Startseite Crystal structure of 1,1-dimethyl-3-(4-methoxyphenyl)urea, C10H14N2O2
Artikel Open Access

Crystal structure of 1,1-dimethyl-3-(4-methoxyphenyl)urea, C10H14N2O2

  • Gamal A. El-Hiti EMAIL logo , Keith Smith , Mohammed B. Alshammari , Amany S. Hegazy und Benson M. Kariuki
Veröffentlicht/Copyright: 20. Januar 2017

Abstract

C10H14N2O2, monoclinic, P21/c (no. 14), a = 14.9185(12) Å, b = 7.7243(6) Å, c = 9.2229(5) Å, β = 91.032(6)°, V = 1062.63(13) Å3, Z = 4, T = 293(2) K.

CCDC no.:: 1525571

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Table 1

Data collection and handling.

Crystal:Colorless block
Size:0.29 × 0.13 × 0.09 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.09 mm−1
Diffractometer, scan mode:SuperNova, φ and ω
θmax, completeness:29.6°, >99%
N(hkl)measured, N(hkl)unique, Rint:5082, 2534, 0.021
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 1512
N(param)refined:135
Programs:CrysAlisPRO [17], SHELX [18], WinGX [19], CHEMDRAW Ultra [20].
Table 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
C10.24439(13)0.3566(3)0.26176(18)0.0553(5)
C20.24067(15)0.5161(3)0.1958(2)0.0665(6)
H20.27820.53910.11880.080*
C30.18216(16)0.6430(3)0.2417(2)0.0710(6)
H30.17990.74960.19480.085*
C40.12752(14)0.6108(3)0.3569(2)0.0670(6)
C50.13152(14)0.4524(3)0.4251(2)0.0700(6)
H50.09530.43120.50420.084*
C60.18829(14)0.3253(3)0.3780(2)0.0625(6)
H60.18930.21800.42370.075*
C70.35326(14)0.1205(3)0.29039(19)0.0556(5)
C80.37929(19)−0.0498(3)0.0685(2)0.0848(8)
H8A0.3156−0.05740.05290.127*
H8B0.4063−0.15960.04770.127*
H8C0.40340.03700.00580.127*
C90.4621(2)−0.1113(4)0.2971(3)0.1023(10)
H9A0.4701−0.06800.39400.153*
H9B0.5185−0.10950.24860.153*
H9C0.4400−0.22790.30050.153*
C100.0505(3)0.8791(4)0.3308(4)0.1230(12)
H10A0.10250.95200.33810.184*
H10B−0.00020.93890.36950.184*
H10C0.03870.85110.23090.184*
N10.30120(12)0.2264(2)0.20641(18)0.0627(5)
N20.39827(13)−0.0034(2)0.21882(17)0.0670(5)
O10.36005(11)0.1371(2)0.42292(13)0.0739(5)
O20.06579(12)0.7263(3)0.40972(19)0.0957(6)
H10.3151(16)0.237(3)0.117(3)0.077(7)*
C10.24439(13)0.3566(3)0.26176(18)0.0553(5)
C20.24067(15)0.5161(3)0.1958(2)0.0665(6)
H20.27820.53910.11880.080*
C30.18216(16)0.6430(3)0.2417(2)0.0710(6)
H30.17990.74960.19480.085*
C40.12752(14)0.6108(3)0.3569(2)0.0670(6)
C50.13152(14)0.4524(3)0.4251(2)0.0700(6)
H50.09530.43120.50420.084*

Source of material

To a stirred solution of triphosgene (1.0 mole equivalent) in dichloromethane (DCM), a solution of 4-methoxyaniline (2.5 mole equivalents) and triethylamine (5.5 mole equivalents) in DCM was slowly added over 30 min at 0 °C. The mixture was stirred at 0 °C for 2 h, after which a solution of dimethylamine (3.0 mole equivalents) in tetrahydrofuran was added. The reaction mixture was stirred at 0 °C for 1 h. The mixture was poured onto water and the DCM layer was separated, washed with water, and dried over magnesium sulfate and the solvent was then removed under reduced pressure. Crystallization of the obtained raw solid using a mixture of ethyl acetate and diethyl ether (1:3 by volume) gave the title compound, 1,1-dimethyl-3-(4-methoxyphenyl)urea (83%) as colorless crystals, Mp. 132–133 °C (lit. 131–132 °C [1]).

