Startseite Crystal structure of 1-(5-bromo-2-(4-methoxyphenyl)-1H-indol-7-yl)ethan-1-ol, C17H14BrNO2
Artikel Open Access

Crystal structure of 1-(5-bromo-2-(4-methoxyphenyl)-1H-indol-7-yl)ethan-1-ol, C17H14BrNO2

  • Malose J. Mphahlele EMAIL logo
Veröffentlicht/Copyright: 25. Oktober 2018

Abstract

C17H14BrNO2, monoclinic, C2/c (no. 15), a = 31.437(3) Å, b = 5.5224(5) Å, c = 16.6545(16) Å, β = 94.703(4)°, V = 2881.6(5) Å3, Z = 8, Rgt(F) = 0.0251, wRref(F2) = 0.067, T = 173(2) K.

CCDC no.: 1841580

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Yellow rods
Size:0.32 × 0.26 × 0.24 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:2.86 mm−1
Diffractometer, scan mode:Bruker D8 Venture Photon CCD, ω
θmax, completeness:28.0°, >99%
N(hkl)measured, N(hkl)unique, Rint:60661, 3469, 0.047
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3212
N(param)refined:192
Programs:Bruker [1], WinGX [2], SHELX [3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
C10.06650(4)0.0477(3)0.43063(8)0.0249(3)
C20.05912(4)0.1422(3)0.35304(8)0.0281(3)
H20.0380260.0711660.3162590.034*
C30.08252(5)0.3401(3)0.32920(9)0.0303(3)
C40.11325(5)0.4555(3)0.37942(10)0.0303(3)
H40.1281980.5922610.3615850.036*
C50.12167(4)0.3638(3)0.45780(9)0.0256(3)
C60.09848(4)0.1596(2)0.48135(8)0.0228(2)
C70.15073(4)0.4267(3)0.52519(9)0.0273(3)
H70.170490.5571930.5276050.033*
C80.14489(4)0.2645(2)0.58563(8)0.0234(3)
C90.16633(4)0.2416(2)0.66674(8)0.0229(2)
C100.19513(4)0.4188(2)0.69763(9)0.0254(3)
H100.2013280.5533540.6649940.03*
C110.21461(4)0.4009(3)0.77473(9)0.0258(3)
H110.2341610.522190.7945810.031*
C120.20572(4)0.2055(2)0.82356(8)0.0235(3)
C130.17776(5)0.0270(3)0.79416(9)0.0287(3)
H130.17179−0.1077380.8268890.034*
C140.15846(5)0.0465(3)0.71616(10)0.0294(3)
H140.139378−0.0768420.6961510.035*
C150.21729(6)0.0069(3)0.95026(10)0.0393(4)
H15A0.186562−0.0004370.9561980.059*
H15B0.2327210.028961.0033120.059*
H15C0.226517−0.1442940.9262150.059*
C160.04160(4)−0.1564(3)0.46011(8)0.0270(3)
C170.00601(5)−0.2633(3)0.40541(9)0.0343(3)
H17A−0.006849−0.3988180.4327080.051*
H17B0.017408−0.3214830.3558820.051*
H17C−0.015706−0.1392460.3919990.051*
N10.11311(4)0.1034(2)0.55875(7)0.0234(2)
H10.103743−0.0169060.5871390.028*
O10.04951(4)−0.2325(2)0.52853(6)0.0359(3)
O20.22614(3)0.20540(19)0.89941(6)0.0298(2)
Br10.07045(2)0.45143(4)0.22176(2)0.04438(8)

Source of material

The title compound was prepared by heating a mixture of 1-(5-bromo-2-(4-methoxyphenyl)-1H-indol-7-yl)ethanone (1.00 g, 2.91 mmol) and PdCl2 (0.10 g, 0.58 mmol) in acetonitrile (50 mL) at 80 °C under argon atmosphere for 3 h. Colourless crystals of the title compound, mp. 140–142 °C were obtained by slow evaporation of ethanol and its analytical data was found to compare favourably with the literature data [4].

