Home Crystal structure of [[Mo3Se7(S2CNEt2)3]2(μ-Se)] ⋅ 2(C6H4Cl2), C42H68Cl4Mo6N6S12Se15
Article Open Access

Crystal structure of [[Mo3Se7(S2CNEt2)3]2(μ-Se)] ⋅ 2(C6H4Cl2), C42H68Cl4Mo6N6S12Se15

  • Kyra Brakefield , Justin Barnes and James P. Donahue ORCID logo EMAIL logo
Published/Copyright: March 25, 2020

Abstract

C42H68Cl4Mo6N6S12Se15, triclinic, P1̄ (no. 2), a = 13.0196(19) Å, b = 18.813(3) Å, c = 19.745(3) Å, α = 117.446(2)°, β = 99.775(2)°, γ = 98.233(2)°, V = 4091.7(10) Å3, Z = 2, Rgt(F) = 0.0557, wRref(F2) = 0.1618, T = 150 K.

CCDC no.: 1981099

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Red-orange plate
Size:0.28 × 0.24 × 0.05 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:8.04 mm−1
Diffractometer, scan mode:Bruker Smart APEX, φ and ω
θmax, completeness:18.8°, 99%
N(hkl)measured, N(hkl)unique, Rint:18161, 6294, 0.049
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 4913
N(param)refined:706
Programs:Bruker [1], SHELX [2], [3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Mo10.75468(12)0.67740(10)0.93010(9)0.0348(5)
Mo20.85658(11)0.74315(9)0.85183(9)0.0297(5)
Mo30.90012(12)0.60346(10)0.85283(10)0.0402(5)
Mo40.33842(11)0.31420(9)0.52657(8)0.0277(4)
Mo50.50872(12)0.26400(9)0.58065(8)0.0296(5)
Mo60.51298(12)0.30370(9)0.46201(8)0.0295(5)
Se10.65263(13)0.69400(11)0.81834(10)0.0312(5)
Se20.73356(14)0.81721(11)0.93864(11)0.0405(6)
Se30.82727(13)0.60523(11)0.72588(10)0.0356(5)
Se41.00926(14)0.68011(12)0.79561(12)0.0488(6)
Se50.70427(13)0.52705(11)0.81958(10)0.0353(5)
Se60.82136(16)0.55888(13)0.94287(12)0.0570(7)
Se70.95162(16)0.74387(13)0.97361(12)0.0572(7)
Se80.44931(12)0.39015(10)0.67093(9)0.0268(5)
Se90.33157(14)0.25924(11)0.62518(10)0.0365(5)
Se100.65726(13)0.37801(11)0.59444(10)0.0309(5)
Se110.65657(16)0.23851(12)0.50478(11)0.0480(6)
Se120.45250(12)0.43587(10)0.52790(10)0.0273(5)
Se130.33920(14)0.33450(11)0.40444(10)0.0378(5)
Se140.38240(17)0.18137(12)0.44416(11)0.0512(6)
Se150.60087(13)0.52841(10)0.68409(10)0.0316(5)
S10.5738(4)0.6426(3)0.9541(3)0.0421(13)
S20.7718(4)0.7459(3)1.0766(3)0.0505(15)
S30.8278(3)0.8077(3)0.7638(2)0.0277(11)
S40.9862(3)0.8822(3)0.9146(2)0.0279(11)
S50.9205(4)0.4603(3)0.7643(4)0.0697(19)
S61.0773(4)0.5864(4)0.9117(4)0.0698(19)
S70.2101(3)0.4063(3)0.5696(3)0.0463(14)
S80.1471(3)0.2311(3)0.4566(3)0.0425(14)
S90.6271(3)0.2803(3)0.7070(2)0.0287(12)
S100.5031(4)0.1245(3)0.5689(2)0.0439(14)
S110.6407(3)0.3782(3)0.4175(2)0.0284(11)
S120.5076(4)0.2095(3)0.3191(2)0.0375(13)
N10.591(2)0.7058(14)1.1089(13)0.084(7)
N20.9779(11)0.9486(9)0.8193(8)0.038(4)
N40.0037(3)0.32781(16)0.4862(3)0.113(9)
N50.6269(11)0.1305(11)0.6932(9)0.052(5)
N60.6295(12)0.2858(10)0.2633(9)0.045(4)
C10.6368(19)0.6969(14)1.0526(12)0.067(7)
C20.482(3)0.6707(18)1.0918(14)0.095(9)
H2A0.4459650.6651231.0406830.115*
H2B0.4532430.7099911.1329190.115*
C30.4526(19)0.5917(14)1.0867(15)0.101(9)
H3A0.5104840.5636451.0754040.152*
H3B0.3862420.5580101.0440790.152*
