Home Crystal structure of (N-benzyl-N-methyl-dithiocarbamato-κ2S,S′)di(4-chlorobenzyl)chloridotin(IV), C23H22Cl3NS2Sn
Article Open Access

Crystal structure of (N-benzyl-N-methyl-dithiocarbamato-κ2S,S′)di(4-chlorobenzyl)chloridotin(IV), C23H22Cl3NS2Sn

  • Kong Mun Lo , Lee See Mun and Edward R.T. Tiekink ORCID logo EMAIL logo
Published/Copyright: February 7, 2020

Abstract

C23H22Cl3NS2Sn, triclinic, P1̄ (no. 2), a = 9.3954(1) Å, b = 10.2747(1) Å, c = 12.8743(2) Å, α = 99.427(1)°, β = 94.247(1)°, γ = 95.817(1)°, V = 1214.51(3) Å3, Z = 2, Rgt(F) = 0.0167, wRref(F2) = 0.0446, T = 100(2) K.

CCDC no.: 1978269

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless block
Size:0.17 × 0.10 × 0.10 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:13.1 mm−1
Diffractometer, scan mode:Bruker APEXII, φ and ω
θmax, completeness:67.1°, >99%
N(hkl)measured, N(hkl)unique, Rint:28919, 4335, 0.039
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 4229
N(param)refined:272
Programs:Bruker [1], SHELX [2], [3], WinGX and ORTEP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Sn0.24001(2)0.67949(2)0.82179(2)0.01528(5)
Cl10.42842(5)0.69311(4)0.96736(3)0.02267(9)
Cl20.36285(6)0.01355(4)0.62114(4)0.03407(12)
Cl30.20085(7)1.01771(5)1.34520(4)0.03782(13)
S10.43335(4)0.65898(4)0.70412(3)0.01776(9)
S20.13574(4)0.67298(4)0.61763(3)0.01996(9)
N10.36586(15)0.68606(14)0.50664(11)0.0160(3)
C10.31362(18)0.67438(16)0.59734(13)0.0159(3)
C20.51936(19)0.68462(19)0.49239(14)0.0215(4)
H2A0.5695780.7741520.5160100.032*
H2B0.5312610.6555380.4174770.032*
H2C0.5596760.6232220.5341830.032*
C30.27602(19)0.70873(17)0.41364(14)0.0186(3)
H3A0.3214850.7861290.3865800.022*
H3B0.1805860.7293270.4349730.022*
C40.25738(18)0.58852(17)0.32702(13)0.0173(3)
C50.20382(18)0.46468(17)0.34761(14)0.0179(3)
H50.1761700.4562760.4159220.022*
C60.19080(19)0.35366(18)0.26856(15)0.0217(4)
H60.1534980.2695270.2826620.026*
C70.2323(2)0.36537(19)0.16871(15)0.0243(4)
H70.2250580.2890330.1150010.029*
C80.2840(2)0.4883(2)0.14776(14)0.0243(4)
H80.3110270.4964800.0792700.029*
C90.29650(19)0.59963(19)0.22639(14)0.0215(4)
H90.3319450.6838780.2114880.026*
C100.12043(19)0.49561(17)0.84102(14)0.0185(3)
H10A0.1210800.4913120.9173150.022*
H10B0.0193390.4936520.8123960.022*
C110.18183(18)0.37702(17)0.78584(14)0.0171(3)
C120.28872(19)0.31930(17)0.83693(14)0.0200(4)
H120.3243790.3571140.9075420.024*
C130.3443(2)0.20765(17)0.78689(15)0.0215(4)
H130.4176650.1698180.8225460.026*
C140.2912(2)0.15261(17)0.68443(15)0.0219(4)
C150.1855(2)0.20781(18)0.63070(14)0.0227(4)
H150.1499000.1690680.5602620.027*
C160.13256(19)0.32016(18)0.68117(14)0.0198(4)
H160.0616690.3593490.6442040.024*
C170.1694(2)0.87214(18)0.87071(15)0.0237(4)
H17A0.2299180.9398620.8419770.028*
H17B0.0689890.8711320.8408470.028*
C180.1775(2)0.90998(17)0.98866(14)0.0197(4)
C190.2908(2)0.99686(18)1.04470(16)0.0248(4)
H190.3636341.0343081.0074620.030*
C200.2992(2)1.02984(18)1.15419(16)0.0267(4)
H200.3772471.0890891.1918030.032*
C210.1929(2)0.97533(18)1.20727(15)0.0246(4)
C220.0783(2)0.88876(18)1.15467(16)0.0259(4)
H220.0053750.8523691.1924180.031*
C230.0724(2)0.85626(18)1.04539(15)0.0236(4)
H23−0.0051750.7959381.0083600.028*

