Home Physical Sciences Crystal structure of (E)-2-(4-hydroxy-3-methoxybenzylidene)-6-methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H18O4
Article Open Access

Crystal structure of (E)-2-(4-hydroxy-3-methoxybenzylidene)-6-methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H18O4

  • Nahed N.E. El-Sayed , Norah M. Almaneai , Hazem A. Ghabbour EMAIL logo and Ahmed M. Alafeefy
Published/Copyright: December 15, 2016

Abstract

C19H18O4, orthorhombic, Pbcn, a = 21.1472(8) Å, b = 9.7978(4) Å, c = 14.5181(6) Å, V = 3008.1(2) Å3, Z = 8, Rgt(F) = 0.0520, wRref(F2) = 0.1194, T = 100(2).

CCDC no.:: 1459326

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1

Data collection and handling.

Crystal:Orange plate
Size:0.56 × 0.17 × 0.09 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:1.0 cm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω
2θmax, completeness:55°, >99%
N(hkl)measured, N(hkl)unique, Rint:39151, 3461, 0.134
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 2466
N(param)refined:214
Programs:SHELX [22], Bruker programs [23]
Table 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
O10.45468(6)0.82075(12)−0.11321(9)0.0172(3)
O20.72991(6)1.06912(13)−0.11627(9)0.0207(3)
O30.36151(6)0.37388(14)0.36125(9)0.0197(3)
O40.28832(6)0.58164(13)0.31800(9)0.0232(3)
C10.49596(9)0.81438(17)−0.05242(12)0.0142(4)
C20.55753(9)0.88251(17)−0.06542(12)0.0147(4)
C30.57352(9)0.93631(17)−0.15192(12)0.0155(4)
H3A0.54460.9309−0.20000.019*
C40.63112(9)0.99665(19)−0.16657(13)0.0173(4)
H4A0.64141.0304−0.22450.021*
C50.67441(9)1.00737(18)−0.09393(13)0.0167(4)
C60.65949(9)0.95551(18)−0.00765(13)0.0155(4)
H6A0.68820.96330.04050.019*
C70.60138(9)0.89180(17)0.00671(12)0.0150(4)
C80.58494(9)0.83213(19)0.09932(13)0.0179(4)
H8A0.56190.89920.13520.021*
H8B0.62350.81010.13230.021*
C90.54469(9)0.70305(19)0.08894(13)0.0178(4)
H9A0.56920.63250.05860.021*
H9B0.53250.66970.14930.021*
C100.48615(9)0.73407(17)0.03296(13)0.0155(4)
C110.42684(9)0.69864(17)0.05672(12)0.0158(4)
H11A0.39430.73510.02130.019*
C120.40819(9)0.60866(18)0.13255(12)0.0158(4)
C130.44199(9)0.49039(18)0.15217(13)0.0180(4)
H13A0.47630.46630.11560.022*
C14.0.42482(9)0.40813(18)0.22580(13)0.0168(4)
H14A0.44690.32760.23680.020*
C150.37567(9)0.44399(18)0.28277(13)0.0154(4)
C160.33833(9)0.55846(18)0.26053(13)0.0160(4)
C170.35452(9)0.63824(18)0.18579(13)0.0164(4)
H17A0.32940.71280.17050.020*
C180.77579(10)1.0899(2)−0.04455(14)0.0247(5)
H18A0.81321.1303−0.07020.037*
H18B0.78631.0037−0.01710.037*
H18C0.75851.14940.00150.037*
C190.24712(10)0.6916(2)0.29427(15)0.0257(5)
H19A0.21210.69370.33630.039*
H19B0.23170.67890.23270.039*
H19C0.26980.77630.29790.039*
H1O30.3905(12)0.308(3)0.3694(17)0.049(8)*