H3C0.4405970.5995421.1370790.152*
C40.646(2)0.7515(16)1.1970(12)0.089(8)
H4A0.6155630.7202911.2209400.107*
H4B0.7236900.7524301.2042400.107*
C50.636(2)0.8355(16)1.2389(15)0.110(10)
H5A0.6797260.8698841.2236080.165*
H5B0.6622260.8574171.2961070.165*
H5C0.5607540.8362421.2254620.165*
C60.9382(12)0.8899(10)0.8302(9)0.022(4)*
C70.9421(16)0.9478(13)0.7461(11)0.058(6)
H7A0.9097880.8900580.7027070.069*
H7B1.0043530.9712690.7335500.069*
C80.859(2)0.9984(16)0.7521(14)0.112(10)
H8A0.7952220.9726280.7605860.168*
H8B0.8386361.0001700.7029520.168*
H8C0.8900791.0547960.7967320.168*
C91.0757(14)1.0175(11)0.8813(11)0.053(6)
H9A1.0713141.0704180.8831230.063*
H9B1.0766521.0243750.9342600.063*
C101.1760(14)0.9958(13)0.8604(12)0.080(8)
H10A1.1861040.9486750.8673240.120*
H10B1.2378341.0434150.8950760.120*
H10C1.1699700.9810340.8051280.120*
C11Aa1.046(3)0.501(2)0.848(2)0.048(8)*
N3Aa1.1057(4)0.4395(3)0.8406(3)0.071(7)*
C12Aa1.0719(15)0.3548(2)0.77169(17)0.124(14)*
H12Aa1.1205700.3241190.7843390.149*
H12Ba0.9995050.3302770.7719790.149*
C13Aa1.0647(15)0.3320(8)0.68986(19)0.151(17)*
H13Aa1.0401190.2717020.6564110.226*
H13Ba1.0132930.3576590.6726830.226*
H13Ca1.1357010.3514320.6851800.226*
C14Aa1.2099(4)0.4708(14)0.9008(4)0.063(8)*
H14Aa1.2176570.4354480.9252110.076*
H14Ba1.2198790.5286160.9428330.076*
C15Aa1.286(3)0.465(2)0.850(2)0.063(9)*
H15Aa1.2548140.4157200.7976820.095*
H15Ba1.3546890.4596270.8750370.095*
H15Ca1.2987300.5143880.8453850.095*
C11Bb1.038(4)0.475(3)0.808(3)0.048(8)*
N3Bb1.0932(4)0.4088(2)0.7987(2)0.071(7)*
C12Bb1.0508(7)0.3386(2)0.80933(19)0.124(14)*
H12Cb1.1092040.3193120.8295640.149*
H12Db1.0024110.3521330.8446960.149*
C13Bb0.9925(12)0.2793(10)0.7277(3)0.151(17)*
H13Db0.9582280.2273060.7240730.226*
H13Eb0.9371270.3014920.7094460.226*
H13Fb1.0427000.2690460.6944870.226*
C14Bb1.1927(4)0.4315(8)0.8606(3)0.063(8)*
H14Cb1.2166910.3802260.8479170.076*
H14Db1.1728070.4491240.9111160.076*
C15Bb1.303(4)0.506(3)0.878(3)0.063(9)*
H15Db1.3284220.4891810.8304310.095*
H15Eb1.3608540.5138880.9217970.095*
H15Fb1.2830560.5587720.8927800.095*
C160.1049(15)0.3189(14)0.4999(11)0.061(7)
C17Ac−0.0197(4)0.40794(17)0.5029(2)0.106(13)*
H17Ac0.0456830.4431570.5041960.127*
H17Bc−0.0769400.3970330.4567960.127*
C18Ac−0.0525(5)0.4574(7)0.5733(2)0.142(16)*
H18Ac−0.0643630.5080130.5741250.212*
H18Bc−0.1194580.4255100.5727860.212*
H18Cc0.0040390.4719630.6205240.212*
C17Bd−0.0442(4)0.3900(2)0.54019(16)0.106(13)*
H17Cd−0.0002630.4461980.5583490.127*
H17Dd−0.1175490.3842770.5111350.127*
C18Bd−0.0501(14)0.3807(3)0.60845(18)0.142(16)*
H18Dd−0.0822200.4228880.6428580.212*
H18Ed−0.0946830.3255250.5907110.212*
H18Fd0.0225370.3874110.6378980.212*
C19−0.0810(17)0.2524(19)0.4294(14)0.134(13)
H19A−0.1498000.2575970.4438770.161*
H19B−0.0619720.2043700.4317710.161*
C20−0.0953(18)0.2376(16)0.3437(14)0.108(10)
H20A−0.1325690.2767660.3374590.163*
H20B−0.1378820.1808380.3056920.163*
H20C−0.0243930.2457210.3338610.163*
