Abstract
Bone tissue is the second most affected organ in the human body after blood. Tissue engineering is the area whereby a scaffold is used to regenerate the lost bone. However, the scaffold’s effectiveness is primarily based on the material and the fabrication process. The patient-specific structures are affected because of the fabrication process used to fabricate the scaffold as per requirement. In this regard, rheology plays an important role in the fabrication of the patient-specific scaffold, and it is a study of the flow of ink. This primarily affects both the conventional as well as the non-conventional fabrication processes. In this paper, the scaffold and bone tissue engineering, the different fabrication processes, and the importance of the rheological characterization are presented. In addition to this, the rheological properties of the developed HA/β-TCP composite slurry are evaluated for the extrusion-based additive manufacturing process. The developed ink’s rheological properties show that the flow behavior index of about 0.0497 ± 0.009, minimum flow stress required to make the ink flow of about 51.076 Pa at a strain rate of 0.111 %, and shape retention upto 75 % after 175 s are obtained. Also, different orientations are 3D printed using the developed slurry.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Bagde, A. D., Kuthe, A. M., Quazi, S., Gupta, V., Jaiswal, S., Jyothilal, S., Lande, N., Nagdeve, S. IRBM 2019, 40, 133; https://doi.org/10.1016/j.irbm.2019.03.001.Search in Google Scholar
2. Turnbull, G., Clarke, J., PicardRiches, F. P., Jia, L., Han, F., Li, B., Shu, W. Bioact. Mater. 2018, 3, 278; https://doi.org/10.1016/j.bioactmat.2017.10.001.Search in Google Scholar PubMed PubMed Central
3. Guzzi, E. A., Bovone, G., Tibbitt, M. W. Small 2019, 15, 1; https://doi.org/10.1002/smll.201905421.10.1002/smll.201905421Search in Google Scholar PubMed
4. Maas, M., Hess, U., Rezwan, K. Curr. Opin. Colloid Interface Sci. 2014, 19, 585; https://doi.org/10.1016/j.cocis.2014.09.002.Search in Google Scholar
5. Schwab, A., Levato, R., D’Este, M., Piluso, S., Eglin, D., Malda, J. Chem. Rev. 2020, 120, 11028; https://doi.org/10.1021/acs.chemrev.0c00084.10.1021/acs.chemrev.0c00084Search in Google Scholar PubMed PubMed Central
6. Tamay, D. G., Hasirci, N. J. Biomater. Sci., Polym. Ed. 2021, 32, 1072; https://doi.org/10.1080/09205063.2021.1892470.Search in Google Scholar PubMed
7. Bagwan, J. K., Ahuja, B. B., Mulay, A. V., Jawale, K. J. Mater. Today: Proc. 2022, 50, 1465; https://doi.org/10.1016/j.matpr.2021.09.049.Search in Google Scholar
8. Ng, K. W., Romas, E., Donnan, L., Findlay, D. M. Bone Repair Biomaterials, 2nd ed., Vol. 11; Elsevier Ltd: Amsterdam, The Netherlands, 1997.10.1016/S0950-351X(97)80473-9Search in Google Scholar
9. Henkel, J., Hutmacher, D. W. BioNanoMaterials 2013, 14, 171; https://doi.org/10.1515/bnm-2013-0021.Search in Google Scholar
10. Lopes, D., Martins-Cruz, C., Oliveira, M. B., Mano, J. F. Biomaterials 2018, 185, 240; https://doi.org/10.1016/j.biomaterials.2018.09.028.Search in Google Scholar PubMed PubMed Central
11. Ghassemi, T., Shahroodi, A., Ebrahimzadeh, M. H., Mousavian, A., Movaffagh, J., Moradi, A. Arch. Bone Jt. Surg. 2018, 6, 90; https://doi.org/10.22038/abjs.2018.26340.1713.Search in Google Scholar