Source of material

Di(4-chlorobenzyl)tin dichloride was synthesised by the direct reaction of 4-chlorobenzyl chloride (Aldrich) and metallic tin powder (Merck) in toluene according to a literature procedure [5]. The dithiocarbamate ligand was prepared in situ from the reaction of CS2 (Merck 0.25 mmol) with N-methylbenzylamine (Acros, 0.25 mmol) and KOH (0.03 mL; 50% w/v) in methanol solution (15 mL); CS2 was added dropwise. The resulting mixture was kept at 273 K for 0.5 h. Di(4-chlorobenzyl)tin dichloride (0.25 mmol, 0.111 g) in methanol (10 mL) was added to the prepared potassium n-methylbenzyl dithiocarbamate. The resulting mixture was stirred and refluxed for 2 h. The filtrate was evaporated slowly until a beige precipitate was formed. The precipitate was recrystallised from acetone-methanol by slow evaporation to yield colourless crystals. Yield: 0.072 g (47.9%). M.pt (Mel-temp II digital melting point apparatus; uncorrected): 391–392 K. IR (Bruker Vertex 70v FTIR Spectrometer; cm−1): 560 (m) ν(Sn—S), 1499 (s) ν(C—N), 1211 (m) ν(C—S), 1010 (s) ν(C—N). 1H NMR (Bruker Ascend 400 MHz NMR spectrometer; CDCl3; ppm relative to Me4Si): δ 3.00–3.08 (4H,—CH2), 3.17–3.25 (2H, N—CH2), 4.86 (3H, N—CH3), 7.10–7.37 (13H, Ph—H). 13C{1H} NMR (as for 1H NMR): 35.7 (CH2), 42.3 (CH2), 61.4 (CH3) 127.8, 128.3, 128.6, 129.3, 129.7, 133.5, 136.2, 139.4 (Ph—C), 197.8 (CS).

Experimental details

The C-bound H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Comment

Recent structural studies on organotin dithiocarbamate molecules of the general formula R2Sn(S2CNR′R′′)Cl confirm the adoption of very similar structural motifs and the presence of highly distorted five-coordinate geometries [6], [7]. This structural homogeneity matches literature precedents established for R2Sn(S2CNR′R′′)Cl over the years by X-ray crystallography and confirmed by geometry-optimisation calculations for this class of compound [8], [9], [10]. In turns out that the appearance of one structural motif is unusual for organotin dithiocarbamates [10] with a greater variety of coordination geometries known for other organotin dithiocarbamate compounds, R4-nSn(S2CNR′R′′)n, for example, in monoorganotin, RSn(S2CNR′R′′)2Cl [11], and diorganotin, R2Sn(S2CNR′R′′)2 [12], systems. Herein, a new R2Sn(S2CNR′R′′)Cl derivative is characterised crystallographically, namely the species with R = (4-ClC6H4)CH2, R′ = Me and R′′ = PhCH2, hereafter (I). We note that the structure of a Sn derivative with the identical dithiocarbamate ligand has been reported in the literature [13].

