Home The influence of rheology in the fabrication of ceramic-based scaffold for bone tissue engineering
Article
Licensed
Unlicensed Requires Authentication

The influence of rheology in the fabrication of ceramic-based scaffold for bone tissue engineering

  • Jameer K. Bagwan ORCID logo EMAIL logo and Bharatkumar B. Ahuja
Published/Copyright: October 18, 2023
Become an author with De Gruyter Brill

Abstract

Bone tissue is the second most affected organ in the human body after blood. Tissue engineering is the area whereby a scaffold is used to regenerate the lost bone. However, the scaffold’s effectiveness is primarily based on the material and the fabrication process. The patient-specific structures are affected because of the fabrication process used to fabricate the scaffold as per requirement. In this regard, rheology plays an important role in the fabrication of the patient-specific scaffold, and it is a study of the flow of ink. This primarily affects both the conventional as well as the non-conventional fabrication processes. In this paper, the scaffold and bone tissue engineering, the different fabrication processes, and the importance of the rheological characterization are presented. In addition to this, the rheological properties of the developed HA/β-TCP composite slurry are evaluated for the extrusion-based additive manufacturing process. The developed ink’s rheological properties show that the flow behavior index of about 0.0497 ± 0.009, minimum flow stress required to make the ink flow of about 51.076 Pa at a strain rate of 0.111 %, and shape retention upto 75 % after 175 s are obtained. Also, different orientations are 3D printed using the developed slurry.


Corresponding author: Jameer K. Bagwan, Department of Manufacturing Engineering and Industrial Management, College of Engineering Pune, Shivajinagar, Pune, 411005, Maharashtra, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bagde, A. D., Kuthe, A. M., Quazi, S., Gupta, V., Jaiswal, S., Jyothilal, S., Lande, N., Nagdeve, S. IRBM 2019, 40, 133; https://doi.org/10.1016/j.irbm.2019.03.001.Search in Google Scholar

2. Turnbull, G., Clarke, J., PicardRiches, F. P., Jia, L., Han, F., Li, B., Shu, W. Bioact. Mater. 2018, 3, 278; https://doi.org/10.1016/j.bioactmat.2017.10.001.Search in Google Scholar PubMed PubMed Central

3. Guzzi, E. A., Bovone, G., Tibbitt, M. W. Small 2019, 15, 1; https://doi.org/10.1002/smll.201905421.10.1002/smll.201905421Search in Google Scholar PubMed

4. Maas, M., Hess, U., Rezwan, K. Curr. Opin. Colloid Interface Sci. 2014, 19, 585; https://doi.org/10.1016/j.cocis.2014.09.002.Search in Google Scholar

5. Schwab, A., Levato, R., D’Este, M., Piluso, S., Eglin, D., Malda, J. Chem. Rev. 2020, 120, 11028; https://doi.org/10.1021/acs.chemrev.0c00084.10.1021/acs.chemrev.0c00084Search in Google Scholar PubMed PubMed Central

6. Tamay, D. G., Hasirci, N. J. Biomater. Sci., Polym. Ed. 2021, 32, 1072; https://doi.org/10.1080/09205063.2021.1892470.Search in Google Scholar PubMed

7. Bagwan, J. K., Ahuja, B. B., Mulay, A. V., Jawale, K. J. Mater. Today: Proc. 2022, 50, 1465; https://doi.org/10.1016/j.matpr.2021.09.049.Search in Google Scholar

8. Ng, K. W., Romas, E., Donnan, L., Findlay, D. M. Bone Repair Biomaterials, 2nd ed., Vol. 11; Elsevier Ltd: Amsterdam, The Netherlands, 1997.10.1016/S0950-351X(97)80473-9Search in Google Scholar

9. Henkel, J., Hutmacher, D. W. BioNanoMaterials 2013, 14, 171; https://doi.org/10.1515/bnm-2013-0021.Search in Google Scholar

10. Lopes, D., Martins-Cruz, C., Oliveira, M. B., Mano, J. F. Biomaterials 2018, 185, 240; https://doi.org/10.1016/j.biomaterials.2018.09.028.Search in Google Scholar PubMed PubMed Central

11. Ghassemi, T., Shahroodi, A., Ebrahimzadeh, M. H., Mousavian, A., Movaffagh, J., Moradi, A. Arch. Bone Jt. Surg. 2018, 6, 90; https://doi.org/10.22038/abjs.2018.26340.1713.Search in Google Scholar

12. Bose, S., Roy, M., Bandyopadhyay, A. Trends Biotechnol. 2012, 30, 546; https://doi.org/10.1016/j.tibtech.2012.07.005.Search in Google Scholar PubMed PubMed Central

13. Reznikov, N., Shahar, R., Weiner, S. Acta Biomater. 2014, 10, 3815; https://doi.org/10.1016/j.actbio.2014.05.024.Search in Google Scholar PubMed

14. Bose, S., Tarafder, S. Acta Biomater. 2012, 8, 1401; https://doi.org/10.1016/j.actbio.2011.11.017.Search in Google Scholar PubMed PubMed Central