Source of material

To a stirred solution of 6-methoxy-1-tetralone (5 g, 0.0028 mol) in conc. HCl (28 mL) and glacial acetic acid (28 mL) at 0 °C, vanillin (4.3 g, 0.0028 mol) was added. The resulting mixture was further stirred at this temperature for 3 h, then at room temperature for 18 h. Diethyl ether was added and the ethereal layer was discarded. The remaining residue was treated with a water/ice mixture. The separated solid was filtered off and recrystallized from ethanol/ petroleum ether to afford the title compound (50%) as red crystals, m.p. 110–115 °C; γmaxIR (KBr)/cm−1 3431, 3177, 2940, 2838, 1638, 1597, 1559, 1520, 1443, 1425, 1390, 1317, 1253, 1165; 1H-NMR (400 MHz; CDCl3) δH: 2.92 (2 H, t, J 6.0, CH2), 3.13 (2 H, app. td, J 6.0, 1.7, CH2), 3.87 (3H, s, OCH3), 3.92 (3H, s, OCH3), 6.70 (1H, d, J 2.6, CH—Ph-tetralone), 6.87 (1H, dd, J 8.5, 2.6, CH—Ph-tetralone), 6.96–6.95 (2H, m, 2 × CH—Ph-vanillin), 7.02(1H, dd, J 7.7, 1.7, CH—Ph-vanillin), 7.78 (1H, s, CH = CqCO), 8.10 (1H, d, J 8.5, CH—Ph-tetralone); 13C-NMR (100 MHz; CDCl3) δH: 27.28 (CH2), 29.18 (CH2), 55.40 (OCH3), 55.94 (OCH3), 112.21, 112.73, 113.21, 114.39, 123.64, 127.14, 128.32, 130.66, 133.70, 136.33, 145.51, 146.24, 163.46 (6 × CH—Ph-tetralone and CH—Ph, 6 × Cq-Ph-tetralone and Cq-Ph), 186.71 (C = O); δC (100 MHz; CDCl3) 27.28 (CH2), 29.18 (CH2), 55.40 (OCH3), 55.94 (OCH3), 112.21, 112.73, 113.21, 114.39, 123.64, 127.14, 128.32, 130.66, 133.70, 136.33, 145.51, 146.24, 163.46 (14 × CH-Ar, Cq-Ar and CH = Cq CO), 186.71 (C = O).

Experimental details

Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C) except for methyl hydrogen atoms. The H atoms of the methyl group were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density with Uiso(H) set to 1.5Ueq(C).

Discussion

2-Arylidene-1-tetralones contain the α,β-unsaturated enone fragment. This moiety is a characteristic functionality of biologically and synthetically important compounds known as chalcones. This synthon is considered as a versatile building block that can be used to construct heterocyclic rings having one or more heteroatoms and of different ring sizes such as 2-pyrazoline [1], pyrimidine [2, 3] , pyran, and isooxazoline [4]. Generally chalcones and their analogs are prepared by Claisen-Schmidt reactions under basic conditions using bases such as sodium hydroxide or potassium hydroxide [5], lithium hydroxide [6] and piperidine [7]. Acid catalyzed synthesis is also well established using p-toluene sulfonic acid under focused microwave irradiation [8], thionyl chloride [9], dry hydrochloric acid and borontrifluoride-etherate [10]. Some chalcones are known for their biological activities as they exhibit cytotoxic [11], antibacterial [12], antifungal [13], antimalarial and antitubercular [14], anti-inflammatory [15], antimalarial [16], antiviral [17], tyrosinase inhibitor [18], antiallergenic [19], antioxidant [20] and antihyperglycemic [21] activities.

The asymmetric unit cell of the titled compound contains one independent molecule. The bond length of C10—C11 is 1.346(3) Å, which are typical C = C double bond and the configuration around this double bond is trans. The molecules are connected in the crystal via intermolecular hydrogen bonds: O3—H1O3⋯O1i, symmetry code: (i) x, − y + 1, z + 1/2 forming chains along the c axis of the choosen unit cell. Additionally, non-classical hydrogen bonds may contribute to the stability of the packing.

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding this Research Group No. RG-1435-083.

References

1 Ziani, N.; Lamara, K.; Sid, A.; Willem, Q.; Dassonneville, B.; Demonceau, A.: Synthesis of pyrazoline derivatives from the 1,3-dipolar cycloadditions using α, β-unsaturated cyclohexanone derivatives. Eur. J. Chem. 4 (2013) 176–179.10.5155/eurjchem.4.2.176-179.757Search in Google Scholar

2 Kachroo, M.; Panda, R.; Yadav, Y.: Synthesis and biological activities of some new pyrimidine derivatives from chalcones. Der Pharms Chem. 6 (2014) 352–359.Search in Google Scholar

3 Suwito, H.; Mustofa, J.; Kristanti, A. N.; Puspaningsih, N. N. T.: Chalcones: synthesis, structure diversity and pharmacological aspects. J. Chem. Pharm. Res. 6 (2014) 1076–1088.Search in Google Scholar

