Home Physical Sciences Crystal structure of pyridinium bis(naphthalane-2,3-diolato-κ2O,O′)borate monohydrate, C25H20BNO5
Article Open Access

Crystal structure of pyridinium bis(naphthalane-2,3-diolato-κ2O,O′)borate monohydrate, C25H20BNO5

  • Mustafa Tombul EMAIL logo , Kutalmış Güven , Ingrid Svoboda and Hartmut Fuess
Published/Copyright: January 28, 2017

Abstract

C25H20BNO5, triclinic, P1̅ (no. 2), a = 7.0868(6) Å, b = 10.3522(6) Å, c = 15.3140(10) Å, α = 74.088(7)°, β = 89.996(7)°, γ = 79.190(1)°, V = 1059.71(13) Å3, Z = 2, Rgt(F) = 0.0445, wRref(F2) = 0.1105, T = 298 K.

CCDC no.:: 1488929

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Table 1

Data collection and handling.

Crystal:Colourless prism
Size:0.50 × 0.40 × 0.12 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.9 cm−1
Diffractometer, scan mode:Xcalibur, ω-scans
2θmax, completeness:52.8°, >99%
N(hkl)measured, N(hkl)unique, Rint:7281, 4305, 0.014
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3102
N(param)refined:299
Programs:CrysAlis [20], SHELX [21]
Table 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
C10.1529(2)0.18915(15)−0.04570(11)0.0409(4)
C20.1050(2)0.17895(16)−0.12874(12)0.0468(4)
H20.09820.0944−0.13730.056*
C30.0654(2)0.29984(17)−0.20252(11)0.0457(4)
C40.0173(3)0.2979(2)−0.29141(13)0.0628(5)
H40.00900.2148−0.30210.075*
C5−0.0174(3)0.4141(3)−0.36221(14)0.0761(6)
H5−0.04800.4096−0.42020.091*
C6−0.0069(3)0.5396(2)−0.34768(14)0.0731(6)
H6−0.02950.6188−0.39620.088*
C70.0361(3)0.54693(19)−0.26290(13)0.0602(5)
H70.04100.6317−0.25410.072*
C80.0738(2)0.42871(16)−0.18787(11)0.0453(4)
C90.1213(2)0.43532(16)−0.09975(12)0.0454(4)
H90.12570.5188−0.08890.054*
C100.1603(2)0.31739(15)−0.03158(11)0.0408(4)
C110.1930(2)0.05650(16)0.25597(11)0.0439(4)
C120.1266(2)0.00386(17)0.33792(12)0.0488(4)
H12−0.00480.01800.34650.059*
C130.2607(2)−0.07369(16)0.41109(12)0.0477(4)
C140.2017(3)−0.1357(2)0.49793(13)0.0623(5)
H140.0710−0.12720.50780.075*
C150.3318(3)−0.2079(2)0.56764(15)0.0760(6)
H150.2893−0.24710.62450.091*
C160.5275(3)−0.2232(2)0.55426(15)0.0787(6)
H160.6159−0.27190.60230.094*
C170.5899(3)−0.1674(2)0.47154(13)0.0652(5)
H170.7214−0.17970.46330.078*
C180.4607(2)−0.09099(16)0.39731(12)0.0481(4)
C190.5243(2)−0.03233(17)0.31039(12)0.0489(4)
H190.6550−0.04190.30040.059*
C200.3919(2)0.03778(16)0.24223(11)0.0439(4)
C210.3748(3)0.5365(2)0.11457(14)0.0594(5)
H210.34930.48110.07920.071*
C220.4305(3)0.4804(2)0.20310(15)0.0677(5)
H220.44420.38640.22860.081*
C230.4661(3)0.5600(3)0.25446(16)0.0748(6)
H230.50260.52180.31580.090*
C240.4486(3)0.6961(3)0.21650(19)0.0825(7)
H240.47480.75180.25160.099*
C250.3927(3)0.7517(2)0.1270(2)0.0781(7)
H250.38000.84540.10040.094*
N10.3563(2)0.66954(17)0.07771(12)0.0611(4)
H1A0.321(3)0.707(2)0.0169(15)0.073*
O10.19842(17)0.08873(11)0.03352(8)0.0512(3)
O20.21094(17)0.30021(11)0.05712(8)0.0523(3)
O30.09247(15)0.12874(12)0.17660(8)0.0546(3)
O40.42123(15)0.09631(12)0.15389(8)0.0537(3)
O50.7172(2)0.23705(15)0.10376(11)0.0744(4)
H5A0.636(2)0.184(2)0.1239(14)0.089*
H5B0.823(2)0.192(2)0.1328(14)0.089*
B10.2307(3)0.1539(2)0.10424(14)0.0491(5)