C210.5900(14)0.1759(11)0.6608(10)0.040(5)
C220.7028(3)0.1724(3)0.76875(18)0.123(11)
H22A0.6910820.1341340.7898290.148*
H22B0.6742570.2195720.8005110.148*
C23Ae0.8185(3)0.2066(12)0.796(2)0.098(12)*
H23Ae0.8540880.1630830.7686330.148*
H23Be0.8429040.2287480.8530430.148*
H23Ce0.8368290.2512090.7837750.148*
C23Bf0.7036(18)0.1643(3)0.83838(18)0.098(12)*
H23Df0.7681840.2026160.8808780.148*
H23Ef0.6392570.1773430.8558830.148*
H23Ff0.7038630.1073700.8254450.148*
C240.5947(17)0.0389(13)0.6548(12)0.058(6)
H24A0.5839060.0149510.5970020.070*
H24B0.6540040.0199990.6746130.070*
C250.4970(16)0.0077(12)0.6691(12)0.060(6)
H25A0.5097860.0253240.7255950.090*
H25B0.476076−0.0529200.6380010.090*
H25C0.4390800.0295880.6535130.090*
C260.5932(15)0.2885(14)0.3239(11)0.059(7)
C270.7128(17)0.3555(14)0.2700(11)0.062(6)
H27A0.7582060.3900920.3253120.074*
H27B0.7600060.3325880.2353000.074*
C280.6570(16)0.4049(13)0.2465(12)0.070(6)
H28A0.6049990.3688600.1946280.105*
H28B0.7092060.4454500.2432070.105*
H28C0.6189860.4338950.2857100.105*
C290.5876(12)0.2120(11)0.1836(10)0.040(5)
H29A0.5783590.2299770.1434880.048*
H29B0.5158830.1817680.1793240.048*
C300.6614(14)0.1540(12)0.1656(11)0.058(6)
H30A0.7329020.1838540.1706100.086*
H30B0.6315890.1072330.1115620.086*
H30C0.6674010.1333770.2032050.086*
Cl10.3100(6)0.7537(4)0.9664(4)0.096(2)
Cl20.5335(5)0.8744(4)1.0793(5)0.116(3)
C310.3219(14)0.8580(7)1.0239(8)0.051(5)
C320.4198(10)0.9110(11)1.0766(10)0.059(6)
C330.4264(13)0.9940(10)1.1266(8)0.069(7)
H330.4933421.0303141.1626270.083*
C340.3350(19)1.0239(8)1.1240(9)0.076(7)
H340.3395191.0806271.1582010.092*
C350.2371(14)0.9708(14)1.0713(12)0.089(9)
H350.1746510.9912981.0695400.106*
C360.2305(9)0.8879(12)1.0213(9)0.087(9)
H360.1636010.8515810.9852970.105*
Cl3Ag−0.0715(10)−0.0187(8)0.3803(7)0.082(3)*
Cl4Ag−0.0730(10)−0.1869(8)0.3825(7)0.090(3)*
C37Ag0.0439(15)−0.0379(15)0.4163(14)0.035(7)*
C38Ag0.0452(15)−0.1132(13)0.4130(13)0.037(7)*
C39Ag0.1415(19)−0.1266(12)0.4414(15)0.056(8)*
H39Ag0.142339−0.1780490.4391330.068*
C40Ag0.2366(15)−0.0647(16)0.4730(14)0.062(9)*
H40Ag0.302418−0.0738950.4923840.074*
C41Ag0.2353(15)0.0105(14)0.4763(14)0.055(8)*
H41Ag0.3003280.0528300.4979230.065*
C42Ag0.139(2)0.0240(12)0.4480(15)0.072(10)*
H42Ag0.1381710.0754000.4502020.086*
Cl3Bg−0.0957(9)−0.1062(8)0.3083(7)0.082(3)*
Cl4Bg−0.1936(10)0.0503(8)0.3513(7)0.090(3)*
C37Bg−0.1364(18)−0.0573(14)0.3937(11)0.035(7)*
C38Bg−0.1767(17)0.0120(14)0.4125(12)0.037(7)*
C39Bg−0.2018(18)0.0522(12)0.4844(13)0.056(8)*
H39Bg−0.2294480.0995860.4972250.068*
C40Bg−0.1865(19)0.0230(15)0.5375(11)0.062(9)*
H40Bg−0.2036940.0504890.5866710.074*
C41Bg−0.1462(19)−0.0463(16)0.5188(14)0.055(8)*
H41Bg−0.135699−0.0662260.5550900.065*
C42Bg−0.1211(19)−0.0865(13)0.4469(15)0.072(10)*
H42Bg−0.093455−0.1338440.4340550.086*
  1. aOccupancy: 0.561(16), bOccupancy: 0.439(16), cOccupancy: 0.59(2), dOccupancy: 0.41(2), eOccupancy: 0.57(2), fOccupancy: 0.43(2), gOccupancy: 0.500(5).