4 Sharma, B. K.; Ameta, S. C.; Dwivedi, V. K.: Ecofriendly synthesis of chalcones and their 2-pyrazoline and isoxazolines derivatives as potential microbial agents. Int. J. Chem. Sci. 12 (2014) 1121–1134.Search in Google Scholar

5 Asiri, A. M.; Khan, S. A.: Synthesis and anti-bacterial activities of a bis-chalcone derived from thiophene and its bis-cyclized products. Molecules 16 (2011) 523–531.10.3390/molecules16010523Search in Google Scholar PubMed PubMed Central

6 Panigrahi, N.; Ganguly, S.; Panda, J.; Praharsha, Y.: Ultrasound assisted synthesis and antimicrobial evaluation of novel thiophene chalcone derivatives. Chem. Sci. Trans. 3 (2014) 1163–1171.Search in Google Scholar

7 Trivedi, J. C.; Bariwal, J. B.; Upadhyay, K. D.; Naliapara, Y. T.; Joshi, S. K.; Pannecouque, C. C.; Clercq, E. D.; Shah, A. K.: Improved and rapid synthesis of new coumarinyl chalcone derivatives and their antiviral activity. Tetrahedron Lett. 48 (2007) 8472–8474.10.1016/j.tetlet.2007.09.175Search in Google Scholar

8 Gall, E. L.; Texier-Boullet, F.; Hamelin, J.: Simple access to α, β unsaturated ketones by acid-catalyzed solvent-free reactions. Synth. Commun. 29 (1999) 3651–365710.1080/00397919908086000Search in Google Scholar

9 Jayapal, M. R.; Prasad, K. S.; Sreedhar, N. Y. J.: Synthesis and characterization of 2, 4-dihydroxy substituted chalcones using aldol condensation by SOCl2/EtOH. Chem. Pharm. Res. 2 (2010) 127–132.Search in Google Scholar

10 Narender, T.; Reddy, K. P.: A simple and highly efficient method for the synthesis of chalcones by using borontrifluoride-etherate. Tetrahedron Lett. 48 (2007) 3177–3180.10.1016/j.tetlet.2007.03.054Search in Google Scholar

11 Syam, S.; Abdelwahab, S. I.; Al-Mamary, M. A.; Mohan, S.: Synthesis of chalcones with anticancer activities. Molecules 17 (2012) 6179–6195.10.3390/molecules17066179Search in Google Scholar PubMed PubMed Central

12 Chikhalia, K. H.; Patel, M. J.; Vashi, D. B.: Design, synthesis and evaluation of novel quinolyl chalcones as antibacterial agents. ARKIVOC xiii (2008) 189–197.10.3998/ark.5550190.0009.d21Search in Google Scholar

13 Tailor, N. K.: Synthesis and antifungal activity of certain chalcones and their reduction. Indo Global J. Pharm. Sci. 4 (2014) 25–28.10.35652/IGJPS.2014.120Search in Google Scholar

14 Hans, R. H.; Guantai, E. M.; Lategan, C.; Smith, P. J.; Wan, B.; Franzblau, S. G.; Gut, J.; Rosenthal, P. J.; Chibale, K.: Synthesis, antimalarial and antitubercular activity of acetylenic chalcones. Bioorg. Med. Chem. Lett. 20 (2010) 942–944.10.1016/j.bmcl.2009.12.062Search in Google Scholar PubMed

15 Nowakowska, Z.: A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem. 42 (2007) 125–137.10.1016/j.ejmech.2006.09.019Search in Google Scholar PubMed

16 Li, R.; Kenyon, G.; Cohen, F. E.; Chen, X.; Gong, B.; Dominguez, J. N.; Davidson, E.; Kurzban, G.; Miller, R. E.; Nuzum, E. O.: In vitro antimalarial activity of chalcones and their derivatives. J. Med. Chem. 38 (1995) 5031–5037.10.1021/jm00026a010Search in Google Scholar PubMed

17 Biradar, J. S.; Sasidhar, B. S.; Parveen, R.: Synthesis, antioxidant and DNA cleavage activities of novel indole derivatives. Eur. J. Med. Chem. 45 (2010) 4074–4078.10.1016/j.ejmech.2010.05.067Search in Google Scholar PubMed