Source of material

A water solution (5 mL) of B(OH)3 (124 mg, 2.00 mmol,) was carefully added to a stirred ethanole (10 mL) solution of 2,3-naphthalenediol (673 mg, 4.2 mmol) at ambient temperature. The reaction mixture was stirred vigorously at 338 K for 30 min. The dropwise addition of pyridine (0.5 mL, 6.2 mmol) resulted in an immediate formation of a precipitate. A light pink coloured product was obtained after 40 min of stirring. The resulting solid was dissolved in the mixture of acetone/DMF (10 mL; 1:1) and allowed to stand at room temperature for a couple of days, thereupon transparent and fine crystals were harvested. Yield: (0.61 g, 70%) (based on B(OH)3); Elemental analysis: (Found): C 69.57, H 4.78, N 3.37%. Calculated for C25H20O5NB: C 70.61, H 4.74, N 3.29%. 1H-NMR (d6-DMSO-CDCl3, 298 K, TMS): δ (p.p.m.): 6.70 (m, 4H), 6.97 (m, 4H), 7.37 (m, 4H), 7.76 (m, 2H, pyridinium), 8.27 (m, 2H, pyridinium), 8.65 (m, 1H, pyridinium).

Experimental details

The H atoms of the water molecule were located in Fourier difference maps and refined freely. The remaining H atoms were positioned geometrically (C—H = 0.96–0.97Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C).

Discussion

In recent years, attentions have been particularly paid to compounds containing borate groups on account of the fact that they possess extensive use as synthons in organic synthesis, especially in Suzuki cross coupling reactions [1]. Certain boron-containing species such as organoboronic acids [RB(OH)2] or boronate esters [RB(OR′)2] are exceedingly alluring for these carbon—carbon bond forming reactions as they are generally readily prepared, are air- and water-stable, and have relatively low toxicities [2]. The discovery of these simple boron compounds become significant owing to their displaying a wide range of biological properties [3]. The structures of borates are largely complex, and borates possessing novel structures that exhibit great variety potential applications notably in mineralogy and nonlinear optics (NLO) has been well documented [4], [5]. The coordination mode of boron in borate complexes is mostly either a BO3 triangle or a BO4 tetrahedron that linked together by the sharing of oxygen atoms. The resulting anionic entities may eventuate in isolated chains, rings, or cages, or may condense further to form polymeric chains, sheets or three-dimensional networks [6], [7]. The non-shared oxygen atoms will either bear a further negative charge (anhydrous borates) or will be protonated (hydrated borates). Hydrated borates are typically further hydrated by water molecules [8]. Most borates synthesized and studied to date have been prepared under the templating effect of cations, such as alkali-metal, alkaline-earth metal, transition metal, main group metal, rare earth metal, and inorganic-organic hybrid borates. Arylspiroboranate esters are a significant class of compounds being of special importance consisting of two catecholato groups linked to central boron atom. These compounds offers a number of advantageous such as being nontoxic, inexpensive and thermally, chemically and electrochemically stable and have found extensive usage in chemistry and industry. To set an example, lithium salts of arylspiroboranate esters are being considered for their potential use as electrolytes in batteries [9]. Other applications of these particular type of compounds involve a use as catalysts, or co-catalysts, for the Diels-Alder reaction [10], methoxycarbonylation reactions [11], and in amide and ester condensation reactions [12]. As part of our ongoing study of the synthesis and structure of organoborate complexes [13], [14], [15], [16], we have prepared a new organically templated borate using pyridine as the structure-directing agent.