Experimental details

Non-hydrogen atoms were refined with anisotropic displacement parameters. The N-H proton was refined freely but all other hydrogen atoms were placed in calculated positions and refined using a riding model. C-H bonds of the methyl groups were fixed at 0.96 Å, with displacement parameters 1.5 times Ueq(C) for the hydrogen atoms, and were allowed to spin about the C-C bond. Aromatic C-H distances were set to 0.93 Å and their U(iso) values of the corresponding hydrogen atoms were set to 1.2 times the Ueq values of the atoms to which they are bonded.

Comment

Many urea derivatives are very important intermediates in organic syntheses and show a variety of biological activities [2], [3], [4], [5]. Various efficient procedures for the synthesis of aromatic ureas are known [6], [7], [8], [9], [10], [11]. Aromatic ureas can be easily modified via treatment with lithium reagents followed by reactions with electrophiles, a methodology we have used in the last few years [12], [13], [14], [15], [16].

The asymmetric unit contains one molecule of C10H14N2O2. In the molecule, the methoxybenzene group is almost planar with a C3—C4—O2—C10 torsion angle of 7.5(4)°. The rest of the molecule is not planar with twist angles 46.90(9)° between the phenyl and the NC(O)N groups and 10.68(34)° between NC(O)N and N(Me2) groups. In the crystal, N-H⋯O hydrogen bonding is observed with geometry: N1—H1⋯O1 = 158(2)°, N1⋯O1 = 2.966(2) Å. The hydrogen bonds construct chains of molecules along [001]. All bond lengths and angles are in the expected ranges.

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for its funding for this research through the research group project RGP-239 and to Cardiff University for the continued support.

References

1 Hutchby, M.: Novel Synthetic Chemistry of Ureas and Amides. Springer Thesis, Springer, 2013.10.1007/978-3-642-32051-4Suche in Google Scholar

2 Chen, J.-N.; Wang, X.-F.; Li, T.; Wu, D.-W.; Fu, X.-B.; Zhang, G.-J.; Shen, X.-C.; Wang, H.-S.: Design, synthesis, and biological evaluation of novel quinazolinyl-diaryl urea derivatives as potential anticancer agents. Eur. J. Med. Chem. 107 (2016) 12–25.10.1016/j.ejmech.2015.10.045Suche in Google Scholar PubMed

3 Kocyigit-Kaymakcioglu, B.; Celen, A. O.; Tabanca, N.; Ali, A.; Khan, S. I.; Khan, I. A.; Wedge, D. E.: Synthesis and biological activity of substituted urea and thiourea derivatives containing 1,2,4-triazole moieties. Molecules 18 (2013) 3562–3576.10.3390/molecules18033562Suche in Google Scholar PubMed PubMed Central

4 Gennäs, G. B.; Mologni, L.; Ahmed, S.; Rajaratnam, M.; Marin, O.; Lindholm, N.; Viltadi, M.; Gambacorti-Passerini, C.; Scapozza, L.; Yli-Kauhaluoma, J.: Design, synthesis, and biological activity of urea derivatives as anaplastic lymphoma kinase inhibitors. ChemMedChem 6 (2011) 1680–1692.10.1002/cmdc.201100168Suche in Google Scholar PubMed

5 Wilson, A. A.; Garcia, A.; Houle, S.; Sadovski, O.; Vasdev, N.: Synthesis and application of isocyanates radiolabeled with carbon-11. Chem. Eur. J. 17 (2011) 259–264.10.1002/chem.201002345Suche in Google Scholar PubMed