18 Nerya, O.; Musa, R.; Khatib, S.; Tamir, S.; Vaya, J.: Chalcones as potent tyrosinase inhibitors: the effect of hydroxyl positions and numbers. Phytochemistry 65 (2004) 1389–1395.10.1016/j.phytochem.2004.04.016Search in Google Scholar PubMed

19 Yamamoto, T.; Yoshimura, M.; Yamaguchi, F.; Kouchi, T.; Tsuji, R.; Saito, M.; OBata, A.; Kikuchi, M.: Anti-allergic activity of naringenin chalcone from a tomato skin extract. Biosci. Biotechnol. Biochem. 68 (2004) 1706–1711.10.1271/bbb.68.1706Search in Google Scholar PubMed

20 Murti, Y.; Goswami, A.; Mishra, P.: Synthesis and antioxidant activity of some chalcones and flavanoids. Int. J. PharmTech. Res. 5 (2013) 811–818.Search in Google Scholar

21 Satyanarayana, M.; Tiwari, P.; Tripathi, B. K.; Srivastava, A. K.; Pratap, R.: Synthesis and antihyperglycemic activity of chalcone based aryloxypropanolamines. Bioorg. Med. Chem. 12 (2004) 883–889.10.1016/j.bmc.2003.12.026Search in Google Scholar PubMed

22 Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

23 Brucker. APEX2, SAINT and SADABS. Brucker AXS Inc., Madison, WI, USA, 2009.10.1097/IAE.0b013e3181ad255fSearch in Google Scholar PubMed

Received: 2016-6-19
Accepted: 2016-11-8
Published Online: 2016-12-15
Published in Print: 2017-3-1

©2016 Nahed N. E. El-Sayed et al., published by De Gruyter.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Articles in the same Issue