The molecular structure of (I) is shown in the figure (70% displacement ellipsoids). The tin atom is coordinated in an asymmetric mode by the dithiocarbamate ligand [Sn—S1 = 2.4535(4) Å and Sn—S2 = 2.7240(4) Å]. The remaining positions in the five-coordinate geometry are occupied by the chloride and two methylene-carbon atoms. The disparity in the Sn—S bond lengths of 0.27 Å is reflected in systematic differences in the associated C—S bond lengths [C1—S1 = 1.7488(17) Å and C1—S2 = 1.7095(17) Å] with the short Sn—S bond being associated with the long C—S, and vice versa. The chloride forms a Sn—Cl1 bond length [2.4572(4) Å] which is intermediate between the Sn—S bonds and lies in a position approximately trans to the S2 atom [Cl1—Sn—S2 = 155.323(14)°], and may account for some of the lengthening of the Sn—S2 bond. This is in fact the widest angle in the C2ClS2 donor set with the narrowest angle being the chelate angle, that is, S1—Sn—S2 = 69.467(13)°. The coordination geometry is highly distorted and this is quantified by the geometric parameter τ [14]. In (I), τ computes to 0.53, a value intermediate between the ideal trigonal-pyramidal and square-pyramidal geometries for which the τ values are 1.0 and 0.0, respectively [14].

In the crystal, there are methylene-C—H⋯π(benzyl-dithiocarbamate) and tin-bound-benzyl-phenyl-C—H⋯π(tin-bound-benzyl) interactions [C10—H10⋯Cg(C4—C9)i: H10⋯Cg(C4—C9)i = 2.60 Å, C10⋯Cg(C4—C9)i = 3.5835(19) Å with angle at H10b = 172° and C22—H22⋯Cg(C11—C16)ii: H22⋯Cg(C11—C16)ii = 2.77 Å, C22⋯Cg(C11—C16)ii = 3.704(2) Å with angle at H22 = 169° for symmetry operations (i) −x, 1 − y, 1 − z and (ii) −x, 1 − y, 2 − z]. These combine with benzyl-C—Cl⋯π(chelate ring) interactions [C14—Cl2⋯Cg (Sn, S1, S2, C1)iii: Cl2⋯Cg (Sn, S1, S2, C1)iii = 3.7583(6) Å, C14⋯Cg (Sn, S1, S2, C1)iii = 4.9363(18) Å with angle at Cl2 = 123.18(6)° for (iii) x, −1 + y, z]. It is noted that chelate rings often participate in supramolecular interactions as has been reviewed recently [15], [16]. In the present case, it is apparent that the Cl2 atom is directed to the centroid of the chelate ring rather than any specific atom with the closest approach being to the C1 atom, at 3.43 Å, a separation greater than the sum of the van der Waals radii of 3.25 Å [17]. The S2CN chromophore is well known to be electron-rich, owing to the significant contribution of the di-thiolate canconical form for dithiocarbamate, that is 2−S2C= N+R′R′′, and it is this characteristic that distinguishes the structural chemistry of dithiocarbamate compounds from other 1,1-dithiolate ligands such as xanthate (S2COR′) and dithiophosphate [S2P(OR′)(OR′′)], resulting in a significantly greater propensity to form C—H⋯π(chelate) interactions compared with other dithiolate ligands [18], [19]. The connections between the double-layer along the a-axis direction are of the type tin-bound-benzyl-C—H⋯Cl(tin-bound) [C12—H12⋯Cl1iv: H12⋯Cl1iv = 2.87 Å, C12⋯Cl1iv = 3.5510(18) Å with angle at H12 = 130° for (iv) 1 − x, 1 − y, 2 − z].

The most prominent surface contacts impacting upon the calculated Hirshfeld surface were obtained from an analysis of the two-dimensional (full and delineated) fingerprint plots performed with Crystal Explorer 17 [20] employing literature protocols [21]. Clearly, the most prevalant surface contacts in the crystal are H⋯H contacts, contributing 38.2% of all surface contacts. These are followed by significant surface contacts of the type Cl⋯H/H⋯Cl [26.8%], consistent with the relatively high number of chloride atoms in the molecule, C⋯H/H⋯C [21.8%], S⋯H/H⋯S [6.7%] and S⋯C/C⋯S [2.3%] and C⋯C [3.0%] contacts.

Acknowledgements

Sunway University Sdn Bhd is thanked for financial support of this work through Grant no. STR-RCTR-RCCM-001-2019.