Source of material

The following procedure is a modification of the original synthesis [4]. A mixture of [Mo(CO)6] (1.00 g, 3.79 mmol), Se0 powder (1.20 g, 15.2 mmol), and Et2NC(S)SSC(S)NEt2 (1.10 g, 3.71 mmol) was refluxed in 50 mL of 1,2-dichlorobenzene for 1.5 hours. The reaction mixture was cooled to room temperature and then vacuum filtered to remove unreacted Se. The filtrate was reduced to a dark red solid residue (1.05 g) under a steady stream of air overnight. This residual solid was washed with CH2Cl2 followed by Et2O and then was allowed to air dry overnight. Red, plate crystals were obtained by diffusion of THF vapor into a concentrated, filtered 1,2-dichlorobenzene solution of this red solid.

Experimental details

Diffraction data were collected with a Bruker Smart APEX diffractometer equipped with an Oxford cryosystem. The full data set was comprised of 400 frames in ω (0.5°/scan), collected at φ = 0.00, 90.00, and 180.00°, and 2 sets of 800 frames in φ (0.45°/scan) collected with ω constant at −30.00 and 210.00°. Data were collected under control of the APEX3 software package [1]. Raw data were reduced to F2 values using the SAINT software [1], and a global refinement of unit cell parameters was performed using 8654 selected reflections from the full data set. Data were corrected for absorption on the basis of multiple measurements of symmetry equivalent reflections with the use of SADABS [1], as described by Krause [5]. The structure solution was obtained using SHELXT [2], while refinement was accomplished by a full-matrix least-squares procedure using SHELXL [3]. Several of the diethyldithiocarbamate ligands were disordered over two positions, either in whole or in part, and were therefore refined using a split atom model that permitted a best-fit distribution between sites (see Table 2). Disordered atoms were treated with isotropic refinement. One of the two interstitial C6H4Cl2 solvent molecules was disordered over two positions and refined as a best-fit distribution between the two orientations in conjunction with the AFIX 66 restraint. Hydrogen atoms were added in calculated positions and included as riding contributions with isotropic displacement parameters tied to those of the carbon atoms to which they were attached.

Comment

In recent work, we have reported the usefulness of [Mo3S7(S2CNEt2)3]I as a precursor to MoS2 thin films on Cu2O photocathodes that are both catalytically active for H2 evolution and protective of the Cu2O layer against redox deterioration [6]. We have also found that [Mo3S7(S2CNR2)3]I complexes (R = Et, iBu) function as precursors to homogeneous H2-evolving catalysts under photolysis in the presence of [Ru(bipy)3]2+ as chromophore and Et3N as sacrificial electron donor [7]. These observations have motivated us to consider, for effect in the same applications, compounds of the more general formulation [Mo3E4F3(Q2CNR2)3]+I (E = S or Se; F = S or Se in equatorial positions; Q = S or Se on supporting ligand; Fig. (a)). With these objectives in mind, our attention was drawn to a report of [[Mo3Se7(S2CNEt2)3]2(μ-Se)]⋅2(N,N-DMF), the synthesis and structure of which were originally reported by Almond et al. [4]. That first structural determination was of rather limited quality. In our work with the compound, we have obtained a differently solvated crystal form and have collected diffraction data providing for somewhat improved resolution.

The preparation of [[Mo3Se7(S2CNEt2)3]2(μ-Se)] proceeds from [Mo(CO)6], Se0 and Et2NC(S)SSC(S)NEt2 in refluxing 1,2-dichlorobenzene, and crystallization was accomplished by diffusion of THF vapor into a concentrated extract of the compound in 1,2-dichlorobenzene. In contrast to the crystal structure reported by Almond et al., in which [[Mo3Se7(S2CNEt2)3]2(μ-Se)] occurs upon a crystallographic C2 axis in the orthorhombic space group C2cb (standard setting: Aba2), [[Mo3Se7(S2CNEt2)3]2(μ-Se)]⋅2(C6H4Cl2) crystallizes in triclinic P1̄. The bridged assembly resides on a general position such that it is comprised of two chemically identical – but crystallographically distinct – [Mo3Se7(S2CNEt2)3]+ fragments. As is well documented for the axial sulfur atoms in related [Mo3S7]4+ clusters [8], [9], the Seax atoms of the μ-Se22− ligands have a distinctive electrophilic quality that brings them into close association with a single, soft bridging Se2− counteranion (Fig. (b)). The two Mo3 planes meet at an angle 36.52(9)° instead of being parallel planar, a feature suggesting that the bridging Se2− anion exerts some amount of directionalized covalent bonding (Fig. (c). The Seax⋯Se15 interatomic distances range from 2.797(2)–2.909(2) Å, which are well below twice the 1.90 Å van der Waals radius of selenium [10] and also strongly indicative of considerable covalency to the character of the interactions of Se15 with its neighboring Se atoms. In the earlier structural report of [[Mo3Se7(S2CNEt2)3]2(μ-Se)], the range of Se⋯Se contacts is 2.816(4)–2.905(4) Å, while the Mo3 planes meet at 46.3°. Isostructural [[Mo3S7(S2CNEt2)3]2(μ-S)] shows Sax⋯μ-S2− contacts varying from 2.70(1)–2.72(1) Å but at a somewhat more acute angle of 33° between the Mo3 planes [11].