Experimental details

Measurements were carried out at the Jan Boeyens Structural Chemistry Laboratory (University of the Witwatersrand). Intensity data were collected at −100 °C on a Bruker SMART 1K CCD area detector diffractometer with graphite monochromated Mo Ka radiation (50 kV, 30 mA). The collection method involved w scans of width 0.3°. Data reduction was carried out using the program SAINT+ [4] and absorption corrections were made using the program SADABS [1]. The crystal structure was solved by direct methods [2]. Hydrogen atoms were located from the difference map then positioned geometrically and allowed to ride on their respective parent atoms. Hydrogen atoms involved in hydrogen bonding were located from the difference map and refined freely. Diagrams and publication material were generated using SHELXTL and PLATON [1].

Comment

Indole scaffold continues to attract attention in medicinal chemistry due to its well-known biological properties. Methods for the syntheses of indole-based compounds have been extensively reviewed in the literature over the years. Examples of conventional methods for the synthesis of indoles include the Fisher synthesis from aryl hydrazones, the Batcho-Limgruber synthesis from o-nitrotoluenes and dimethylformamide acetals, the Gassman synthesis from N-haloanilines or the Madelung cyclisation of N-acyl-o-toluidines [5], [6] . Non-conventional methods that make use of transition metal–mediated C—C and/or C—N bond formation in the construction of the indole nucleus have also been developed. These include the reductive cyclization of o-nitrostyrenes [7], the Larock indole synthesis [8], oxidative coupling of acetanilides and internal alkynes [9], the Willis indole synthesis [10], intramolecular Heck cross-coupling of unsaturated halides and alkenes [11], copper-catalyzed indole synthesis [12], C—N coupling of gem-dihalovinylanilines [13], C—N coupling of 2-halophenethylamines [14] and cyclization of 2-alkynylaniline derivatives [15], [16] . We have previously exploited the latter strategy on the 2-alkynylanilines derived from 2-amino-5-bromo-3-iodoacetophenone [1], [17] and 2-amino-5-bromo-3-iodobenzamide [18] with terminal acetylenes to afford the corresponding 2-amino-3-(arylalkynyl)acetophenones and 2-amino-3-(arylalkynyl)benzamides. Palladium chloride (PdCl2)–mediated endo-dig (Csp–N) cyclo-isomerization afforded the corresponding indole-based derivatives. During our investigation on the synthesis of medium-sized heterocycles and molecular hybrids incorporating an indole framework, we were able to obtain single crystals of the title compound by slow evaporation of ethanol.

Single crystal XRD analysis confirmed that the title crystal structure contains one molecule in the asymmetric unit (cf. the figure) where the indole and 3-(4-methoxyphenyl) group are essentially co-planar with torsion angle about C(7)—C(8)—C(9)—C(14) = −173.19°. There is an intramolecular hydrogen bond between the carbonyl group and NH, (N(1)—H(1)⋯O(1), with bond distance and bond angle of 2.24 Å and 116°, respectively. All geometric paramters are in the typical ranges and are in excellent accord with those derived from the analogous oxime [19].

Acknowledgements

The author is grateful to the University of South Africa and the National Research Foundation (NRF, SA) for financial assistance. MM Maluleka is thanked for her for contribution in the design and proof reading of the manuscript. The author also thanks Prof A. Lemmerer of the University of the Witwatersrand for X-ray diffraction data using the single-crystal diffractometer purchased through the NRF Equipment Programme (UID: 78572).

References

1. Bruker. APEX-3, SAINT+ Version 6.02 (Includes XPREP and SADABS). Bruker AXS Inc., Madison, WI, USA (2016).Suche in Google Scholar

2. Farrugia, L. J.: WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 3 (2012) 837–838.10.1107/S0021889899006020Suche in Google Scholar

3. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Suche in Google Scholar

4. Mphahlele, M. J.; Parbhoo, N.: Synthesis, evaluation od cytotoxicity and molecular docking studies of the 7-acetamido substituted 2-aryl-5-bromo-3-trifluoroacetylindoles as potential inhibitors of tubulin polymerization. Pharmaceuticals 11 (2018) 59–76.10.3390/ph11020059Suche in Google Scholar

5. Taber, D. F.; Tirunahari, P. K: Indole synthesis: a review and proposed classification. Tetrahedron 67 (2011) 7195–7210.10.1016/j.tet.2011.06.040Suche in Google Scholar