12. Bose, S., Roy, M., Bandyopadhyay, A. Trends Biotechnol. 2012, 30, 546; https://doi.org/10.1016/j.tibtech.2012.07.005.Search in Google Scholar PubMed PubMed Central
13. Reznikov, N., Shahar, R., Weiner, S. Acta Biomater. 2014, 10, 3815; https://doi.org/10.1016/j.actbio.2014.05.024.Search in Google Scholar PubMed
14. Bose, S., Tarafder, S. Acta Biomater. 2012, 8, 1401; https://doi.org/10.1016/j.actbio.2011.11.017.Search in Google Scholar PubMed PubMed Central
15. Monmaturapoj, N., Yatongchai, C. Bull. Mater. Sci. 2011, 34, 1733; https://doi.org/10.1007/s12034-011-0384-x.Search in Google Scholar
16. Zhang, Y., Yokogawa, Y., Feng, X., Tao, Y., Li, Y. Ceram. Int. 2010, 36, 107; https://doi.org/10.1016/j.ceramint.2009.07.008.Search in Google Scholar
17. Guicciardi, S., Galassi, C., Landi, E., Tampieri, A., Satou, K., Pezzotti, G. J. Mater. Res. 2001, 16, 163; https://doi.org/10.1557/JMR.2001.0027.Search in Google Scholar
18. Zhang, W., Yao, D., Zhang, Q., Zhou, J. G., Lelkes, P. I. Biofabrication 2010, 2, 035006; https://doi.org/10.1088/1758-5082/2/3/035006.Search in Google Scholar PubMed
19. Zhou, K., Zhang, Y., Zhang, D., Zhang, X., Li, Z., Liu, G., Button, T. W. Scr. Mater. 2011, 64, 426; https://doi.org/10.1016/j.scriptamat.2010.11.001.10.1016/j.scriptamat.2010.11.001Search in Google Scholar
20. Monmaturapoj, N., Soodsawang, W., Thepsuwan, W. J. Porous Mater. 2012, 19, 441; https://doi.org/10.1007/s10934-011-9492-7.Search in Google Scholar
21. Lee, E. J., Koh, Y. H., Yoon, B. H., Kim, H. E., Kim, H. W. Mater. Lett. 2007, 61, 2270; https://doi.org/10.1016/j.matlet.2006.08.065.Search in Google Scholar
22. Zhang, Y., Zhou, K., Bao, Y., Zhang, D. Mater. Sci. Eng. C 2013, 33, 340; https://doi.org/10.1016/j.msec.2012.08.048.Search in Google Scholar PubMed
23. Huang, H. L., Chuang, L. T., Li, H. H., Lin, C. P., Glew, R. H. Lipids Health Dis. 2013, 12, 1; https://doi.org/10.1186/1476-511X-12-27.Search in Google Scholar PubMed PubMed Central
24. de Siqueira, L., Gouveia, R. F., Grenho, L., Monteiro, F. J., Fernandes, M. H., Trichês, E. S. J. Mater. Sci. 2018, 53, 10718; https://doi.org/10.1007/s10853-018-2337-x.10.1007/s10853-018-2337-xSearch in Google Scholar
25. Cyster, L. A., Grant, D. M., Howdle, S. M., Rose, F. R. A. J., Irvine, D. J., Freemand, D., Scotchford, A., Shakesheff, K. M. Biomaterials 2005, 26, 697; https://doi.org/10.1016/j.biomaterials.2004.03.017.Search in Google Scholar PubMed
26. Fuller, G. G., Vermant, J. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 519; https://doi.org/10.1146/annurev-chembioeng-061010-114202.Search in Google Scholar PubMed
27. Miller, R., Ferri, J. K., Javadi, A., Krägel, J., Mucic, N., Wüstneck, R. Colloid Polym. Sci. 2010, 288, 937; https://doi.org/10.1007/s00396-010-2227-5.Search in Google Scholar
28. Pelipenko, J., Kristl, J., Rošic, R., Baumgartner, S., Kocbek, P. Acta Pharm. 2012, 62, 123; https://doi.org/10.2478/v10007-012-0018-x.Search in Google Scholar PubMed
29. Krägel, J., Derkatch, S. R. Curr. Opin. Colloid Interface Sci. 2010, 15, 246; https://doi.org/10.1016/j.cocis.2010.02.001.Search in Google Scholar
30. Mohanta, K., Bhargava, P. Adv. Appl. Ceram. 2006, 105, 217; https://doi.org/10.1179/174367606X113564.Search in Google Scholar
31. Dhara, S., Bhargava, P. J. Am. Ceram. Soc. 2001, 84, 3048; https://doi.org/10.1111/j.1151-2916.2001.tb01137.x.10.1111/j.1151-2916.2001.tb01137.xSearch in Google Scholar