The asymmetric unit of title compound consists of one [BO4(C10H6)2] anion, one [C5H5NH)]+ cation and one water molecule. The [BO4(C10H6)2] anion consists of one set of distorted [BO4] tetrahedra and two sets of [C20H12] planes with oxygen atoms as sharing vertexes. The boron atom is bonded to four oxygen atoms to form a tetrahedral environment (mean O—B—O bond angle of 109.5°). Bond distances and angles are similar to those reported in related arylspiroborate compounds [17], [18], [19]. Unsurprisingly, the cyclic ring structure induces a contraction of the O—B—O angles in the five membered rings, with O(1)—B(1)—O(2) 105.45(14)° and O(3)—B(1)—O(4) 103.58(14)°. The exocyclic angles of O(1)—B(1)—O(3) 111.46(14)°, O(2)—B(1)—O(3) 112.09(15)°, O(1)—B(1)—O(4) 112.70(15)°, and O(2)—B(1)—O(4) 111.75(14)° are substantially larger. In the crystal structure [BO4(C10H6)2] anion and [C5H5NH)]+ cation are discrete units and they interact both electrostatically and via N—H ⋯O and O—H⋯O hydrogen bonds with N—O distance is 2.696(2) Å. The water molecule is also involved in a normal, slightly bent, hydrogen bond with the borate anion at a distance of 2.788(17) Å. The stabilization of the crystal structure arises from electrostatic interactions and is assisted by intermolecular O—H⋯O and N—H⋯O hydrogen bonds between the layers.

Acknowledgements

The authors gratefully acknowledge Kırıkkale University Scientific Research Centre for financial support of this work (grant No. 2007/49).

References

1 Miyaura, N.; Suzuki, A.: Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 95 (1995) 2457–2483.10.1021/cr00039a007Search in Google Scholar

2 Hébert, M. J. G.; Flewelling, A. J.; Clark, T. N.; Levesque, N. A.; Fran cois, J. J.; Surette, M. E.; Gray, C. A.; Vogels, C. M.; Touaibia, M.; Westcott, S. A.: Synthesis and biological activity of arylspiroborate salts derived from caffeic acid phenethyl ester. Int. J. Med. Chem. 2015 (2015) 1–9.10.1155/2015/418362Search in Google Scholar PubMed PubMed Central

3 Groziak, M. P.: Boron therapeutics on the horizon. Am. J. Ther. 8 (2001) 321–328.10.1097/00045391-200109000-00005Search in Google Scholar PubMed

4 Grice, J. D.; Burns, P. C.; Hawthorne, F. C.: Borate minerals. II. A hierarchy of structures based upon the borate fundamental building block. Can. Mineral. 37 (1999) 731–762.Search in Google Scholar

5 Knyrim, J. S.; Becker, P.; Johrendt, D.; Huppertz, H.: A new non-centrosymmetric modification of BiB3O6. Angew. Chem. Int. Ed. 45 (2006) 8239–8241.10.1002/anie.200602993Search in Google Scholar PubMed

6 Christ, C. L.; Clark, J. R.: A crystal-chemistry classification of borate structures with emphasis on hydrated borates. Phys. Chem. Mineral. 2 (1977) 59–87.10.1007/BF00307525Search in Google Scholar

7 Yu, Z. T.; Shi, Z.; Jiang, Y. S.; Yuan, H. M.; Chen, J. S.: A chiral lead borate containing infinite and finite chains built up from BO4 and BO3 units. Chem. Mater. 14 (2002) 1314–1318.10.1021/cm010387kSearch in Google Scholar

