocarbamato-κ2S,S′)di(4-chlorobenzyl)chloridotin(IV), C23H22Cl3NS2Sn
  49. Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O6) sodium bromide hydrate, [Na(18-crown-6)]Br ⋅ H2O, C12H26BrNaO7
  50. Crystal structure of 7-ethoxyl-6,8-difluoro-4-oxo-1-phenyl-1,4-dihydro-quinoline-3-carboxylic acid, C18H13F2N1O4
  51. Crystal structure of chlorido (2-(4-ethylphenyl)pyrimidine-k2C,N)(triphenylphosphane-kP) palladium(II), C30H26ClN2PPd
  52. Crystal structure of 18-crown-6 – 1,4-diiodotetrafluorobenzene – acetonitrile (1/1/2), C22H30F4I2N2O6
  53. Crystal structure of diisobutyl 2,5-dihydroxycyclohexa-1,4-diene-1,4-dicarboxylate, C16H24O6
  54. Crystal structure of poly[[tris(μ2-cis-1,2-cyclohexanedicarboxylato)-κ2O, O′]-bis[μ3-1,3,5-tris[(1H-imidazol-1-yl)methyl]benzene-κ3N, N′,N′′]-trizinc(II)] – water (1/20), C60H106N12O32Zn3
  55. The synthesis and crystal structure of 5-amino-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-((trifluoromethyl)sulfinyl)-1H-pyrazole-3-carboxamide–tetrahydrofuran (1/1), C16H14N4Cl2F6O3S
  56. Crystal structure of dimethylbis(diisopropyldithiocarbamato-κ2S,S′)tin(IV), C16H34N2S4Sn
  57. Crystal structure of diisopropyl 2,5-dihydroxycyclohexa-1,4-diene-1,4-dicarboxylate, C14H20O6
  58. The synthesis and crystal structure of ethyl (E)-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-5-((2-methoxybenzylidene)amino)-4-((trifluoromethyl)sulfinyl)-1H-pyrazole-3-carboxylate, C22H15N3Cl2F6O4S
  59. The crystal structure of a matrine derivative, 13-(methylamine-1-yl) carbodithioate matrine, C17H27N3OS2
  60. Crystal structure of bis(2-hydroxy-6-((phenylimino)methyl)phenolato-κ2N,O)copper(II), C26H20CuN2O4
  61. The crystal structure of 2-p-fluorophenyl-5-dihydroxymethyl-1,3,4-oxadiazole, C9H7FN2O3
  62. Crystal structure of dichloridobis(4-chlorophenyl-κC1)(1,10-phenanthroline-κ2N,N′)tin(IV), C24H16Cl4N2Sn
  63. Crystal structure of bis{bromido-triphenyltin(IV)}(μ2-[4,4′-bipyridine]1,1′-dioxide-κ2O:O′), C46H38Br2N2O2Sn2
  64. Crystal structure of 2-(5-chloro-quinolin-8-yloxy)-N-quinolin-8-yl-acetamide, C20H14N3O2Cl
  65. Crystal structure of bis(N-(1-(3-ethylpyrazin-2-yl)ethylidene)-3-hydroxy-2-naphthohydrazonato-κ3N,N′,O)cobalt(II) — dimethylformamide (1/1), C41H41N9O5Co
  66. Crystal structure of bis[2-(1-(3-ethylpyrazin-2-yl)ethylidene)-1-tosylhydrazin-1-ido-κ3-N,N′,O]copper(II), C30H34N8O4S2Cu
  67. Crystal structure of (2-p-tolylpyrimidine-κ2C,N)(triphenylphosphane-κP) palladium(II), C29H24ClN2PPd
  68. Halogen bonding in crystal structure of bis(1,4,7,10-tetraoxacyclododecane-κ4O,O′,O′′,O′′′)cesium triiodide, C16H32CsI3O8
  69. The synthesis and crystal structure of N-(3-cyano-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-(trifluoromethylsulfinyl)-1H-pyrazol-5-yl)-2-phenylacetamide, C20H10N4Cl2F6O2S
  70. The crystal structure of 4-(trifluoromethyl)nicotinic acid, C7H4F3NO2
  71. Crystal structure of 3-(2-methylbenzyl)thiazolidin-2-one, C11H13ONS
  72. The crystal structure of 2,2,2-trifluoro-1-(isoquinolin-1-yl)ethane-1,1-diol, C11H8F3NO2
  73. The crystal structure of 3-bromoisonicotinic acid, C6H4BrNO2
  74. The crystal structure of 5-nitropicolinic acid monohydrate, C6H6N2O5
  75. The crystal structure of 3-(4-hydroxybenzyl)-1,5-dioxaspiro[5.5]undecane-2,4-dione, C16H18O5
  76. Crystal structure of [[Mo3Se7(S2CNEt2)3]2(μ-Se)] ⋅ 2(C6H4Cl2), C42H68Cl4Mo6N6S12Se15
  77. Crystal structure of (E)-4-hydroxy-3-((5-phenyl-1,3,4-oxadiazol-2-yl)thio)pent-3-en-2-one, C13H12N2O3S
  78. The crystal structure of (2,3-dioxo-5,6:13,14-dibenzo-9,10-benzo-1,4,8,11-7, 11-diene-κ4N,N′,N′′,N′′′)-nickel(II), Ni(C22H14N4O2)
  79. Crystal structure of 3-(1-benzyl-2-ethyl-4-nitro-1H-imidazol-5-ylthio)-propanoic acid, C15H17N3O4S
  80. The crystal structure of dichlorobis(2-(dicyclohexylphosphino)-2′,4′,6′-tri-i-propyl-1,1′-biphenyl) palladium(II)-dichloroform, C68H100Cl8P2Pd
  81. Crystal structure and antimicrobial properties of (1,4,7,10-tetraoxacyclododecane-κ4O,O′,O′′,O′′′)cesium(I) pentaiodide, C16H32CsI5O8
Heruntergeladen am 6.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2019-0900/html
Button zum nach oben scrollen