6 Thalluri, K.; Manne, S. R.; Dev, D.; Mandal, B.: Ethyl 2-cyano-2-(4-nitrophenylsulfonyloxyimino)acetate-mediated Lossen rearrangement: single-pot racemization-free synthesis of hydroxamic acids and ureas from carboxylic acids. J. Org. Chem. 79 (2014) 3765–3775.10.1021/jo4026429Suche in Google Scholar PubMed

7 Carnaroglio, D.; Martina, K.; Palmisano, G.; Penoni, A.; Domini, C.; Cravotto, G.: One-pot sequential synthesis of isocyanates and urea derivatives via a microwave-assisted Staudinger–aza-Wittig reaction. Beilstein J. Org. Chem. 9 (2013) 2378–2386.10.3762/bjoc.9.274Suche in Google Scholar PubMed PubMed Central

8 Vinogradova, E. V.; Fors, B. P.; Buchwald, S. L.: Palladium-catalyzed cross-coupling of aryl chlorides and triflates with sodium cyanate: a practical synthesis of unsymmetrical ureas. J. Am. Chem. Soc. 134 (2012) 11132–11135.10.1021/ja305212vSuche in Google Scholar PubMed PubMed Central

9 Wu, C.; Cheng, H.; Liu, R.; Wang, Q.; Hao, Y.; Yu, Y.; Zhao, F.: Synthesis of urea derivatives from amines and CO2 in the absence of catalyst and Solvent. Green Chem. 12 (2010) 1811–1816.10.1039/c0gc00059kSuche in Google Scholar

10 Mizuno, T.; Nakai, T.; Mihara, M.: Synthesis of unsymmetrical ureas by sulfur-assisted carbonylation with carbon monoxide and oxidation with molecular oxygen under mild conditions. Synthesis 41 (2009) 2492–2496.10.1002/chin.200952100Suche in Google Scholar

11 Artuso, E.; Degani, I.; Fochi, R.; Magistris, C.: Preparation of mono-, di-, and trisubstituted ureas by carbonylation of aliphatic amines with S,S-dimethyl dithiocarbonate. Synthesis 39 (2007) 3497–3506.10.1002/chin.200813055Suche in Google Scholar

12 Smith, K.; El-Hiti, G. A.; Alshammari, M. B.: Directed lithiation of N′-(2-(4-methoxyphenyl)ethyl)-N,N-dimethylurea and tert-butyl (2-(4-methoxyphenyl)ethyl)carbamate. Synthesis 46 (2014) 394–402.10.1055/s-0033-1338570Suche in Google Scholar

13 Smith, K.; El-Hiti, G. A.; Alshammari, M. B.: Control of site of lithiation of 3-(aminomethyl)pyridine derivatives. Synthesis 45 (2013) 3426–3434.10.1055/s-0033-1338547Suche in Google Scholar

14 Smith, K.; El-Hiti, G. A.; Alshammari, M. B.: Lithiation and substitution of N′-(ω-phenylalkyl)-N,N-dimethylureas. Synthesis 44 (2012) 20139–2022.10.1055/s-0031-1291008Suche in Google Scholar

15 Smith, K.; El-Hiti, G. A.; Alshammari, M. B.: Variation in the site of lithiation of 2-(2-methylphenyl)ethanamine derivatives. J. Org. Chem. 77 (2012) 11210–11215.10.1021/jo3023445Suche in Google Scholar PubMed

16 Smith, K.; El-Hiti, G. A.; Hegazy, A. S.: Lateral lithiation of N′-(2-methylbenzyl)-N,N-dimethylurea and N-(2-methylbenzyl)pivalamide: Synthesis of tetrahydroisoquinolines. Synthesis 42 (2010) 1371–1380.10.1055/s-0029-1219277Suche in Google Scholar