8 Beckett, M. A.: Recent advances in crystalline hydrated borates with non-metal or transition-metal complex cations. Coord. Chem. Rev. 323 (2016) 2–14.10.1016/j.ccr.2015.12.012Search in Google Scholar

9 Downard, A.; Niewenhuyzen, M.; Seddon, K. R.; Van den Berg, J. A.; Schmidt, Vaughan, J. F. S.; Biermann, U. W.: Structural Features of Lithium Organoborates. Cryst. Growth Des. 2 (2002) 111–119.10.1021/cg010035qSearch in Google Scholar

10 Kelly, R. T.; Whiting, A.; Chandrakumar, N. S.: A rationally designed, chiral lewis acid for the asymmetric induction of some Diels-Alder reactions. J. Am. Chem. Soc. 108 (1986) 3510–3512.10.1021/ja00272a058Search in Google Scholar

11 Vieira, T. O.; Green, M. J.; Alper, H.: Highly regioselective anti-markovnikov palladium-borate-catalyzed methoxycarbonylation reactions: unprecedented results for aryl olefins. Org. Lett. 8 (2006) 6143–6145.10.1021/ol062646nSearch in Google Scholar PubMed

12 Maki, T.; Ishihara, K.; Yamamoto, H.: New boron(III)-catalyzed amide and ester condensation reactions. Tetrahedron 63 (2007) 8645–8657.10.1016/j.tet.2007.03.157Search in Google Scholar

13 Errington, R. J.; Tombul, M.; Walker, G. L. P.; Clegg, W.; Heath, S. L.; Horsburgh, L. J.: Tetraphenoxoborate complexes of barium: crystal structures of the metalloborates [Ba(thf)4{B(OPh)4}2] and [Ba(dme)2{B(OPh)4}2]. Dalton Trans. (1999) 3533–3534.10.1039/a906089hSearch in Google Scholar

14 Tombul, M.; Errington, R. J.; Coxall, R. A.; Clegg, W.: An alkoxide cluster with 18 Li+ ions encapsulating two borate anions, [(tBuO)12Li18(BO3)2]. Acta Crystallogr. C59 (2003) m231–m233.10.1107/S0108270103009636Search in Google Scholar

15 Tombul, M.; Güven, K.; Büyükgüngör, O.; Aktas, H.; Durlu, T. N.: Dipotassium maleate with boric acid. Acta Crystallogr. C63 (2007) m430–m432.10.1107/S0108270107036165Search in Google Scholar PubMed

16 Tombul, M.; Güven, K.; Svoboda, I.: Dimethylammonium bis(3-oxidonaphthalene-2-carboxylato)borate hemihydrate. Acta Crystallogr. E64 (2008) o309–o310.10.1107/S1600536807066810Search in Google Scholar PubMed PubMed Central

17 Vogels, C. M.; Wescott, S. A.: Arylspiroboronate esters: From lithium batteries to wood preservatives to catalysis. Chem. Soc. Rev. 40 (2011) 1446–1458.10.1039/C0CS00023JSearch in Google Scholar

18 Mosseler, J. A.; Melanson, J. A.; Bowes, E. G.; Lee, G. M.; Vogels, C. M.; Decken, A.; Westcott, S. A.: Synthesis, characterization and antifungal studies of arylspiroborate esters derived from 4-nitrocatechol. J. Mol. Struct. 1002 (2011) 24–27.10.1016/j.molstruc.2011.06.034Search in Google Scholar

19 Geier, M. J.; Bowes, E. G.; Lee, G. M.; Li, H.; O’Neill, T.; Flewelling, A.; Vogels, C. M.; Decken, A.; Gray, C. A.; Westcott, S. A.: Synthesis and biological activities of arylspiroborates derived from 2,3-dihydroxynaphthalene. Heteroat. Chem. 2 (2013) 116–123.10.1002/hc.21072Search in Google Scholar