  1. Cover and Frontmatter
  2. The crystal structure of triphenylphosphineoxide – 2,5-dichloro-3,6-dihydroxycyclohexa-2,5-diene-1,4-dione (2/1), C42H32Cl2O6P2
  3. Crystal structure of poly-[diaqua-[bis(μ2-hydroxy)-bis(μ4-3,4,5,6-tetrachlorophthalato-κ3O,O′:O′; κ2O′′:O′′′)dilanthanum(III)], C8H3Cl4LaO6
  4. Crystal structure of 1,1′-(3,4-diphenylthieno[2,3-b]thiophene-2,5-diyl)bis[1-phenyl-methanone], C32H20O2S2
  5. Crystal structure of 4a-hydroxy-9-(3,5-dibromo-phenyl)-3,4,4a,5,6,7,9,9a-octahydro-2H-xanthene-1,8-dione, C19H18Br2O4
  6. Crystal structure of 5-hydroxy-4,6,9,10-tetramethyl-1-oxo-6-vinyldecahydro-3a,9-propanocyclopenta[8]annulen-8-yl 2-((2-methyl-1-(3-methylbenzamido)propan-2-yl)thio)acetate, C34H49NO5S
  7. Crystal structure of pyridinium bis(naphthalane-2,3-diolato-κ2O,O′)borate monohydrate, C25H20BNO5
  8. Crystal structure of 1,1′-((1E,1′E)-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(azanylylidene))bis(methanylylidene))bis(naphthalen-2-olato)nickel(II), C72H52N4O8Ni2
  9. The crystal structure of 3-(2-acetyl-4-butyramido-phenoxy)-2-hydroxy-N-isopropylpropan-1-aminium tetraphenylborate, C42H49BN2O4
  10. Crystal structure of 4-bromobenzyl (Z)-N′-(adamantan-1-yl)-4-phenylpiperazine-1-carbothioimidate, C28H34BrN3S
  11. Crystal structure of poly-[(μ6-benzene-1,2,4,5-tetracarboxylato)-(μ2-1,2-bis(imidazol-1-ylmethyl)benzene)dicobalt(II)], Co2C24H16N4O8
  12. Crystal structure of catena-(bis(μ2-1, 2-bis(imidazole-1-ylmethyl)benzene-κN:N′)-dichlororido-nickel(II)), C28H28Cl2N8Ni
  13. Crystal structure of (Z)-1-(1,5-dimethyl-1H-pyrazol-3-yl)-3-hydroxy-3-(4-methoxyphenyl)prop-2-en-1-one, C15H16N2O3
  14. Crystal structure of (Z)-1-(1,5-dimethyl-1H-pyrazol-3-yl)-3-hydroxy-3-phenylprop-2-en-1-one, C14H14N2O2
  15. Crystal structure of (E)-2-(4-hydroxy-3-methoxybenzylidene)-6-methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H18O4
  16. Crystal structure of (Z)-1-(1,5-dimethyl-1H-pyrazol-3-yl)-3-(4-ethoxyphenyl)-3-hydroxyprop-2-en-1-one, C16H18N2O3
  17. Crystal structure of (Z)-1-(1,5-dimethyl-1H-pyrazol-3-yl)-3-hydroxy-3-(p-toly)prop-2-en-1-one, C15H16N2O2
  18. Crystal structure of 1-acetyl-3-(3-chlorophenyl)-5-(4-isopropylphenyl)-4,5-dihydro-(1H)-pyrazole, C20H21ClN2O
  19. The crystal structure of 1-methyl-2,4-dinitro-5-iodoimidazole, C4H3IN4O4
  20. The crystal structure of 4-chloro-3,5-dinitroaniline, C6H4ClN3O4
  21. Crystal structure of N,N-dimethyl-N′-(2-methyl-4-oxo-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-3(4H)-yl)formimidamide, C14H18N4OS
  22. Crystal structure of tetrakis(μ2-acetato-κ2O:O′)-bis[μ3-4-chloro-2,6-bis((methylimino)methyl)phenolato-κ2N,O:O,N′]-(μ4-oxido)tetracopper(II), C28H32Cl2Cu4N4O11
  23. Crystal structure of catena-poly[diaqua-bis(μ2-ethane-1,2-diyl-bis(pyridine-3-carboxylate-κ2N:N′))copper(II)] dinitrate, C28H28CuN6O16
  24. Synthesis and crystal structure of catena-poly[(μ2-nicotinato-κ2O,O′: κ1N)-(nitrato-κ1O)-(bis(2-benzimidazol-ylmethyl)amine-κ3N,N′,N′′)lead(II)], C22H18N7O5Pb
  25. The twinned crystal structure of (4SR)-7-benzyl-2,4,8,8-tetramethyl-7,8-dihydroimidazo[5,1-c][1,2,4]triazine-3,6(2H,4H)-dione, C16H20N4O2
  26. Crystal structure of (Z)-3-hydroxy-3-(4-methoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one, C15H13NO3
  27. Crystal structure of 2-amino-4-(2,3-dichlorophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile, C16H12Cl2N2O2
  28. Crystal structure of catena-poly[(μ2-butane-1,4-diyl-bis(pyridine-3-carboxylato-κN))silver(I)] tetrafluoroborate, C16H16AgN2O4BF4
  29. Crystal structure of poly[diaqua-(1,10-phenanthroline-κ2N,N′)-(μ2-2,5-dihydroxytere-phthalato)-bis(μ4-2,5-dihydroxyterephthalato)dicerium(III)], C24H16CeN2O10
  30. Crystal structure of 5,7,4′-trihydroxy-3,8,3′-trymethoxyflavone, C18H16O8
  31. Crystal structure of N-(3,4-dichlorobenzylidene)-4-methylaniline, C14H11Cl2N