6. Humphrey, G. R.; Kuethe, J. T.: Practical methodologies for the synthesis of indoles. Chem. Rev. 106 (2006) 2875–2911.10.1021/cr0505270Suche in Google Scholar

7. Tong, S.; Xu, Z.; Mamboury, M.; Wang, Q.; Zhu, J.: Aqueous titanium trichloride promoted reductive cyclization of o-nitrostyrenes to indoles: development and application to the synthesis of rizatriptan and aspidospermidine. Angew. Chem. Int. Ed. 127 (2015) 11975–11978.10.1002/ange.201505713Suche in Google Scholar

8. Batail, N.; Bendjeriou, A.; Lomberget, T.; Barret, R.; Dufaud, V.; Djakovitcha, L.: First heterogeneous ligand- and salt-free Larock indole synthesis. Adv. Synth. Catal. 351 (2009) 2055–2062.10.1002/adsc.200900386Suche in Google Scholar

9. Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou, K.: Indole synthesis via rhodium catalyzed oxidative coupling of acetanilides and internal alkynes. J. Am. Chem. Soc. 130 (2008) 16474–16475.10.1021/ja806955sSuche in Google Scholar

10. Willis, M. C.; Brace, G. N.; Holmes, I. P.: Palladium-catalyzed tandem alkenyl and aryl C—N bond formation: a cascade N-annulation route to 1-functionalized indoles. Angew. Chem. Int. Ed. 44 (2005) 403–406.10.1002/anie.200461598Suche in Google Scholar

11. Yun, W.; Mohan, R.: Heck reaction on solid support: synthesis of indole analogs. Tetrahedron Lett. 37 (1996) 7189–7192.10.1016/0040-4039(96)01635-8Suche in Google Scholar

12. Huang, B.; Hu, D.; Wang, J.; Wan, J.-P.; Liu, Y.: Copper-catalyzed one-pot tandem reactions toward the synthesis of indoles using o-iodoanilines, acyl chlorides, and Wittig reagents. Tetrahedron Lett. 56 (2015) 2551–2554.10.1016/j.tetlet.2015.03.134Suche in Google Scholar

13. Fang, Y.-Q.; Yueng, J.; Lautens, M.: A general modular method of azaindole and thienopyrrole synthesis via Pd-catalyzed tandem couplings of gem-dichloroolefines. J. Org. Chem. 72 (2007) 5152–5160.10.1021/jo070460bSuche in Google Scholar PubMed

14. Monguchi, Y.; Marumoto, T.; Takamatsu, H.; Sawama, Y.; Sajikia, H.: Palladium on carbon-catalyzed one-pot N-arylindole synthesis: intramolecular aromatic amination, aromatization, and intermolecular aromatic amination. Adv. Synth. Catal. 356 (2014) 1866–1872.10.1002/adsc.201301168Suche in Google Scholar

15. Ahmed, A.; Ghosh, M.; Sarkar, P.; Ray, J. K.: ZnCl2 and Pd/C catalyzed synthesis of 2-substituted indoles. Tetrahedron Lett. 54 (2013) 6691–6694.10.1016/j.tetlet.2013.09.061Suche in Google Scholar

16. Song, S.; Huang, M.; Li, W.; Zhu, X.; Wan, Y.: Efficient synthesis of indoles from 2-alkynylaniline derivatives in water using a recyclable copper catalyst system. Tetrahedron 71 (2015) 451–456.10.1016/j.tet.2014.12.007Suche in Google Scholar

17. Mphahlele, M. J.; Makhafola, T. J.; Mmonwa, M. M.: In vitro cytotoxicity of novel 2,5,7-tricarbo-substituted indoles derived from 2-amino-5-bromo-3-iodoacetophenone. Bioorg. Med. Chem. 24 (2016) 4576–4586.10.1016/j.bmc.2016.07.056Suche in Google Scholar PubMed

18. Mphahlele, M. J.; Khoza, T. A.; Mabeta, P.: Novel 2,3-dihydro-1H-pyrrolo[3,2,1-ij]quinazolin-1-ones: synthesis and biological evaluation. Molecules 22 (2017) 55–68.10.3390/molecules22010055Suche in Google Scholar PubMed PubMed Central