References

1. Rigaku Oxford Diffraction: CrysAlisPRO. Rigaku Corporation, Oxford, UK (2018).Search in Google Scholar

2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Search in Google Scholar PubMed PubMed Central

4. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.10.1107/S0021889812029111Search in Google Scholar

5. Sisido, K.; Takeda, Y.; Kinugawa, Z.: Direct synthesis of organotin compounds I. di- and tribenzyltin chlorides. J. Am. Chem. Soc. 83 (1961) 538–541.10.1021/ja01464a008Search in Google Scholar

6. Lo, K. M.; Lee, S. M.; Tiekink, E. R. T.: Crystal structure of chlorido-dimethyl-(phenylpiperazine-1-carbodithioato-κ2S, S′)tin(IV), C13H19ClN2S2Sn. Z. Kristallogr. NCS 234 (2019) 1309–1311.10.1515/ncrs-2019-0501Search in Google Scholar

7. Lo, K. M.; Lee, S. M.; Tiekink, E. R. T.: Crystal structure of (N-n-butyl, N-methyl-dithiocarbamato-κ2S,S′)-chlorido-dimethyl-tin(IV), C8H18ClNS2Sn. Z. Kristallogr. NCS 234 (2019) 1313–1315.10.1515/ncrs-2019-0502Search in Google Scholar

8. Buntine, M. A.; Hall, V. J.; Kosovel, F. J.; Tiekink, E. R. T.: Influence of crystal packing on molecular geometry: a crystallographic and theoretical investigation of selected diorganotin systems. J. Phys. Chem. A 102 (1998) 2472–2482.10.1021/jp9728722Search in Google Scholar

9. Tiekink, E. R. T.; Hall, V. J.; Buntine, M. A.: An examination of the influence of crystal structure on molecular structure. The crystal and molecular structures of some diorganotinchloro-(N,N-dialkyldithiocarbamate)s, R2Sn(S2CNR′2)Cl, R = Me, tBu, Ph, Cy; R′2 = (Et)2, (Et, Cy) and (Cy)2: a comparison between solid state and theoretical structures. Z. Kristallogr. – Cryst. Mater. 214 (1999) 124–134.10.1524/zkri.1999.214.2.124Search in Google Scholar

10. Tiekink, E. R. T.: Tin dithiocarbamates: applications and structures. Appl. Organomet. Chem. 22 (2008) 533–550.10.1002/aoc.1441Search in Google Scholar

11. Faizah, A.; Muthalib, A.; Baba, I.; Khaledi, H.; Ali, H. M.; Tiekink, E. R. T.: Structural systematics of RSn(S2CNR′R′′)2Cl compounds. Z. Kristallogr. – Cryst. Mater. 229 (2014) 39–46.10.1515/zkr_i-2013-1682Search in Google Scholar

12. Zaldi, N. B.; Hussen, R. S. D.; Lee, S. M.; Halcovitch, N. R.; Jotani, M. M.; Tiekink, E. R. T.: Secondary bonding in dimethylbis(morpholine-4-carbodithioato-κ2S,S′)tin(IV): crystal structure and Hirshfeld surface analysis. Acta Crystallogr. E73 (2017) 842–848.10.1107/S2056989017006855Search in Google Scholar PubMed PubMed Central

13. Kociok-Köhn, G.; Molloy, K. C.; Sudlow, A. L.: Molecular routes to Cu2ZnSnS4: a comparison of approaches to bulk and thin-film materials. Can. J. Chem. 92 (2014) 514–524.10.1139/cjc-2013-0497Search in Google Scholar

14. Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C.: Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]-copper(II) perchlorate. J. Chem. Soc., Dalton Trans. (1984) 1349–1356.10.1039/DT9840001349Search in Google Scholar

15. Tiekink, E. R. T.: Supramolecular assembly based on “emerging” intermolecular interactions of particular interest to coordination chemists. Coord. Chem. Rev. 345 (2017) 209–228.10.1016/j.ccr.2017.01.009Search in Google Scholar

16. Malenov, D. P.; Janjić, G. V.; Medaković, V. B.; Hall, M. B.; Zarić, S. D.: Noncovalent bonding: stacking interactions of chelate rings of transition metal complexes. Coord. Chem. Rev. 345 (2017) 318–341.10.1016/j.ccr.2016.12.020Search in Google Scholar

17. Spek, A. L.: Structure validation in chemical crystallography. Acta Crystallogr. D65 (2009) 148–155.10.1107/S090744490804362XSearch in Google Scholar PubMed PubMed Central