15. Monmaturapoj, N., Yatongchai, C. Bull. Mater. Sci. 2011, 34, 1733; https://doi.org/10.1007/s12034-011-0384-x.Search in Google Scholar

16. Zhang, Y., Yokogawa, Y., Feng, X., Tao, Y., Li, Y. Ceram. Int. 2010, 36, 107; https://doi.org/10.1016/j.ceramint.2009.07.008.Search in Google Scholar

17. Guicciardi, S., Galassi, C., Landi, E., Tampieri, A., Satou, K., Pezzotti, G. J. Mater. Res. 2001, 16, 163; https://doi.org/10.1557/JMR.2001.0027.Search in Google Scholar

18. Zhang, W., Yao, D., Zhang, Q., Zhou, J. G., Lelkes, P. I. Biofabrication 2010, 2, 035006; https://doi.org/10.1088/1758-5082/2/3/035006.Search in Google Scholar PubMed

19. Zhou, K., Zhang, Y., Zhang, D., Zhang, X., Li, Z., Liu, G., Button, T. W. Scr. Mater. 2011, 64, 426; https://doi.org/10.1016/j.scriptamat.2010.11.001.10.1016/j.scriptamat.2010.11.001Search in Google Scholar

20. Monmaturapoj, N., Soodsawang, W., Thepsuwan, W. J. Porous Mater. 2012, 19, 441; https://doi.org/10.1007/s10934-011-9492-7.Search in Google Scholar

21. Lee, E. J., Koh, Y. H., Yoon, B. H., Kim, H. E., Kim, H. W. Mater. Lett. 2007, 61, 2270; https://doi.org/10.1016/j.matlet.2006.08.065.Search in Google Scholar

22. Zhang, Y., Zhou, K., Bao, Y., Zhang, D. Mater. Sci. Eng. C 2013, 33, 340; https://doi.org/10.1016/j.msec.2012.08.048.Search in Google Scholar PubMed

23. Huang, H. L., Chuang, L. T., Li, H. H., Lin, C. P., Glew, R. H. Lipids Health Dis. 2013, 12, 1; https://doi.org/10.1186/1476-511X-12-27.Search in Google Scholar PubMed PubMed Central

24. de Siqueira, L., Gouveia, R. F., Grenho, L., Monteiro, F. J., Fernandes, M. H., Trichês, E. S. J. Mater. Sci. 2018, 53, 10718; https://doi.org/10.1007/s10853-018-2337-x.10.1007/s10853-018-2337-xSearch in Google Scholar

25. Cyster, L. A., Grant, D. M., Howdle, S. M., Rose, F. R. A. J., Irvine, D. J., Freemand, D., Scotchford, A., Shakesheff, K. M. Biomaterials 2005, 26, 697; https://doi.org/10.1016/j.biomaterials.2004.03.017.Search in Google Scholar PubMed

26. Fuller, G. G., Vermant, J. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 519; https://doi.org/10.1146/annurev-chembioeng-061010-114202.Search in Google Scholar PubMed

27. Miller, R., Ferri, J. K., Javadi, A., Krägel, J., Mucic, N., Wüstneck, R. Colloid Polym. Sci. 2010, 288, 937; https://doi.org/10.1007/s00396-010-2227-5.Search in Google Scholar

28. Pelipenko, J., Kristl, J., Rošic, R., Baumgartner, S., Kocbek, P. Acta Pharm. 2012, 62, 123; https://doi.org/10.2478/v10007-012-0018-x.Search in Google Scholar PubMed

29. Krägel, J., Derkatch, S. R. Curr. Opin. Colloid Interface Sci. 2010, 15, 246; https://doi.org/10.1016/j.cocis.2010.02.001.Search in Google Scholar

30. Mohanta, K., Bhargava, P. Adv. Appl. Ceram. 2006, 105, 217; https://doi.org/10.1179/174367606X113564.Search in Google Scholar

31. Dhara, S., Bhargava, P. J. Am. Ceram. Soc. 2001, 84, 3048; https://doi.org/10.1111/j.1151-2916.2001.tb01137.x.10.1111/j.1151-2916.2001.tb01137.xSearch in Google Scholar

32. Ginebra, M.-P., Delgado, J.-A., Harr, I., Almirall, A., Del Valle, S., Planell, J. A. J. Biomed. Mater. Res. Part A 2007, 80A, 351; https://doi.org/10.1002/jbm.a.30886.10.1002/jbm.a.30886Search in Google Scholar PubMed

33. del Valle, S., Miño, N., Muñoz, F., González, A., Planell, J. A., Ginebra, M.-P.. J. Mater. Sci.: Mater. Med. 2007, 18, 353; https://doi.org/10.1007/s10856-006-0700-y.Search in Google Scholar PubMed

34. Miller, R., Alahverdjieva, V. S., Fainerman, V. B. Soft Matter 2008, 4, 1141; https://doi.org/10.1039/b802034e.Search in Google Scholar PubMed

35. Maas, M., Bodnar, P. M., Hess, U., Treccani, L., Rezwan, K. J. Colloid Interface Sci. 2013, 407, 529; https://doi.org/10.16/j.jcis.2013.06.039.10.1016/j.jcis.2013.06.039Search in Google Scholar PubMed