19. Mphahlele M. J.: Crystal structure of 1-(5-bromo-2-(4-methoxyphenyl)-1H-indol-7-yl)ethanone oxime, C17H15BrN2O2. Z. Kristallogr. NCS 233 (2018) 889–891.10.1515/ncrs-2018-0081Suche in Google Scholar

Received: 2018-09-10
Accepted: 2018-10-10
Published Online: 2018-10-25
Published in Print: 2019-03-26

©2019 Malose J. Mphahlele, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Artikel in diesem Heft

  1. Cover and Frontmatter
  2. Crystal structure of 1H-indole-5-carboxylic acid – 4,4′-bipyridine (2/1), C14H11N2O2
  3. Crystal structure of ethyl 2-amino-4-(4-ethoxyphenyl)-5-oxo-4H,5H-pyrano[3,2-c] chromene-3-carboxylate, C23H21NO6
  4. Crystal structure of ethyl 2-amino-4-(4-bromothiophen-2-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C16H16BrNO4S
  5. The crystal structure of 6-amino-2-methyl-8-(4-(methylthio)phenyl)-2,3,8,8a-tetrahydroisoquinoline-5,7,7(1H)-tricarbonitrile – ethanol (1/1), C20H19N5S
  6. Crystal structure of 6-amino-8-(4-isopropylphenyl)-2-methyl-2,3,8,8a-tetrahydroisoquinoline-5,7,7(1H)-tricarbonitrile-ethanol (1/1), C24H29N5O
  7. Crystal structure of 1,1′-(ethane-1,2-diyl)bis(3-ethyl-1H-imidazol-3-ium)bis(hexafluorido phosphate), C12H20F12N4P2
  8. Crystal structure of dimethyl (3aS,6R,6aS,7S)-2-pivaloyl-2,3-dihydro-1H,6H,7H-3a,6:7,9a-diepoxybenzo[de]isoquinoline-3a1,6a-dicarboxylate, C21H25NO8
  9. Crystal structure of methyl 4-(4-bromothiophen-2-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C18H20BrNO3S
  10. Hydrothermal synthesis and crystal structure of catena-poly[bis(4-((pyridin-4-ylmethyl)amino)benzoato-κ3N:O,O′)zinc(II) – 1,2-di(pyridin-4-yl)ethene – water (1/1/1), C38H34N6O5Zn
  11. The crystal structure of 1,2-dimethyl-3,4-dinitrobenzene, C8H8N2O4
  12. Synthesis and crystal structure of trans-tetraaqua-bis(3-(((7-hydroxy-3-(4-hydroxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl)methyl)ammonio)propanoato-κO)zinc(II) tetrahydrate, C38H48N2O26S2Zn
  13. Crystal structure of diaqua-bis(μ2-6-chloropyridin-2-olato-κ3N,O:O)-tetrakis(chloropyridin-2-olato-κ1O)-bis(penanthroline-κ2N,N′)diterbium(III), C54H38Cl6Tb2N10O8
  14. Crystal structure of oxidobis(piperidine-1-carbodithioato-κ2S,S′)vanadium(IV), C12H20N2OS4V
  15. Crystal structure of 2-((tert-butyldimethylsilyl)oxy)-5-methylisophthalaldehyde, C15H22O3Si
  16. Crystal structure of catena-poly[tetraiodido-(μ2-1,4-bis(2-methyl-1H-imidazol-1-yl)benzene-κ2N:N′)dimercury(II)], C14H14Hg2I4N4
  17. Crystal structure of tetrakis(n-butyl)-(μ2-1,2-bis(2-oxidobenzoyl)hydrazine-1,2-diido-κ6N,O,O′:N′,O′′,O′′′)ditin(IV), C30H44N2O4Sn2
  18. Crystal structure of ethyl 2-amino-4-(4-hydroxy-3-methoxyphenyl)-7-methyl-5-oxo-4H,5H-pyrano-[4,3-b]pyran-3-carboxylate, C19H19NO7
  19. Crystal structure of 3-aminopyrazine-2-carbohydrazide, C5H7N5O