32. Ginebra, M.-P., Delgado, J.-A., Harr, I., Almirall, A., Del Valle, S., Planell, J. A. J. Biomed. Mater. Res. Part A 2007, 80A, 351; https://doi.org/10.1002/jbm.a.30886.10.1002/jbm.a.30886Search in Google Scholar PubMed
33. del Valle, S., Miño, N., Muñoz, F., González, A., Planell, J. A., Ginebra, M.-P.. J. Mater. Sci.: Mater. Med. 2007, 18, 353; https://doi.org/10.1007/s10856-006-0700-y.Search in Google Scholar PubMed
34. Miller, R., Alahverdjieva, V. S., Fainerman, V. B. Soft Matter 2008, 4, 1141; https://doi.org/10.1039/b802034e.Search in Google Scholar PubMed
35. Maas, M., Bodnar, P. M., Hess, U., Treccani, L., Rezwan, K. J. Colloid Interface Sci. 2013, 407, 529; https://doi.org/10.16/j.jcis.2013.06.039.10.1016/j.jcis.2013.06.039Search in Google Scholar PubMed
36. Khaled, S. A., Alexander, M. R., Wildman, R. D., Wallace, M. J., Sharpe, S., Yoo, J., Roberts, C. J. Int. J. Pharm. 2018, 538, 223; https://doi.org/10.1016/j.ijpharm.2018.01.024.Search in Google Scholar PubMed
37. Chen, H., Wang, X., Xue, F., Huang, Y., Zhou, K., Zhang, D. 3D printing of SiC ceramic: direct ink writing with a solution of preceramic polymers. J. Eur. Ceram. Soc. 2018, 38, 5294; https://doi.org/10.1016/j.jeurceramsoc.2018.08.009.10.1016/j.jeurceramsoc.2018.08.009Search in Google Scholar
38. Bourret, J., El Younsi, I., Bienia, M., Smith, A., Geffroy, P. M., Marie, J., Ono, Y., Chartier, T., Pateloup, V. J. Eur. Ceram. Soc. 2018, 38, 2802; https://doi.org/10.1016/j.jeurceramsoc.2018.02.018.Search in Google Scholar
39. Alves, N., Gaspar, M. B., Pascoal-Faria, P. AIP Conf. Proc. 2019, 2116, 230005-(1-5); https://doi.org/10.1063/1.5114231.Search in Google Scholar
40. Li, X., Yuan, Y., Liu, L., Leung, Y. S., Chen, Y., Guo, Y., Chai, Y., Chen, Y.. Bio-Des. Manuf. 2020, 3, 15; https://doi.org/10.1007/s42242-019-00056-5.Search in Google Scholar
41. Michna, S., Wu, W., Lewis, J. A. Biomaterials 2005, 26, 5632; https://doi.org/10.1016/j.biomaterials.2005.02.040.Search in Google Scholar PubMed
42. Shahzad, A., Lazoglu, I. Composites, Part B 2021, 225, 109249; https://doi.org/10.1016/j.compositesb.2021.109249.Search in Google Scholar
43. Shao, H., He, J., Lin, T., Zhang, Z., Zhang, Y., Liu, S. Ceram. Int. 2019, 45, 1163; https://doi.org/10.1016/j.ceramint.2018.09.300.Search in Google Scholar
44. Balogová, A., Pindroch, O., Bodnárová, S., Feranc, J., Hudák, R., Živčák, J. A Tech. 2017, 47, 88; https://doi.org/10.1016/j.jbiotec.2018.08.019.10.1016/j.jbiotec.2018.08.019Search in Google Scholar PubMed
45. Chen, T., Sun, A., Chu, C., Wu, H., Wang, J., Wang, J., Li, Z., Jianjum, G., Gaojie, X. J. Alloys Compd. 2019, 783, 321; https://doi.org/10.1016/j.jallcom.2018.12.334.10.1016/j.jallcom.2018.12.334Search in Google Scholar
46. del-Mazo-Barbara, L., Ginebra, M. P. J. Eur. Ceram. Soc. 2021, 41, 18; https://doi.org/10.1016/j.jeurceramsoc.2021.08.031.Search in Google Scholar
47. Paxton, N., Smolan, W., Böck, T., Melchels, F., Groll, J., Jungst, T. Biofabrication 2017, 9, 44; https://doi.org/10.1088/1758-5090/aa8dd8.Search in Google Scholar PubMed
48. Malvern Instruments. Understanding yield stress measurements. Annu. Trans. Nord. Rheol. Soc. 2012, 21, 6.Search in Google Scholar
49. Schlordt, T., Keppner, F., Travitzky, N., Greil, P. J. Ceram. Sci. Technol. 2012, 3, 81; https://doi.org/10.4416/JCST2012-00003.Search in Google Scholar