20 Agilent Technologies: CrysAlis Software system, version 1.171.34.40, Agilent Technologies UK Ltd, Oxford, UK, 2010.Search in Google Scholar

21 Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

Received: 2016-9-1
Accepted: 2017-1-3
Published Online: 2017-1-28
Published in Print: 2017-3-1

©2017 Mustafa Tombul et al., published by De Gruyter.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Articles in the same Issue

  1. Cover and Frontmatter
  2. The crystal structure of triphenylphosphineoxide – 2,5-dichloro-3,6-dihydroxycyclohexa-2,5-diene-1,4-dione (2/1), C42H32Cl2O6P2
  3. Crystal structure of poly-[diaqua-[bis(μ2-hydroxy)-bis(μ4-3,4,5,6-tetrachlorophthalato-κ3O,O′:O′; κ2O′′:O′′′)dilanthanum(III)], C8H3Cl4LaO6
  4. Crystal structure of 1,1′-(3,4-diphenylthieno[2,3-b]thiophene-2,5-diyl)bis[1-phenyl-methanone], C32H20O2S2
  5. Crystal structure of 4a-hydroxy-9-(3,5-dibromo-phenyl)-3,4,4a,5,6,7,9,9a-octahydro-2H-xanthene-1,8-dione, C19H18Br2O4
  6. Crystal structure of 5-hydroxy-4,6,9,10-tetramethyl-1-oxo-6-vinyldecahydro-3a,9-propanocyclopenta[8]annulen-8-yl 2-((2-methyl-1-(3-methylbenzamido)propan-2-yl)thio)acetate, C34H49NO5S
  7. Crystal structure of pyridinium bis(naphthalane-2,3-diolato-κ2O,O′)borate monohydrate, C25H20BNO5
  8. Crystal structure of 1,1′-((1E,1′E)-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(azanylylidene))bis(methanylylidene))bis(naphthalen-2-olato)nickel(II), C72H52N4O8Ni2
  9. The crystal structure of 3-(2-acetyl-4-butyramido-phenoxy)-2-hydroxy-N-isopropylpropan-1-aminium tetraphenylborate, C42H49BN2O4
  10. Crystal structure of 4-bromobenzyl (Z)-N′-(adamantan-1-yl)-4-phenylpiperazine-1-carbothioimidate, C28H34BrN3S
  11. Crystal structure of poly-[(μ6-benzene-1,2,4,5-tetracarboxylato)-(μ2-1,2-bis(imidazol-1-ylmethyl)benzene)dicobalt(II)], Co2C24H16N4O8
  12. Crystal structure of catena-(bis(μ2-1, 2-bis(imidazole-1-ylmethyl)benzene-κN:N′)-dichlororido-nickel(II)), C28H28Cl2N8Ni
  13. Crystal structure of (Z)-1-(1,5-dimethyl-1H-pyrazol-3-yl)-3-hydroxy-3-(4-methoxyphenyl)prop-2-en-1-one, C15H16N2O3
  14. Crystal structure of (Z)-1-(1,5-dimethyl-1H-pyrazol-3-yl)-3-hydroxy-3-phenylprop-2-en-1-one, C14H14N2O2
  15. Crystal structure of (E)-2-(4-hydroxy-3-methoxybenzylidene)-6-methoxy-3,4-dihydronaphthalen-1(2H)-one, C19H18O4
  16. Crystal structure of (Z)-1-(1,5-dimethyl-1H-pyrazol-3-yl)-3-(4-ethoxyphenyl)-3-hydroxyprop-2-en-1-one, C16H18N2O3
  17. Crystal structure of (Z)-1-(1,5-dimethyl-1H-pyrazol-3-yl)-3-hydroxy-3-(p-toly)prop-2-en-1-one, C15H16N2O2
  18. Crystal structure of 1-acetyl-3-(3-chlorophenyl)-5-(4-isopropylphenyl)-4,5-dihydro-(1H)-pyrazole, C20H21ClN2O