18. Tiekink, E. R. T.; Zukerman-Schpector, J.: Emerging supramolecular synthons: C—H⋯π(chelate) interactions in metal bis(1,1-dithiolates). Chem. Commun. 47 (2011) 6623–6625.10.1039/c1cc11173fSearch in Google Scholar PubMed

19. Jotani, M. M.; Poplaukhin, P.; Arman, H. D.; Tiekink, E. R. T.: Supramolecular association in (μ2-pyrazine)-tetrakis(N,N-bis(2-hydroxyethyl)-dithiocarbamato)dizinc(II) and its di-dioxane solvate. Z. Kristallogr. – Cryst. Mater. 232 (2017) 287–298.10.1515/zkri-2016-2014Search in Google Scholar

20. Turner, M. J.; Mckinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).Search in Google Scholar

21. Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. E75 (2019) 308–318.10.1107/S2056989019001129Search in Google Scholar PubMed PubMed Central

Received: 2019-12-03
Accepted: 2020-01-16
Published Online: 2020-02-07
Published in Print: 2020-04-28

©2020 Kong Mun Lo et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Articles in the same Issue

  1. Frontmatter
  2. Crystal structure of catena-poly[(μ2-3-(benzo[d]thiazol-2-yl)-5-carboxybenzoato-κ2N:O)silver(I)], C15H8AgNO4S
  3. Crystal structure of bis(4-phenylpiperazin-1-ium) bis(2-(4-phenylpiperazin-1-yl)succinato-κ2O,O′)copper(II) tetrahydrate, C48H70CuN8O12, [C10H14N2]2[Cu(C14H17N2O4)2] ⋅ 4 H2O
  4. Crystal structure of triaqua-bis(2-(6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylenedecahydronaphthalen-1-yl)-1-(2-oxo-2,5-dihydrofuran-3-yl)ethane-1-sulfonato-κ2O,O′)calcium(II) – ethanol (1/2), C44H76CaO19S2
  5. The crystal structure of ethyl 5-(4-(diphenylamino)phenyl)thiophene-2-carboxylate, C25H21NO2S
  6. The crystal structure of 5-bromo-2-(2-methyl-2H-tetrazol-5-yl)pyridine, C7H6BrN5
  7. The crystal structure of (E)-5-chloro-2-hydroxy-N′-(2-hydroxy-4-methoxybenzylidene)benzohydrazide, C15H13ClN2O4
  8. The crystal structure of (2Z,2′Z)-N′,N′′′′-(pyridine-2,6-dicarbonyl)dipicolinohydrazonamide, C19H17N9O2
  9. Photochromic properties and crystal structure of 3,3′-(perfluorocyclopent-1-ene-1,2-diyl)bis(5-(4-(azidomethyl)phenyl)-2-methylthiophene), C29H20F6N6S2
  10. Crystal structure of aqua-dichlorido-(4-(((3-ethoxy-2-oxidobenzylidene)hydrazono)(oxido)methyl)pyridin-1-ium-κ3N,O,O′)iron(III), C15H16Cl2N3O4Fe
  11. Crystal structure of catena-poly[diaqua-(μ2-4,4′-bipyridine-κ2N:N′)-bis(2,3,4,5-tetrabromo-6-carboxybenzoato-κ1O)-nickel(II)], C26H14Br8NiN2O10
  12. Crystal structure of diethanol-κ1O-bis(μ2-N-((2-oxidonaphthalen-1-yl)methylene)pyrazine-2-carbohydrazonato-κ5N,O,O′:O′:N′)-bis(nitrato-κ2O,O′)dieuropium(III), C36H32N10O12Eu2
  13. The crystal structure of 2-aminoisophthalic acid, C8H7NO4
  14. Crystal structure of (E)-2-(4-((3,4-difluorobenzyl)oxy)styryl)-4,6-dimethoxybenzaldehyde, C24H20F2O4
  15. Crystal structure of 2-benzoylpyrene, C23H14O