50. Smay, J. E., Cesarano, J., Lewis, J. A. Langmuir 2002, 18, 5429; https://doi.org/10.1007/978-0-387-76540-2_15.Search in Google Scholar
51. Eqtesadi, S., Motealleh, A., Miranda, P., Lemos, A., Rebelo, A., Ferreira, J. M. F. Mater. Lett. 2013, 93, 68; https://doi.org/10.1016/j.matlet.2012.11.043.10.1016/j.matlet.2012.11.043Search in Google Scholar
52. Feilden, E., Blanca, E. G. T., Giuliani, F., Saiz, E., Vandeperre, L. J. Eur. Ceram. Soc. 2016, 36, 2525; https://doi.org/10.1038/s41598-017-14236-9.Search in Google Scholar PubMed PubMed Central
53. Maurath, J., Willenbacher, N. J. Eur. Ceram. Soc. 2017, 37, 4833; https://doi.org/10.1016/j.jeurceramsoc.2017.06.001.Search in Google Scholar
54. M’Barki, A., Bocquet, L., Stevenson, A. Sci. Rep. 2017, 7, 6017; https://doi.org/10.1038/s41598-017-06115-0.Search in Google Scholar PubMed PubMed Central
55. Deliormanli, A. M., Rahaman, M. N. J. Eur. Ceram. Soc. 2012, 32, 3637; https://doi.org/10.1016/j.jeurceramsoc.2012.05.005.Search in Google Scholar
56. Li, Y. Y., Li, L. T., Li, B. J. Alloys Compd. 2015, 620, 125; https://doi.org/10.1016/j.jallcom.2014.09.124.Search in Google Scholar
57. Roos, A., Creton, C., Novikov, M. B., Feldstein, M. M. J. Polym. Sci., Part B: Polym. Phys. 2002, 40, 2395; https://doi.org/10.1002/polb.10279.Search in Google Scholar
58. Nan, B., Galindo-Rosales, F. J., Ferreira, J. M. F. Mater. Today 2020, 35, 16; https://doi.org/10.1016/j.mattod.2020.01.003.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Additive manufacturing and allied technologies
- Original Papers
- Influence of process parameters on ageing and free vibration characteristics of fiber-reinforced polymer composites by fusion filament fabrication process
- 3D biomimetic scaffold’s dimensional accuracy: a crucial geometrical response for bone tissue engineering
- Investigation of mechanical and microstructure properties of metal inert gas based wire arc additive manufactured Inconel 600 superalloy
- Study on the influence of surface roughness on tensile and low-cycle fatigue behavior of electron beam melted Ti‐6Al‐4V
- Effect of tool pin profile on the heat generation model of the friction stir welding of aluminium alloy
- Effect of clamping position on the residual stress in wire arc additive manufacturing
- Effect of welding speed on butt joint quality of laser powder bed fusion AlSi10Mg parts welded using Nd:YAG laser
- Mechanical behaviour, microstructure and texture studies of wire arc additive manufactured 304L stainless steel
- Evolution of microstructure and properties of CoCrFeMnNi high entropy alloy fabricated by selective laser melting
- Effect of laser energy density on surface morphology, microstructure and mechanical behaviour of direct metal laser melted 17-4 PH stainless steel
- The influence of rheology in the fabrication of ceramic-based scaffold for bone tissue engineering
- Behaviour of glass fiber reinforced polymer (GFRP) structural profile columns under axial compression
- Desirability function analysis approach for optimization of fused deposition modelling process parameters
- Effect of robotic weaving motion on mechanical and microstructural characteristics of wire arc additively manufactured NiTi shape memory alloy
- Rapid tooling of composite aluminium filled epoxy mould for injection moulding of polypropylene parts with small protruded features
- Investigation of microstructural evolution in a hybrid additively manufactured steel bead