In continuing work, we aim to quantitatively compare the H2-evolving catalytic ability of [[Mo3Se7(S2CNEt2)3]2(μ-Se)] against that of [[Mo3S7(S2CNiBu2)3]I, which we found would support some 300 turnovers of H2 over 3 h.

Acknowledgements

This work has been funded in part by support from the NSF (DMR 1460637). The Louisiana Board of Regents is thanked for enhancement grant LEQSF–(2002–03)–ENH–TR–67 with which the Tulane X–ray diffractometer was purchased, and Tulane University is acknowledged for its ongoing support with operational costs for the diffraction facility.

References

1. Bruker. APEX3, SADABS, SAINT and SHELXTL. Bruker AXS Inc., Madison, WI (2016).Search in Google Scholar

2. Sheldrick, G. M.: SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr. A71 (2015) 3–8.10.1107/S2053273314026370Search in Google Scholar

3. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar

4. Almond, M. J.; Drew, M. G. B.; Redman, H.; Rice, D. A.: A new simple synthetic route to M3Se7 (M = Mo or W) core containing complexes: crystal structure and characterisation of [M33-Se)(μ-Se2)3(dtc)3]2Se. Polyhedron 19 (2000) 2127–2133.10.1016/S0277-5387(00)00515-5Search in Google Scholar

5. Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D.: Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 48 (2015) 3–10.10.1107/S1600576714022985Search in Google Scholar

6. Shinde, P. S.; Fontenot, P. R.; Donahue, J. P.; Waters, J. L.; Kung, P.; McNamara, L. E.; Hammer, N. I.; Gupta, A.; Pan, S.: Synthesis of Mo2 from [Mo3S7(S2CNEt2)3]I for enhancing photoelectrochemical performance and stability of Cu2O photocathode toward efficient solar splitting. J. Mater. Chem. A 6 (2018) 9569–9582.10.1039/C8TA01771ASearch in Google Scholar

7. Fontenot, P. R.; Shan, B.; Wang, B.; Simpson, S.; Ragunathan, G.; Greene, A. F.; Obanda, A.; Hunt, L. A.; Hammer, N. I.; Webster, C. E.; Mague, J. T.; Schmehl, R. H.; Donahue, J. P.: Photocatalytic H2-evolution by homogeneous molybdenum sulfide clusters supported by dithiocarbamate ligands. Inorg. Chem. 58 (2019) 16458–16474.10.1021/acs.inorgchem.9b02252Search in Google Scholar

8. Llusar, R.; Vicent, C.: Trinuclear molybdenum cluster sulfides coordinated to dithiolene ligands and their use in the development of molecular conductors. Coord. Chem. Rev. 254 (2010) 1534–1548.10.1016/j.ccr.2009.12.026Search in Google Scholar

9. Virovets, A. V.; Podberezskaya, N. V.: Specific nonbonded interactions in the structures of M3X74+ and M3X44+ (M = Mo, W; X = O, S, Se) clusters. J. Struct. Chem. 34 (1993) 306–322.10.1007/BF00761485Search in Google Scholar

10. Bondi, A.: Van der Waals volumes and radii. J. Phys. Chem. 68 (1964) 442–451.10.1021/j100785a001Search in Google Scholar

11. Meienberger, M. D.; Hegetschweiler, K.; Rüegger, H.; Gramlich, V.: The reactivity of complexes containing the [Mo33)(μS2)3]4+ core. Ligand substitution, sulfur elimination and sulfide binding. Inorg. Chim. Acta 213 (1993) 157–169.10.1016/S0020-1693(00)83826-8Search in Google Scholar

Received: 2019-12-27
Accepted: 2020-01-31
Published Online: 2020-03-25
Published in Print: 2020-04-28

©2020 Kyra Brakefield et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Articles in the same Issue