  32. Crystal structure of 4-(3-Methoxy-phenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-quinoline-3-carboxylic acid ethyl ester, C22H27NO4
  33. Crystal structure of 2-amino-4-(3-fluorophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile, C16H13FN2O2
  34. Crystal structure of 1,1,(3,4-dihydroxythieno[2,3-b] thiophene-2,5-diyl)bis(2-bromoethanone), C10H6Br2O4S2
  35. The crystal structure of N,N′-(4,4′-oxydibenzyl)-bisisonicotinamide 3.5 hydrate, C24H24N4O6
  36. Crystal structure of catena-poly[hexakis(μ2-chlorido)-hexakis(4-(1H-pyrazol-5-yl)pyridine-κN)tricadmium(II)], Cd3C48H42Cl6N18
  37. Crystal structure of 2-(4-(dimethylamino)phenyl)-1,3-dimethyl-1H-perimidin-3-ium iodide, C21H22I1N3
  38. Crystal structure of 4-(1,3-dimethyl-2,3-dihydro-1H-perimidin-2-yl)benzonitrile, C20H17N3
  39. Crystal structure of tetrakis(μ2-acetato-κ2O:O′)-bis(2,2′-sulfonyldipyrazine-κ1N)dicopper(II), C24H24Cu2N8O12S2
  40. Crystal structure of 1-(4-chlorophenyl)-6,8-diphenyl-1H-pyrazolo[4,3-c]quinoline, C28H18ClN3
  41. Crystal structure of methyl 3-((1-(2-(methoxycarbonyl)benzyl)-1H-1,2,3-triazol-4-yl)methoxy)-2-naphthoate, C24H21N3O5
  42. Crystal structure of (tris(2-pyridylmethyl)amine-κ4N,N′,N′′,N′′′′)-chloranilato-κO,O′-zinc(II) – methanol (1/1), C25H22Cl2N4O5Zn
  43. Crystal structure of 1,1-dimethyl-3-(4-methoxyphenyl)urea, C10H14N2O2
  44. Crystal structure of 4a-Hydroxy-9-(2-nitro-phenyl)-3,4,4a,5,6,7,9,9a-octahydro-2H-xanthene-1,8-dione, C19H19NO6
  45. Crystal structure of chlorido-(η6–1-isopropyl-4-methyl benzene)-(1-(pyridin-2-yl)-N-(p-tolyl)methanimine-κ2N,N′)ruthenium(II) hexafluorophosphate(V), C23H26ClF6N2PRu
  46. Crystal structure of phenyl(2-phenyl-2,3-dihydro-1H-perimidin-2-yl)methanone, C24H18N2O
  47. Crystal structure of (E)-3-methyl-4-((3-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)methylene)-1-phenyl-1H-pyrazol-5(4H)-one, C29H23N7O
  48. Crystal structure of 2-(4-(2-butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)piperazin-1-yl)-2-oxoethyldiethylcarbamodithioate, C27H34N4O3S2
  49. Crystal structure of poly-[diaqua-bis(μ-4,4′-bipyridine-κ2N:N′)cobalt(II)] bis(4-chlorobenzenesulfonate) – 4,4′-bipyridine – water (1/1/2), C42H40Cl2CoN6O10S2
  50. Crystal structure of (η6-benzene)-(N-(2,6-dimethylphenyl)-1-(pyridin-2-yl)methanimine-κ2N,N′)ruthenium(II) perchlorate monohydrate, C20H20Cl2N2O5Ru
  51. Crystal structure of 4,10,16,22-tetrahydroxy-6,12,18,24-tetramethoxy-2,8,14,20-tetraethylphenylresorcin[4]arene – ethyl acetate (1/1), C68H72O10
  52. Crystal structure of chlorido-(N-(2,5-dichlorophenyl)-1-(pyridin-2-yl)methanimine-κ2N,N′)(η6-1-isopropyl-4-methyl benzene) ruthenium (II) tetrafluoroborate, C22H22Cl3N2BF4Ru
  53. Crystal structure of 3-(5-methyl-1-p-tolyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazole-4-carbaldehyde, a rare Z′ = 3 structure, C20H17N5O
  54. Crystal structure of 5-(5-(4-chlorophenyl)-1-phenyl-1H-pyrazol-3-yl)-N-phenyl-1,3,4-thiadiazol-2-amine, C23H16ClN5S
  55. Crystal structure of 7-hydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one-N,N-dimethylformamide (1/1), C18H17NO5
  56. Crystal structure of halogen-bonded 2-chloro-1,10-phenanthroline—1,4-diiodotetrafluorobenzene (2/1), C30H14Cl2F4I2N4
  57. Crystal structure of 1-(4,4-dimethyl-2,6-dithioxo-1,3,5-triazinan-1-yl)-3-(diethylaminocarbonyl)thiourea, C11H20N6OS3
  58. Crystal structure of methyl 1-(4-fluorobenzyl)-3-phenyl-1H-pyrazole-5-carboxylate, C18H15FN2O2
  59. Crystal structure of 1,1-dimethyl-3-(4-methylphenyl)urea, C10H14N2O
  60. Crystal structure of yttrium gallium antimonide, Y5Ga1.24Sb2.77
  61. Crystal structure of 2-(bis(4-methoxyphenyl)amino)-2-oxoacetic acid, C16H15NO5
Downloaded on 3.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2016-0195/html?lang=en
Scroll to top button