17 Agilent. CrysAlisPRO. Agilent Technologies, Yarnton, England, 2014.Suche in Google Scholar

18 Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Suche in Google Scholar PubMed

19 Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.10.1107/S0021889812029111Suche in Google Scholar

20 Cambridge Soft. CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA, 2001.Suche in Google Scholar

Received: 2016-8-2
Accepted: 2017-1-4
Published Online: 2017-1-20
Published in Print: 2017-3-1

©2017 Gamal A. El-Hiti et al., published by De Gruyter.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Artikel in diesem Heft

  1. Cover and Frontmatter
  2. The crystal structure of triphenylphosphineoxide – 2,5-dichloro-3,6-dihydroxycyclohexa-2,5-diene-1,4-dione (2/1), C42H32Cl2O6P2
  3. Crystal structure of poly-[diaqua-[bis(μ2-hydroxy)-bis(μ4-3,4,5,6-tetrachlorophthalato-κ3O,O′:O′; κ2O′′:O′′′)dilanthanum(III)], C8H3Cl4LaO6
  4. Crystal structure of 1,1′-(3,4-diphenylthieno[2,3-b]thiophene-2,5-diyl)bis[1-phenyl-methanone], C32H20O2S2
  5. Crystal structure of 4a-hydroxy-9-(3,5-dibromo-phenyl)-3,4,4a,5,6,7,9,9a-octahydro-2H-xanthene-1,8-dione, C19H18Br2O4
  6. Crystal structure of 5-hydroxy-4,6,9,10-tetramethyl-1-oxo-6-vinyldecahydro-3a,9-propanocyclopenta[8]annulen-8-yl 2-((2-methyl-1-(3-methylbenzamido)propan-2-yl)thio)acetate, C34H49NO5S
  7. Crystal structure of pyridinium bis(naphthalane-2,3-diolato-κ2O,O′)borate monohydrate, C25H20BNO5
  8. Crystal structure of 1,1′-((1E,1′E)-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(azanylylidene))bis(methanylylidene))bis(naphthalen-2-olato)nickel(II), C72H52N4O8Ni2
  9. The crystal structure of 3-(2-acetyl-4-butyramido-phenoxy)-2-hydroxy-N-isopropylpropan-1-aminium tetraphenylborate, C42H49BN2O4
  10. Crystal structure of 4-bromobenzyl (Z)-N′-(adamantan-1-yl)-4-phenylpiperazine-1-carbothioimidate, C28H34BrN3S
  11. Crystal structure of poly-[(μ6-benzene-1,2,4,5-tetracarboxylato)-(μ2-1,2-bis(imidazol-1-ylmethyl)benzene)dicobalt(II)], Co2C24H16N4O8
  12. Crystal structure of catena-(bis(μ2-1, 2-bis(imidazole-1-ylmethyl)benzene-κN:N′)-dichlororido-nickel(II)), C28H28Cl2N8Ni
  13. Crystal structure of (Z)-1-(1,5-dimethyl-1H-pyrazol-3-yl)-3-hydroxy-3-(4-methoxyphenyl)prop-2-en-1-one, C15H16N2O3
  14. Crystal structure of (Z)-1-(1,5-dimethyl-1H-pyrazol-3-yl)-3-hydroxy-3-phenylprop-2-en-1-one, C14H14N2O2
  15. Crystal structure of (E)-2-(4-hydroxy-3-methoxybenzylidene)-6-methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H18O4
  16. Crystal structure of (Z)-1-(1,5-dimethyl-1H-pyrazol-3-yl)-3-(4-ethoxyphenyl)-3-hydroxyprop-2-en-1-one, C16H18N2O3
  17. Crystal structure of (Z)-1-(1,5-dimethyl-1H-pyrazol-3-yl)-3-hydroxy-3-(p-toly)prop-2-en-1-one, C15H16N2O2