  20. Crystal structure of ethanol-bis(N-((5-(ethoxycarbonyl)-3,4-dimethyl-1H-pyrrol-2-yl)methylene)benzohydrazonato-κ2N,O)copper(II), C36H42N6O7Cu
  21. Crystal structure of 3-methyl-2-oxo-2H-chromen-7-yl propionate, C13H12O4
  22. Crystal structure of 2-(dimethylamino)ethyl 4-aminobenzoate, C11H16N2O2
  23. Crystal structure of 3-(benzo[d]thiazol-2-ylamino)isobenzofuran-1(3H)-one, C15H10N2O2S
  24. Crystal structure of 3-((1H-benzo[d]imidazol-2-yl)amino)-2-(1H-benzo[d]imidazol-2-yl)isoindolin-1-one, C22H16N6O
  25. Crystal structure of (2,2′-bipyridine-κ2N,N′)bis(4-(dimethylamino)phenyldiphenylphosphane-κP)copper(I) tetrafluoroborate, C50H48BCuF4N4P2
  26. Crystal structure of citric acid–acetonitrile (1/1), C8H11NO7
  27. Crystal structure of diethyl 2-(4-methoxyphenyl)-1-phenyl-1,2-dihydropyridine-3,5-dicarboxylate, C24H25NO5
  28. The crystal structure of poly[triaqua-bis(μ3-2,5-dihydroxyterephthalato-κ4O,O′:O′′:O′′′)-(μ4-oxalato-κ4O,O′:O′′,O′′′)cerium(III)], C9H10CeO11
  29. Crystal structure of 1-(5-(anthracen-9-yl)-3-(4-hydroxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)propan-1-one, C26H22N2O2
  30. Synthesis and crystal structure of 5-(8-(((2-carboxyethyl)ammonio)methyl)-7-hydroxy-4-oxo-4H-chromen-3-yl)-2-hydroxybenzenesulfonate trihydrate, C19H23NO12S
  31. Crystal structure of rac-trans-6,6′-((cyclohexane-1,2-diylbis(azanylylidene))bis(methanylylidene))bis(2-bromophenolato-κ4N,N′,O,O′)-bis(methanol)cobalt(III) chloride, C22H25Br2Co8N2O4Cl
  32. Crystal structure of 1-((R)-(2′-(dimethylamino)-[1,1′-binaphthalen]-2-yl))-3-((S)-2-hydroxy-1-phenylethyl)thiourea, C31H29N3OS
  33. Crystal structure and photochemical property of 1,8-bis(p-tolylthio)pyrene, C30H22S2
  34. Crystal structure of 2-(2-(2-amino-6-chloro-9H-purin-9-yl)ethyl)propane-1,3-diyl diacetate, C14H18ClN5O4
  35. Crystal structure of ethyl 5-amino-1-(pyridin-2-yl)-1H-pyrazole-4-carboxylate, C11H12N4O2
  36. Crystal structure of trichloro-(4-chloro-2,6-bis(diphenylmethyl)-N-((pyridin-2-yl)methylene)aniline)-aluminum dichloromethane solvate, C39H31AlCl6N2
  37. Bis(ethanol-κO)-bis(6-aminopicolinato-κ2N,O)magnesium(II), C16H22O6N4Mg
  38. Crystal structure of catena-poly[aqua-(μ2-1,7-dicarba-closo-dodecaborane-1,7-dicarboxylato-κ2O:O′)-(1,10-phenanthrolin-κ2N,N′)copper(II)], C16H20B10CuN2O5
  39. Crystal structure of (1,2-dicarba-closo-dodecaborane-1,2-dithiolato κ2S,S′)-bis(1,10-phenanthroline κ2N,N′)zinc(II), C26H26B10Zn4S2
  40. Crystal structure of diaqua-bis(1,10-phenanthroline-κ2N,N′)-bis(1,7-dicarba-closo-dodecaborane-1,7-dicarboxylato-κ3O,O′:O′′) dicobalt(II) — ethanol (1/1), C34H46B20Co2N4O11
  41. Crystal structure of ((5,5′-dimethoxy-2,2′-(1,2-phenylenebis(nitrilomethylidyne)))diphenolato-κ4O,N,O′,N′)copper(II), C22H18N2CuO4