  19. The crystal structure of 1-methyl-2,4-dinitro-5-iodoimidazole, C4H3IN4O4
  20. The crystal structure of 4-chloro-3,5-dinitroaniline, C6H4ClN3O4
  21. Crystal structure of N,N-dimethyl-N′-(2-methyl-4-oxo-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-3(4H)-yl)formimidamide, C14H18N4OS
  22. Crystal structure of tetrakis(μ2-acetato-κ2O:O′)-bis[μ3-4-chloro-2,6-bis((methylimino)methyl)phenolato-κ2N,O:O,N′]-(μ4-oxido)tetracopper(II), C28H32Cl2Cu4N4O11
  23. Crystal structure of catena-poly[diaqua-bis(μ2-ethane-1,2-diyl-bis(pyridine-3-carboxylate-κ2N:N′))copper(II)] dinitrate, C28H28CuN6O16
  24. Synthesis and crystal structure of catena-poly[(μ2-nicotinato-κ2O,O′: κ1N)-(nitrato-κ1O)-(bis(2-benzimidazol-ylmethyl)amine-κ3N,N′,N′′)lead(II)], C22H18N7O5Pb
  25. The twinned crystal structure of (4SR)-7-benzyl-2,4,8,8-tetramethyl-7,8-dihydroimidazo[5,1-c][1,2,4]triazine-3,6(2H,4H)-dione, C16H20N4O2
  26. Crystal structure of (Z)-3-hydroxy-3-(4-methoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one, C15H13NO3
  27. Crystal structure of 2-amino-4-(2,3-dichlorophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile, C16H12Cl2N2O2
  28. Crystal structure of catena-poly[(μ2-butane-1,4-diyl-bis(pyridine-3-carboxylato-κN))silver(I)] tetrafluoroborate, C16H16AgN2O4BF4
  29. Crystal structure of poly[diaqua-(1,10-phenanthroline-κ2N,N′)-(μ2-2,5-dihydroxytere-phthalato)-bis(μ4-2,5-dihydroxyterephthalato)dicerium(III)], C24H16CeN2O10
  30. Crystal structure of 5,7,4′-trihydroxy-3,8,3′-trymethoxyflavone, C18H16O8
  31. Crystal structure of N-(3,4-dichlorobenzylidene)-4-methylaniline, C14H11Cl2N
  32. Crystal structure of 4-(3-Methoxy-phenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-quinoline-3-carboxylic acid ethyl ester, C22H27NO4
  33. Crystal structure of 2-amino-4-(3-fluorophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile, C16H13FN2O2
  34. Crystal structure of 1,1,(3,4-dihydroxythieno[2,3-b] thiophene-2,5-diyl)bis(2-bromoethanone), C10H6Br2O4S2
  35. The crystal structure of N,N′-(4,4′-oxydibenzyl)-bisisonicotinamide 3.5 hydrate, C24H24N4O6
  36. Crystal structure of catena-poly[hexakis(μ2-chlorido)-hexakis(4-(1H-pyrazol-5-yl)pyridine-κN)tricadmium(II)], Cd3C48H42Cl6N18
  37. Crystal structure of 2-(4-(dimethylamino)phenyl)-1,3-dimethyl-1H-perimidin-3-ium iodide, C21H22I1N3
  38. Crystal structure of 4-(1,3-dimethyl-2,3-dihydro-1H-perimidin-2-yl)benzonitrile, C20H17N3
  39. Crystal structure of tetrakis(μ2-acetato-κ2O:O′)-bis(2,2′-sulfonyldipyrazine-κ1N)dicopper(II), C24H24Cu2N8O12S2
  40. Crystal structure of 1-(4-chlorophenyl)-6,8-diphenyl-1H-pyrazolo[4,3-c]quinoline, C28H18ClN3
  41. Crystal structure of methyl 3-((1-(2-(methoxycarbonyl)benzyl)-1H-1,2,3-triazol-4-yl)methoxy)-2-naphthoate, C24H21N3O5