  18. Crystal structure of 1-acetyl-3-(3-chlorophenyl)-5-(4-isopropylphenyl)-4,5-dihydro-(1H)-pyrazole, C20H21ClN2O
  19. The crystal structure of 1-methyl-2,4-dinitro-5-iodoimidazole, C4H3IN4O4
  20. The crystal structure of 4-chloro-3,5-dinitroaniline, C6H4ClN3O4
  21. Crystal structure of N,N-dimethyl-N′-(2-methyl-4-oxo-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-3(4H)-yl)formimidamide, C14H18N4OS
  22. Crystal structure of tetrakis(μ2-acetato-κ2O:O′)-bis[μ3-4-chloro-2,6-bis((methylimino)methyl)phenolato-κ2N,O:O,N′]-(μ4-oxido)tetracopper(II), C28H32Cl2Cu4N4O11
  23. Crystal structure of catena-poly[diaqua-bis(μ2-ethane-1,2-diyl-bis(pyridine-3-carboxylate-κ2N:N′))copper(II)] dinitrate, C28H28CuN6O16
  24. Synthesis and crystal structure of catena-poly[(μ2-nicotinato-κ2O,O′: κ1N)-(nitrato-κ1O)-(bis(2-benzimidazol-ylmethyl)amine-κ3N,N′,N′′)lead(II)], C22H18N7O5Pb
  25. The twinned crystal structure of (4SR)-7-benzyl-2,4,8,8-tetramethyl-7,8-dihydroimidazo[5,1-c][1,2,4]triazine-3,6(2H,4H)-dione, C16H20N4O2
  26. Crystal structure of (Z)-3-hydroxy-3-(4-methoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one, C15H13NO3
  27. Crystal structure of 2-amino-4-(2,3-dichlorophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile, C16H12Cl2N2O2
  28. Crystal structure of catena-poly[(μ2-butane-1,4-diyl-bis(pyridine-3-carboxylato-κN))silver(I)] tetrafluoroborate, C16H16AgN2O4BF4
  29. Crystal structure of poly[diaqua-(1,10-phenanthroline-κ2N,N′)-(μ2-2,5-dihydroxytere-phthalato)-bis(μ4-2,5-dihydroxyterephthalato)dicerium(III)], C24H16CeN2O10
  30. Crystal structure of 5,7,4′-trihydroxy-3,8,3′-trymethoxyflavone, C18H16O8
  31. Crystal structure of N-(3,4-dichlorobenzylidene)-4-methylaniline, C14H11Cl2N
  32. Crystal structure of 4-(3-Methoxy-phenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-quinoline-3-carboxylic acid ethyl ester, C22H27NO4
  33. Crystal structure of 2-amino-4-(3-fluorophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile, C16H13FN2O2
  34. Crystal structure of 1,1,(3,4-dihydroxythieno[2,3-b] thiophene-2,5-diyl)bis(2-bromoethanone), C10H6Br2O4S2
  35. The crystal structure of N,N′-(4,4′-oxydibenzyl)-bisisonicotinamide 3.5 hydrate, C24H24N4O6
  36. Crystal structure of catena-poly[hexakis(μ2-chlorido)-hexakis(4-(1H-pyrazol-5-yl)pyridine-κN)tricadmium(II)], Cd3C48H42Cl6N18
  37. Crystal structure of 2-(4-(dimethylamino)phenyl)-1,3-dimethyl-1H-perimidin-3-ium iodide, C21H22I1N3
  38. Crystal structure of 4-(1,3-dimethyl-2,3-dihydro-1H-perimidin-2-yl)benzonitrile, C20H17N3
  39. Crystal structure of tetrakis(μ2-acetato-κ2O:O′)-bis(2,2′-sulfonyldipyrazine-κ1N)dicopper(II), C24H24Cu2N8O12S2
  40. Crystal structure of 1-(4-chlorophenyl)-6,8-diphenyl-1H-pyrazolo[4,3-c]quinoline, C28H18ClN3