- Fused filament fabricated PEEK based polymer composites for orthopaedic implants: a review
- Design of fixture for ultrasonic assisted gas tungsten arc welding using an integrated approach
- Effect of post-processing treatment on 3D-printed polylactic acid parts: layer interfaces and mechanical properties
- Investigating the effect of input parameters on tool wear in incremental sheet metal forming
- Microstructural evolution and improved corrosion resistance of NiCrSiFeB coatings prepared by laser cladding
- Microstructure and electrochemical behaviour of laser clad stainless steel 410 substrate with stainless steel 420 particles
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Editorial
- Additive manufacturing and allied technologies
- Original Papers
- Influence of process parameters on ageing and free vibration characteristics of fiber-reinforced polymer composites by fusion filament fabrication process
- 3D biomimetic scaffold’s dimensional accuracy: a crucial geometrical response for bone tissue engineering
- Investigation of mechanical and microstructure properties of metal inert gas based wire arc additive manufactured Inconel 600 superalloy
- Study on the influence of surface roughness on tensile and low-cycle fatigue behavior of electron beam melted Ti‐6Al‐4V
- Effect of tool pin profile on the heat generation model of the friction stir welding of aluminium alloy
- Effect of clamping position on the residual stress in wire arc additive manufacturing
- Effect of welding speed on butt joint quality of laser powder bed fusion AlSi10Mg parts welded using Nd:YAG laser
- Mechanical behaviour, microstructure and texture studies of wire arc additive manufactured 304L stainless steel
- Evolution of microstructure and properties of CoCrFeMnNi high entropy alloy fabricated by selective laser melting
- Effect of laser energy density on surface morphology, microstructure and mechanical behaviour of direct metal laser melted 17-4 PH stainless steel
- The influence of rheology in the fabrication of ceramic-based scaffold for bone tissue engineering
- Behaviour of glass fiber reinforced polymer (GFRP) structural profile columns under axial compression
- Desirability function analysis approach for optimization of fused deposition modelling process parameters
- Effect of robotic weaving motion on mechanical and microstructural characteristics of wire arc additively manufactured NiTi shape memory alloy
- Rapid tooling of composite aluminium filled epoxy mould for injection moulding of polypropylene parts with small protruded features
- Investigation of microstructural evolution in a hybrid additively manufactured steel bead
- Fused filament fabricated PEEK based polymer composites for orthopaedic implants: a review
- Design of fixture for ultrasonic assisted gas tungsten arc welding using an integrated approach
- Effect of post-processing treatment on 3D-printed polylactic acid parts: layer interfaces and mechanical properties
- Investigating the effect of input parameters on tool wear in incremental sheet metal forming
- Microstructural evolution and improved corrosion resistance of NiCrSiFeB coatings prepared by laser cladding
- Microstructure and electrochemical behaviour of laser clad stainless steel 410 substrate with stainless steel 420 particles
- News
- DGM – Deutsche Gesellschaft für Materialkunde