  42. Crystal structure of (tris(2-pyridylmethyl)amine-κ4N,N′,N′′,N′′′′)-chloranilato-κO,O′-zinc(II) – methanol (1/1), C25H22Cl2N4O5Zn
  43. Crystal structure of 1,1-dimethyl-3-(4-methoxyphenyl)urea, C10H14N2O2
  44. Crystal structure of 4a-Hydroxy-9-(2-nitro-phenyl)-3,4,4a,5,6,7,9,9a-octahydro-2H-xanthene-1,8-dione, C19H19NO6
  45. Crystal structure of chlorido-(η6–1-isopropyl-4-methyl benzene)-(1-(pyridin-2-yl)-N-(p-tolyl)methanimine-κ2N,N′)ruthenium(II) hexafluorophosphate(V), C23H26ClF6N2PRu
  46. Crystal structure of phenyl(2-phenyl-2,3-dihydro-1H-perimidin-2-yl)methanone, C24H18N2O
  47. Crystal structure of (E)-3-methyl-4-((3-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)methylene)-1-phenyl-1H-pyrazol-5(4H)-one, C29H23N7O
  48. Crystal structure of 2-(4-(2-butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)piperazin-1-yl)-2-oxoethyldiethylcarbamodithioate, C27H34N4O3S2
  49. Crystal structure of poly-[diaqua-bis(μ-4,4′-bipyridine-κ2N:N′)cobalt(II)] bis(4-chlorobenzenesulfonate) – 4,4′-bipyridine – water (1/1/2), C42H40Cl2CoN6O10S2
  50. Crystal structure of (η6-benzene)-(N-(2,6-dimethylphenyl)-1-(pyridin-2-yl)methanimine-κ2N,N′)ruthenium(II) perchlorate monohydrate, C20H20Cl2N2O5Ru
  51. Crystal structure of 4,10,16,22-tetrahydroxy-6,12,18,24-tetramethoxy-2,8,14,20-tetraethylphenylresorcin[4]arene – ethyl acetate (1/1), C68H72O10
  52. Crystal structure of chlorido-(N-(2,5-dichlorophenyl)-1-(pyridin-2-yl)methanimine-κ2N,N′)(η6-1-isopropyl-4-methyl benzene) ruthenium (II) tetrafluoroborate, C22H22Cl3N2BF4Ru
  53. Crystal structure of 3-(5-methyl-1-p-tolyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazole-4-carbaldehyde, a rare Z′ = 3 structure, C20H17N5O
  54. Crystal structure of 5-(5-(4-chlorophenyl)-1-phenyl-1H-pyrazol-3-yl)-N-phenyl-1,3,4-thiadiazol-2-amine, C23H16ClN5S
  55. Crystal structure of 7-hydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one-N,N-dimethylformamide (1/1), C18H17NO5
  56. Crystal structure of halogen-bonded 2-chloro-1,10-phenanthroline—1,4-diiodotetrafluorobenzene (2/1), C30H14Cl2F4I2N4
  57. Crystal structure of 1-(4,4-dimethyl-2,6-dithioxo-1,3,5-triazinan-1-yl)-3-(diethylaminocarbonyl)thiourea, C11H20N6OS3
  58. Crystal structure of methyl 1-(4-fluorobenzyl)-3-phenyl-1H-pyrazole-5-carboxylate, C18H15FN2O2
  59. Crystal structure of 1,1-dimethyl-3-(4-methylphenyl)urea, C10H14N2O
  60. Crystal structure of yttrium gallium antimonide, Y5Ga1.24Sb2.77
  61. Crystal structure of 2-(bis(4-methoxyphenyl)amino)-2-oxoacetic acid, C16H15NO5
Downloaded on 20.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2016-0178/html?lang=en
Scroll to top button