  16. Crystal structure of chlorido-(η6-p-cymene)-(N-(2-fluorophenyl)-1-(pyridin-2-yl)methanimine-κ2N,N′)ruthenium(II) – acetone (1/1), C22H23ClN2F7OPRu
  17. The crystal structure of 2-bromoisonicotinic acid, C6H4BrNO2
  18. Crystal structure of 1,3,5,7-tetraphenyl-8-(N-phenylformamido)-2-oxa-5-azabicyclo[4.2.0]oct -3-en-7-yl benzoate, C44H34N2O4
  19. Synthesis and crystal structure of 4-(3-acetyl-5-(thiophen-2-yl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one, C21H21N3O4S
  20. Crystal structure of poly[diaqua-(μ2-4,4′-bipyridine-κ2N:N′)-(μ2-3,4,5,6-tetrafluorophthalato-κ2O:O′)nickel(II)], C18H12F4NiN2O6
  21. Crystal structure of 4-hydroxynaphtho[2,3-b]benzofuran-6,11-dione, C16H8O4
  22. The crystal structure of 3,10-bis(4-methoxyphenyl)-6,12-dibenzyl-2,9-acetyl-6,12-diazapentacyclo[6.3.1.02,7.04,11.05,9]dodecane – acetone (1/1), C45H48N2O5
  23. The crystal structure of (E)-2-(((2-(1H-indol-3-yl)ethyl)iminio)methyl)-6-bromophenolate, C17H15N2BrO
  24. Crystal structure of catena-poly[diaqua-(μ2-oxalyl dihydrazide-κ4N,O:N′,O′)-bis(μ2-pyridine-2,3-dicarboxylato-κ3N,O,O′)dicadmium(II)] hexahydrate, C16H28O18N6Cd2
  25. Crystal structure of poly[tetra-(μ4-naphthalene-1,8-dicarboxylato-κ4O:O,O′: O′′:O′′,O′′′)-(μ4-oxo-κ4O:O:O:O) penta-lead(II)], C48H24O17Pb5
  26. Crystal structure of 5H-dibenzo[c,f][1,5]oxabismocin-12 (7H)-yl acetate, C16H15O3Bi
  27. The crystal structure of 2-(4-chloro-6-nitrophenyl)-1-(4-chloro-3-nitrophenyl)diazene 1-oxide, C12H6Cl2N4O5
  28. Crystal structure of bis(3-methyl-N-(1-(pyrazin-2-yl)ethylidene)benzohydrazonato-κ3O,N,N′)nickel(II), C28H26N8O2Ni
  29. Crystal structure of 3,10-bis(4-chlorophenyl)-6,12-dibenzyl-2,9-acetyl-6,12-diazapentacyclo[6.3.1.02,7.04,11.05,9]-dodecane, C40H36Cl2N2O2
  30. Crystal structure of bis[(μ2-4⋯O,O′:O′)-(4-hydroxybenzoato-κ2O,O′)-(1,10-phenanthroline-κ2N,N′)]-di-lead(II)μ-4-hydroxybenzoato-κ3O,O′:O′3O,O′:O′-bis-[(4-hydroxybenzoato-κ2O,O′)bis(1,10-phenanthroline-κ2N,N′)di-lead(II)] monohydrate, C52H36N4O12Pb2 ⋅ H2O
  31. Crystal structure of poly[diaqua-(μ3-3,4,5,6-tetrafluoro-phthalato-κ3O:O′:O′′)-(μ2-1,2-bis(4-pyridyl)ethene-κ2N:N′)cobalt(II)], C14H9CoF4NO6
  32. Crystal structure of 7-hydroxy-4-phenyl-2H-chromen-2-one, C15H10O3
  33. Crystal structure of 3,7-dimethyl-1-(5-oxohexyl)-3,7-dihydro-1H-purine-2,6-dione 4-hydroxybenzoic acid, C20H24N4O6
  34. Crystal structure of catena-poly[(μ2-1,5-dimethyl-2-phenyl-4-((pyridin-4-ylmethylene)amino)-1,2-dihydro-3H-pyrazol-3-one-κ2N:O)-bis(nitrato-κ1O)zinc(II)], C17H16N6O7Zn
  35. The crystal structure of diaqua-bis(6-aminopicolinato-κ2N,O)magnesium(II), C12H14O6N4Mg
  36. Crystal structure of (pyridine-2-carboxamide-κ2N,O)-[tris((1H-benzo[d]imidazol-2-yl)methyl)amine-κ4N,N′,N′′,N′′′]nickel(II) diperchlorate — methanol (1/3), C33H39Cl2N9NiO12