  1. Frontmatter
  2. Crystal structure of catena-poly[(μ2-3-(benzo[d]thiazol-2-yl)-5-carboxybenzoato-κ2N:O)silver(I)], C15H8AgNO4S
  3. Crystal structure of bis(4-phenylpiperazin-1-ium) bis(2-(4-phenylpiperazin-1-yl)succinato-κ2O,O′)copper(II) tetrahydrate, C48H70CuN8O12, [C10H14N2]2[Cu(C14H17N2O4)2] ⋅ 4 H2O
  4. Crystal structure of triaqua-bis(2-(6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylenedecahydronaphthalen-1-yl)-1-(2-oxo-2,5-dihydrofuran-3-yl)ethane-1-sulfonato-κ2O,O′)calcium(II) – ethanol (1/2), C44H76CaO19S2
  5. The crystal structure of ethyl 5-(4-(diphenylamino)phenyl)thiophene-2-carboxylate, C25H21NO2S
  6. The crystal structure of 5-bromo-2-(2-methyl-2H-tetrazol-5-yl)pyridine, C7H6BrN5
  7. The crystal structure of (E)-5-chloro-2-hydroxy-N′-(2-hydroxy-4-methoxybenzylidene)benzohydrazide, C15H13ClN2O4
  8. The crystal structure of (2Z,2′Z)-N′,N′′′′-(pyridine-2,6-dicarbonyl)dipicolinohydrazonamide, C19H17N9O2
  9. Photochromic properties and crystal structure of 3,3′-(perfluorocyclopent-1-ene-1,2-diyl)bis(5-(4-(azidomethyl)phenyl)-2-methylthiophene), C29H20F6N6S2
  10. Crystal structure of aqua-dichlorido-(4-(((3-ethoxy-2-oxidobenzylidene)hydrazono)(oxido)methyl)pyridin-1-ium-κ3N,O,O′)iron(III), C15H16Cl2N3O4Fe
  11. Crystal structure of catena-poly[diaqua-(μ2-4,4′-bipyridine-κ2N:N′)-bis(2,3,4,5-tetrabromo-6-carboxybenzoato-κ1O)-nickel(II)], C26H14Br8NiN2O10
  12. Crystal structure of diethanol-κ1O-bis(μ2-N-((2-oxidonaphthalen-1-yl)methylene)pyrazine-2-carbohydrazonato-κ5N,O,O′:O′:N′)-bis(nitrato-κ2O,O′)dieuropium(III), C36H32N10O12Eu2
  13. The crystal structure of 2-aminoisophthalic acid, C8H7NO4
  14. Crystal structure of (E)-2-(4-((3,4-difluorobenzyl)oxy)styryl)-4,6-dimethoxybenzaldehyde, C24H20F2O4
  15. Crystal structure of 2-benzoylpyrene, C23H14O
  16. Crystal structure of chlorido-(η6-p-cymene)-(N-(2-fluorophenyl)-1-(pyridin-2-yl)methanimine-κ2N,N′)ruthenium(II) – acetone (1/1), C22H23ClN2F7OPRu
  17. The crystal structure of 2-bromoisonicotinic acid, C6H4BrNO2
  18. Crystal structure of 1,3,5,7-tetraphenyl-8-(N-phenylformamido)-2-oxa-5-azabicyclo[4.2.0]oct -3-en-7-yl benzoate, C44H34N2O4
  19. Synthesis and crystal structure of 4-(3-acetyl-5-(thiophen-2-yl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one, C21H21N3O4S
  20. Crystal structure of poly[diaqua-(μ2-4,4′-bipyridine-κ2N:N′)-(μ2-3,4,5,6-tetrafluorophthalato-κ2O:O′)nickel(II)], C18H12F4NiN2O6
  21. Crystal structure of 4-hydroxynaphtho[2,3-b]benzofuran-6,11-dione, C16H8O4
  22. The crystal structure of 3,10-bis(4-methoxyphenyl)-6,12-dibenzyl-2,9-acetyl-6,12-diazapentacyclo[6.3.1.02,7.04,11.05,9]dodecane – acetone (1/1), C45H48N2O5
  23. The crystal structure of (E)-2-(((2-(1H-indol-3-yl)ethyl)iminio)methyl)-6-bromophenolate, C17H15N2BrO
  24. Crystal structure of catena-poly[diaqua-(μ2-oxalyl dihydrazide-κ4N,O:N′,O′)-bis(μ2-pyridine-2,3-dicarboxylato-κ3N,O,O′)dicadmium(II)] hexahydrate, C16H28O18N6Cd2
  25. Crystal structure of poly[tetra-(μ4-naphthalene-1,8-dicarboxylato-κ4O:O,O′: O′′:O′′,O′′′)-(μ4-oxo-κ4O:O:O:O) penta-lead(II)], C48H24O17Pb5
  26. Crystal structure of 5H-dibenzo[c,f][1,5]oxabismocin-12 (7H)-yl acetate, C16H15O3Bi
  27. The crystal structure of 2-(4-chloro-6-nitrophenyl)-1-(4-chloro-3-nitrophenyl)diazene 1-oxide, C12H6Cl2N4O5
  28. Crystal structure of bis(3-methyl-N-(1-(pyrazin-2-yl)ethylidene)benzohydrazonato-κ3O,N,N′)nickel(II), C28H26N8O2Ni