  41. Crystal structure of methyl 3-((1-(2-(methoxycarbonyl)benzyl)-1H-1,2,3-triazol-4-yl)methoxy)-2-naphthoate, C24H21N3O5
  42. Crystal structure of (tris(2-pyridylmethyl)amine-κ4N,N′,N′′,N′′′′)-chloranilato-κO,O′-zinc(II) – methanol (1/1), C25H22Cl2N4O5Zn
  43. Crystal structure of 1,1-dimethyl-3-(4-methoxyphenyl)urea, C10H14N2O2
  44. Crystal structure of 4a-Hydroxy-9-(2-nitro-phenyl)-3,4,4a,5,6,7,9,9a-octahydro-2H-xanthene-1,8-dione, C19H19NO6
  45. Crystal structure of chlorido-(η6–1-isopropyl-4-methyl benzene)-(1-(pyridin-2-yl)-N-(p-tolyl)methanimine-κ2N,N′)ruthenium(II) hexafluorophosphate(V), C23H26ClF6N2PRu
  46. Crystal structure of phenyl(2-phenyl-2,3-dihydro-1H-perimidin-2-yl)methanone, C24H18N2O
  47. Crystal structure of (E)-3-methyl-4-((3-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)methylene)-1-phenyl-1H-pyrazol-5(4H)-one, C29H23N7O
  48. Crystal structure of 2-(4-(2-butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)piperazin-1-yl)-2-oxoethyldiethylcarbamodithioate, C27H34N4O3S2
  49. Crystal structure of poly-[diaqua-bis(μ-4,4′-bipyridine-κ2N:N′)cobalt(II)] bis(4-chlorobenzenesulfonate) – 4,4′-bipyridine – water (1/1/2), C42H40Cl2CoN6O10S2
  50. Crystal structure of (η6-benzene)-(N-(2,6-dimethylphenyl)-1-(pyridin-2-yl)methanimine-κ2N,N′)ruthenium(II) perchlorate monohydrate, C20H20Cl2N2O5Ru
  51. Crystal structure of 4,10,16,22-tetrahydroxy-6,12,18,24-tetramethoxy-2,8,14,20-tetraethylphenylresorcin[4]arene – ethyl acetate (1/1), C68H72O10
  52. Crystal structure of chlorido-(N-(2,5-dichlorophenyl)-1-(pyridin-2-yl)methanimine-κ2N,N′)(η6-1-isopropyl-4-methyl benzene) ruthenium (II) tetrafluoroborate, C22H22Cl3N2BF4Ru
  53. Crystal structure of 3-(5-methyl-1-p-tolyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazole-4-carbaldehyde, a rare Z′ = 3 structure, C20H17N5O
  54. Crystal structure of 5-(5-(4-chlorophenyl)-1-phenyl-1H-pyrazol-3-yl)-N-phenyl-1,3,4-thiadiazol-2-amine, C23H16ClN5S
  55. Crystal structure of 7-hydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one-N,N-dimethylformamide (1/1), C18H17NO5
  56. Crystal structure of halogen-bonded 2-chloro-1,10-phenanthroline—1,4-diiodotetrafluorobenzene (2/1), C30H14Cl2F4I2N4
  57. Crystal structure of 1-(4,4-dimethyl-2,6-dithioxo-1,3,5-triazinan-1-yl)-3-(diethylaminocarbonyl)thiourea, C11H20N6OS3
  58. Crystal structure of methyl 1-(4-fluorobenzyl)-3-phenyl-1H-pyrazole-5-carboxylate, C18H15FN2O2
  59. Crystal structure of 1,1-dimethyl-3-(4-methylphenyl)urea, C10H14N2O
  60. Crystal structure of yttrium gallium antimonide, Y5Ga1.24Sb2.77
  61. Crystal structure of 2-(bis(4-methoxyphenyl)amino)-2-oxoacetic acid, C16H15NO5
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2016-0238/html
Button zum nach oben scrollen