  42. Crystal structure of 1-(5-bromo-2-(4-methoxyphenyl)-1H-indol-7-yl)ethan-1-ol, C17H14BrNO2
  43. Crystal structure of (E)-2-(((6-bromopyridin-2-yl)methylene)amino)-3′,6′-bis(diethylamino)spiro[isoindoline-1,9′-xanthen]-3-one, C34H34N5O2Br
  44. Crystal structure of (Z)-2-((adamantan-1-ylimino)methyl)-5-methoxyphenol, C18H23NO2
  45. Crystal structure of bis((E)-2-ethoxy-6-(((2-hydroxyethyl)imino)methyl)phenolato-κ2N,O)copper(II), C22H28N2CuO6
  46. Crystal structure of 2,3-diphenyl-5,6-bis(4-methoxyphenyl)pyrazine, C30H24N2O2
  47. Crystal structure of dichlorido bis[1-((2,4-dimethyl-1H-imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κN]cadmium(II), Cd(C12H13N5)2Cl2
  48. The crystal structure of 1,5-di(naphthalen-2-yl)-3-(pyridin-2-yl)pentane-1,5-dione, C30H23NO2
  49. The crystal structure of 2-((3-methylthiophen-2-yl)methylene)malononitrile, C9H6N2S
  50. The crystal structure of 1,4-dinitroso-2,3,5,6-tetraacetoxy-piperazine, C12H16N4O10
  51. Crystal structure of bis(2,4,6-trichlorophenyl) malonate, C15H6Cl6O4
  52. The crystal structure of trans-dichlorido-bis(pyridine-2-carboxylato-κ2N,O)platinum(IV), C12H8Cl2N2O4Pt
  53. Crystal structure of 3-nitroquinoline 1-oxide, C9H6N2O3
  54. Crystal structure of 2-(piperidin-1-ium-4-yl)-1H-benzo[d]imidazol-3-ium dichloride dihydrate, C12H21Cl2N3O2
  55. Crystal structure of (4S,4aS,6aR,6bR,12aS,12bR,14aS,14bR)-3,3,6a,6b,9,9,12a-heptamethyloctadecahydro-1H,3H-4,14b-ethanophenanthro[1,2-h]isochromene, C30H50O
  56. Crystal structure of (E)-4-((2-fluoro-3-(trifluoromethyl)benzylidene)amino)-3-methyl-1H-1,2,4-triazole-5(4H)-thione, C11H8F4N4S
  57. Crystal structure of 5-(4-fluorophenyl)-4-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione, C9H8FN3S
  58. Crystal structure of catena-poly[(1-(4-fluorophenyl)-N–(5-((trimethylstannyl)thio)-1,3,4-thiadiazol-2-yl)methanimine], (C12H14FN3S2Sn)n
  59. The crystal structure of 4-(methoxycarbonyl)benzoic acid, C9H8O4
  60. The crystal structure of N,N′-(6-(thiophen-2-yl)-1,3,5-triazine-2,4-diyl)bis(2-methylpropane-2-sulfonamide) – ethyl acetate(2/1), C34H54N10O6S6
  61. Crystal structure of N′-(1-(2-hydroxyphenyl)ethylidene)-5-methyl-1-phenyl-1H-1,2,3-triazole-4-carbohydrazide, C18H17N5O2
  62. Crystal structure of 3-(4-methoxyphenyl)-1-phenylprop-2-yn-1-one, C16H12O2
  63. Crystal structure of N′-(1-(benzofuran-2-yl)ethylidene)-2-cyanoacetohydrazide, C13H11N3O2
  64. Crystal structure of hexa-μ2-chlorido-μ4-oxido-tetrakis(1-vinyl-1H-imidazole-κN)tetracopper(II), C20H24Cu4Cl6N8O
  65. Crystal structure of N′-((1E,2E)-4-(7-methoxy-2-oxo-2H-chromen-8-yl)-2-methylbut-2-en-1-ylidene)-4-methylbenzenesulfonohydrazide, C22H22O5N2S
  66. Crystal structure of 2-acetyl pyrene, C18H12O
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2018-0363/html
Button zum nach oben scrollen