  29. Crystal structure of 3,10-bis(4-chlorophenyl)-6,12-dibenzyl-2,9-acetyl-6,12-diazapentacyclo[6.3.1.02,7.04,11.05,9]-dodecane, C40H36Cl2N2O2
  30. Crystal structure of bis[(μ2-4⋯O,O′:O′)-(4-hydroxybenzoato-κ2O,O′)-(1,10-phenanthroline-κ2N,N′)]-di-lead(II)μ-4-hydroxybenzoato-κ3O,O′:O′3O,O′:O′-bis-[(4-hydroxybenzoato-κ2O,O′)bis(1,10-phenanthroline-κ2N,N′)di-lead(II)] monohydrate, C52H36N4O12Pb2 ⋅ H2O
  31. Crystal structure of poly[diaqua-(μ3-3,4,5,6-tetrafluoro-phthalato-κ3O:O′:O′′)-(μ2-1,2-bis(4-pyridyl)ethene-κ2N:N′)cobalt(II)], C14H9CoF4NO6
  32. Crystal structure of 7-hydroxy-4-phenyl-2H-chromen-2-one, C15H10O3
  33. Crystal structure of 3,7-dimethyl-1-(5-oxohexyl)-3,7-dihydro-1H-purine-2,6-dione 4-hydroxybenzoic acid, C20H24N4O6
  34. Crystal structure of catena-poly[(μ2-1,5-dimethyl-2-phenyl-4-((pyridin-4-ylmethylene)amino)-1,2-dihydro-3H-pyrazol-3-one-κ2N:O)-bis(nitrato-κ1O)zinc(II)], C17H16N6O7Zn
  35. The crystal structure of diaqua-bis(6-aminopicolinato-κ2N,O)magnesium(II), C12H14O6N4Mg
  36. Crystal structure of (pyridine-2-carboxamide-κ2N,O)-[tris((1H-benzo[d]imidazol-2-yl)methyl)amine-κ4N,N′,N′′,N′′′]nickel(II) diperchlorate — methanol (1/3), C33H39Cl2N9NiO12
  37. Crystal structure of catena-poly[diaqua-bis(3-(4-trifluoromethyl-phenyl)-acrylato-κO1)-(μ2-1,4-bis(1-imidazolyl)benzene-κ2N3:N3)cobalt(II)], C32H26CoF6N4O6
  38. Crystal structure of (E)-3-(2-(2-hydroxy-4-methoxystyryl)-3,3-dimethyl-3H-indol-1-ium-1-yl)propane-1-sulfonate monohydrate, C22H25NO5S⋅H2O
  39. The crystal structure of bis(N-oxy-2-(1H-tetrazol-1-yl) acetamide κ2O,O′)-diaqua-zinc(II), C6H12ZnN10O6
  40. Crystal structure of (E)-4-((4-chlorophenylimino)methyl)pyridinium 3,5-dinitrobenzoate, C19H13ClN4O6
  41. Crystal structure of dichlorido-bis((E)-2-((pyridin-4-ylmethylene)amino)phenol)zinc(II), C24H20Cl2N4O2Zn
  42. Crystal structure of cyclo-[tetrachlorido-bis(μ2-p-xylylenediamine-κ2N:N′)dipalladium(II)] dimethyl sulfoxide solvate, C20H36Cl4N4O2Pd2S2
  43. Crystal structure of 4-(3-fluorophenyl)-7-hydroxy-2H-chromen-2-one, C15H9FO3
  44. Crystal structure of (E)-2-((2-(pyrimidin-2-yl)hydrazono)methyl)quinolin-1-ium perchlorate – methanol (1/1), C15H16N5O5Cl
  45. The crystal structure of bis(N-(amino(pyridin-2-yl)methylene)-5-chloro-2-hydroxybenzohydrazonato-κ3N,N′,O)zinc(II) – methanol (2/5), C57H60Cl2N16O13Zn2
  46. Synthesis and crystal structure of 4,4′-di(4-pyridyl)-6,6′-di(tert-butyl)-2,2′-[propylenedioxybis(nitrilomethylidyne)]diphenol, C35H40N4O4
  47. Crystal structure of (3E,3′E)-3,3′-((1,3,4-thiadiazole-2,5-diyl)bis(sulfanediyl))bis(4-hydroxy-4-phenylbut-3-en-2-one), C22H18N2O4S3
  48. Crystal structure of (N-benzyl-N-methyl-dithiocarbamato-κ2S,S′)di(4-chlorobenzyl)chloridotin(IV), C23H22Cl3NS2Sn
  49. Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O6) sodium bromide hydrate, [Na(18-crown-6)]Br ⋅ H2O, C12H26BrNaO7
  50. Crystal structure of 7-ethoxyl-6,8-difluoro-4-oxo-1-phenyl-1,4-dihydro-quinoline-3-carboxylic acid, C18H13F2N1O4
  51. Crystal structure of chlorido (2-(4-ethylphenyl)pyrimidine-k2C,N)(triphenylphosphane-kP) palladium(II), C30H26ClN2PPd
  52. Crystal structure of 18-crown-6 – 1,4-diiodotetrafluorobenzene – acetonitrile (1/1/2), C22H30F4I2N2O6
  53. Crystal structure of diisobutyl 2,5-dihydroxycyclohexa-1,4-diene-1,4-dicarboxylate, C16H24O6