  37. Crystal structure of catena-poly[diaqua-bis(3-(4-trifluoromethyl-phenyl)-acrylato-κO1)-(μ2-1,4-bis(1-imidazolyl)benzene-κ2N3:N3)cobalt(II)], C32H26CoF6N4O6
  38. Crystal structure of (E)-3-(2-(2-hydroxy-4-methoxystyryl)-3,3-dimethyl-3H-indol-1-ium-1-yl)propane-1-sulfonate monohydrate, C22H25NO5S⋅H2O
  39. The crystal structure of bis(N-oxy-2-(1H-tetrazol-1-yl) acetamide κ2O,O′)-diaqua-zinc(II), C6H12ZnN10O6
  40. Crystal structure of (E)-4-((4-chlorophenylimino)methyl)pyridinium 3,5-dinitrobenzoate, C19H13ClN4O6
  41. Crystal structure of dichlorido-bis((E)-2-((pyridin-4-ylmethylene)amino)phenol)zinc(II), C24H20Cl2N4O2Zn
  42. Crystal structure of cyclo-[tetrachlorido-bis(μ2-p-xylylenediamine-κ2N:N′)dipalladium(II)] dimethyl sulfoxide solvate, C20H36Cl4N4O2Pd2S2
  43. Crystal structure of 4-(3-fluorophenyl)-7-hydroxy-2H-chromen-2-one, C15H9FO3
  44. Crystal structure of (E)-2-((2-(pyrimidin-2-yl)hydrazono)methyl)quinolin-1-ium perchlorate – methanol (1/1), C15H16N5O5Cl
  45. The crystal structure of bis(N-(amino(pyridin-2-yl)methylene)-5-chloro-2-hydroxybenzohydrazonato-κ3N,N′,O)zinc(II) – methanol (2/5), C57H60Cl2N16O13Zn2
  46. Synthesis and crystal structure of 4,4′-di(4-pyridyl)-6,6′-di(tert-butyl)-2,2′-[propylenedioxybis(nitrilomethylidyne)]diphenol, C35H40N4O4
  47. Crystal structure of (3E,3′E)-3,3′-((1,3,4-thiadiazole-2,5-diyl)bis(sulfanediyl))bis(4-hydroxy-4-phenylbut-3-en-2-one), C22H18N2O4S3
  48. Crystal structure of (N-benzyl-N-methyl-dithiocarbamato-κ2S,S′)di(4-chlorobenzyl)chloridotin(IV), C23H22Cl3NS2Sn
  49. Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O6) sodium bromide hydrate, [Na(18-crown-6)]Br ⋅ H2O, C12H26BrNaO7
  50. Crystal structure of 7-ethoxyl-6,8-difluoro-4-oxo-1-phenyl-1,4-dihydro-quinoline-3-carboxylic acid, C18H13F2N1O4
  51. Crystal structure of chlorido (2-(4-ethylphenyl)pyrimidine-k2C,N)(triphenylphosphane-kP) palladium(II), C30H26ClN2PPd
  52. Crystal structure of 18-crown-6 – 1,4-diiodotetrafluorobenzene – acetonitrile (1/1/2), C22H30F4I2N2O6
  53. Crystal structure of diisobutyl 2,5-dihydroxycyclohexa-1,4-diene-1,4-dicarboxylate, C16H24O6
  54. Crystal structure of poly[[tris(μ2-cis-1,2-cyclohexanedicarboxylato)-κ2O, O′]-bis[μ3-1,3,5-tris[(1H-imidazol-1-yl)methyl]benzene-κ3N, N′,N′′]-trizinc(II)] – water (1/20), C60H106N12O32Zn3
  55. The synthesis and crystal structure of 5-amino-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-((trifluoromethyl)sulfinyl)-1H-pyrazole-3-carboxamide–tetrahydrofuran (1/1), C16H14N4Cl2F6O3S
  56. Crystal structure of dimethylbis(diisopropyldithiocarbamato-κ2S,S′)tin(IV), C16H34N2S4Sn
  57. Crystal structure of diisopropyl 2,5-dihydroxycyclohexa-1,4-diene-1,4-dicarboxylate, C14H20O6