  54. Crystal structure of poly[[tris(μ2-cis-1,2-cyclohexanedicarboxylato)-κ2O, O′]-bis[μ3-1,3,5-tris[(1H-imidazol-1-yl)methyl]benzene-κ3N, N′,N′′]-trizinc(II)] – water (1/20), C60H106N12O32Zn3
  55. The synthesis and crystal structure of 5-amino-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-((trifluoromethyl)sulfinyl)-1H-pyrazole-3-carboxamide–tetrahydrofuran (1/1), C16H14N4Cl2F6O3S
  56. Crystal structure of dimethylbis(diisopropyldithiocarbamato-κ2S,S′)tin(IV), C16H34N2S4Sn
  57. Crystal structure of diisopropyl 2,5-dihydroxycyclohexa-1,4-diene-1,4-dicarboxylate, C14H20O6
  58. The synthesis and crystal structure of ethyl (E)-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-5-((2-methoxybenzylidene)amino)-4-((trifluoromethyl)sulfinyl)-1H-pyrazole-3-carboxylate, C22H15N3Cl2F6O4S
  59. The crystal structure of a matrine derivative, 13-(methylamine-1-yl) carbodithioate matrine, C17H27N3OS2
  60. Crystal structure of bis(2-hydroxy-6-((phenylimino)methyl)phenolato-κ2N,O)copper(II), C26H20CuN2O4
  61. The crystal structure of 2-p-fluorophenyl-5-dihydroxymethyl-1,3,4-oxadiazole, C9H7FN2O3
  62. Crystal structure of dichloridobis(4-chlorophenyl-κC1)(1,10-phenanthroline-κ2N,N′)tin(IV), C24H16Cl4N2Sn
  63. Crystal structure of bis{bromido-triphenyltin(IV)}(μ2-[4,4′-bipyridine]1,1′-dioxide-κ2O:O′), C46H38Br2N2O2Sn2
  64. Crystal structure of 2-(5-chloro-quinolin-8-yloxy)-N-quinolin-8-yl-acetamide, C20H14N3O2Cl
  65. Crystal structure of bis(N-(1-(3-ethylpyrazin-2-yl)ethylidene)-3-hydroxy-2-naphthohydrazonato-κ3N,N′,O)cobalt(II) — dimethylformamide (1/1), C41H41N9O5Co
  66. Crystal structure of bis[2-(1-(3-ethylpyrazin-2-yl)ethylidene)-1-tosylhydrazin-1-ido-κ3-N,N′,O]copper(II), C30H34N8O4S2Cu
  67. Crystal structure of (2-p-tolylpyrimidine-κ2C,N)(triphenylphosphane-κP) palladium(II), C29H24ClN2PPd
  68. Halogen bonding in crystal structure of bis(1,4,7,10-tetraoxacyclododecane-κ4O,O′,O′′,O′′′)cesium triiodide, C16H32CsI3O8
  69. The synthesis and crystal structure of N-(3-cyano-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-(trifluoromethylsulfinyl)-1H-pyrazol-5-yl)-2-phenylacetamide, C20H10N4Cl2F6O2S
  70. The crystal structure of 4-(trifluoromethyl)nicotinic acid, C7H4F3NO2
  71. Crystal structure of 3-(2-methylbenzyl)thiazolidin-2-one, C11H13ONS
  72. The crystal structure of 2,2,2-trifluoro-1-(isoquinolin-1-yl)ethane-1,1-diol, C11H8F3NO2
  73. The crystal structure of 3-bromoisonicotinic acid, C6H4BrNO2
  74. The crystal structure of 5-nitropicolinic acid monohydrate, C6H6N2O5
  75. The crystal structure of 3-(4-hydroxybenzyl)-1,5-dioxaspiro[5.5]undecane-2,4-dione, C16H18O5
  76. Crystal structure of [[Mo3Se7(S2CNEt2)3]2(μ-Se)] ⋅ 2(C6H4Cl2), C42H68Cl4Mo6N6S12Se15
  77. Crystal structure of (E)-4-hydroxy-3-((5-phenyl-1,3,4-oxadiazol-2-yl)thio)pent-3-en-2-one, C13H12N2O3S
  78. The crystal structure of (2,3-dioxo-5,6:13,14-dibenzo-9,10-benzo-1,4,8,11-7, 11-diene-κ4N,N′,N′′,N′′′)-nickel(II), Ni(C22H14N4O2)
  79. Crystal structure of 3-(1-benzyl-2-ethyl-4-nitro-1H-imidazol-5-ylthio)-propanoic acid, C15H17N3O4S
  80. The crystal structure of dichlorobis(2-(dicyclohexylphosphino)-2′,4′,6′-tri-i-propyl-1,1′-biphenyl) palladium(II)-dichloroform, C68H100Cl8P2Pd
  81. Crystal structure and antimicrobial properties of (1,4,7,10-tetraoxacyclododecane-κ4O,O′,O′′,O′′′)cesium(I) pentaiodide, C16H32CsI5O8
Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2019-0938/html
Scroll to top button