  58. The synthesis and crystal structure of ethyl (E)-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-5-((2-methoxybenzylidene)amino)-4-((trifluoromethyl)sulfinyl)-1H-pyrazole-3-carboxylate, C22H15N3Cl2F6O4S
  59. The crystal structure of a matrine derivative, 13-(methylamine-1-yl) carbodithioate matrine, C17H27N3OS2
  60. Crystal structure of bis(2-hydroxy-6-((phenylimino)methyl)phenolato-κ2N,O)copper(II), C26H20CuN2O4
  61. The crystal structure of 2-p-fluorophenyl-5-dihydroxymethyl-1,3,4-oxadiazole, C9H7FN2O3
  62. Crystal structure of dichloridobis(4-chlorophenyl-κC1)(1,10-phenanthroline-κ2N,N′)tin(IV), C24H16Cl4N2Sn
  63. Crystal structure of bis{bromido-triphenyltin(IV)}(μ2-[4,4′-bipyridine]1,1′-dioxide-κ2O:O′), C46H38Br2N2O2Sn2
  64. Crystal structure of 2-(5-chloro-quinolin-8-yloxy)-N-quinolin-8-yl-acetamide, C20H14N3O2Cl
  65. Crystal structure of bis(N-(1-(3-ethylpyrazin-2-yl)ethylidene)-3-hydroxy-2-naphthohydrazonato-κ3N,N′,O)cobalt(II) — dimethylformamide (1/1), C41H41N9O5Co
  66. Crystal structure of bis[2-(1-(3-ethylpyrazin-2-yl)ethylidene)-1-tosylhydrazin-1-ido-κ3-N,N′,O]copper(II), C30H34N8O4S2Cu
  67. Crystal structure of (2-p-tolylpyrimidine-κ2C,N)(triphenylphosphane-κP) palladium(II), C29H24ClN2PPd
  68. Halogen bonding in crystal structure of bis(1,4,7,10-tetraoxacyclododecane-κ4O,O′,O′′,O′′′)cesium triiodide, C16H32CsI3O8
  69. The synthesis and crystal structure of N-(3-cyano-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-(trifluoromethylsulfinyl)-1H-pyrazol-5-yl)-2-phenylacetamide, C20H10N4Cl2F6O2S
  70. The crystal structure of 4-(trifluoromethyl)nicotinic acid, C7H4F3NO2
  71. Crystal structure of 3-(2-methylbenzyl)thiazolidin-2-one, C11H13ONS
  72. The crystal structure of 2,2,2-trifluoro-1-(isoquinolin-1-yl)ethane-1,1-diol, C11H8F3NO2
  73. The crystal structure of 3-bromoisonicotinic acid, C6H4BrNO2
  74. The crystal structure of 5-nitropicolinic acid monohydrate, C6H6N2O5
  75. The crystal structure of 3-(4-hydroxybenzyl)-1,5-dioxaspiro[5.5]undecane-2,4-dione, C16H18O5
  76. Crystal structure of [[Mo3Se7(S2CNEt2)3]2(μ-Se)] ⋅ 2(C6H4Cl2), C42H68Cl4Mo6N6S12Se15
  77. Crystal structure of (E)-4-hydroxy-3-((5-phenyl-1,3,4-oxadiazol-2-yl)thio)pent-3-en-2-one, C13H12N2O3S
  78. The crystal structure of (2,3-dioxo-5,6:13,14-dibenzo-9,10-benzo-1,4,8,11-7, 11-diene-κ4N,N′,N′′,N′′′)-nickel(II), Ni(C22H14N4O2)
  79. Crystal structure of 3-(1-benzyl-2-ethyl-4-nitro-1H-imidazol-5-ylthio)-propanoic acid, C15H17N3O4S
  80. The crystal structure of dichlorobis(2-(dicyclohexylphosphino)-2′,4′,6′-tri-i-propyl-1,1′-biphenyl) palladium(II)-dichloroform, C68H100Cl8P2Pd
  81. Crystal structure and antimicrobial properties of (1,4,7,10-tetraoxacyclododecane-κ4O,O′,O′′,O′′′)cesium(I) pentaiodide, C16H32CsI5O8
Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2019-0881/html
Scroll to top button