36. Khaled, S. A., Alexander, M. R., Wildman, R. D., Wallace, M. J., Sharpe, S., Yoo, J., Roberts, C. J. Int. J. Pharm. 2018, 538, 223; https://doi.org/10.1016/j.ijpharm.2018.01.024.Search in Google Scholar PubMed

37. Chen, H., Wang, X., Xue, F., Huang, Y., Zhou, K., Zhang, D. 3D printing of SiC ceramic: direct ink writing with a solution of preceramic polymers. J. Eur. Ceram. Soc. 2018, 38, 5294; https://doi.org/10.1016/j.jeurceramsoc.2018.08.009.10.1016/j.jeurceramsoc.2018.08.009Search in Google Scholar

38. Bourret, J., El Younsi, I., Bienia, M., Smith, A., Geffroy, P. M., Marie, J., Ono, Y., Chartier, T., Pateloup, V. J. Eur. Ceram. Soc. 2018, 38, 2802; https://doi.org/10.1016/j.jeurceramsoc.2018.02.018.Search in Google Scholar

39. Alves, N., Gaspar, M. B., Pascoal-Faria, P. AIP Conf. Proc. 2019, 2116, 230005-(1-5); https://doi.org/10.1063/1.5114231.Search in Google Scholar

40. Li, X., Yuan, Y., Liu, L., Leung, Y. S., Chen, Y., Guo, Y., Chai, Y., Chen, Y.. Bio-Des. Manuf. 2020, 3, 15; https://doi.org/10.1007/s42242-019-00056-5.Search in Google Scholar

41. Michna, S., Wu, W., Lewis, J. A. Biomaterials 2005, 26, 5632; https://doi.org/10.1016/j.biomaterials.2005.02.040.Search in Google Scholar PubMed

42. Shahzad, A., Lazoglu, I. Composites, Part B 2021, 225, 109249; https://doi.org/10.1016/j.compositesb.2021.109249.Search in Google Scholar

43. Shao, H., He, J., Lin, T., Zhang, Z., Zhang, Y., Liu, S. Ceram. Int. 2019, 45, 1163; https://doi.org/10.1016/j.ceramint.2018.09.300.Search in Google Scholar

44. Balogová, A., Pindroch, O., Bodnárová, S., Feranc, J., Hudák, R., Živčák, J. A Tech. 2017, 47, 88; https://doi.org/10.1016/j.jbiotec.2018.08.019.10.1016/j.jbiotec.2018.08.019Search in Google Scholar PubMed

45. Chen, T., Sun, A., Chu, C., Wu, H., Wang, J., Wang, J., Li, Z., Jianjum, G., Gaojie, X. J. Alloys Compd. 2019, 783, 321; https://doi.org/10.1016/j.jallcom.2018.12.334.10.1016/j.jallcom.2018.12.334Search in Google Scholar

46. del-Mazo-Barbara, L., Ginebra, M. P. J. Eur. Ceram. Soc. 2021, 41, 18; https://doi.org/10.1016/j.jeurceramsoc.2021.08.031.Search in Google Scholar

47. Paxton, N., Smolan, W., Böck, T., Melchels, F., Groll, J., Jungst, T. Biofabrication 2017, 9, 44; https://doi.org/10.1088/1758-5090/aa8dd8.Search in Google Scholar PubMed

48. Malvern Instruments. Understanding yield stress measurements. Annu. Trans. Nord. Rheol. Soc. 2012, 21, 6.Search in Google Scholar

49. Schlordt, T., Keppner, F., Travitzky, N., Greil, P. J. Ceram. Sci. Technol. 2012, 3, 81; https://doi.org/10.4416/JCST2012-00003.Search in Google Scholar

50. Smay, J. E., Cesarano, J., Lewis, J. A. Langmuir 2002, 18, 5429; https://doi.org/10.1007/978-0-387-76540-2_15.Search in Google Scholar

51. Eqtesadi, S., Motealleh, A., Miranda, P., Lemos, A., Rebelo, A., Ferreira, J. M. F. Mater. Lett. 2013, 93, 68; https://doi.org/10.1016/j.matlet.2012.11.043.10.1016/j.matlet.2012.11.043Search in Google Scholar

52. Feilden, E., Blanca, E. G. T., Giuliani, F., Saiz, E., Vandeperre, L. J. Eur. Ceram. Soc. 2016, 36, 2525; https://doi.org/10.1038/s41598-017-14236-9.Search in Google Scholar PubMed PubMed Central

53. Maurath, J., Willenbacher, N. J. Eur. Ceram. Soc. 2017, 37, 4833; https://doi.org/10.1016/j.jeurceramsoc.2017.06.001.Search in Google Scholar

54. M’Barki, A., Bocquet, L., Stevenson, A. Sci. Rep. 2017, 7, 6017; https://doi.org/10.1038/s41598-017-06115-0.Search in Google Scholar PubMed PubMed Central

55. Deliormanli, A. M., Rahaman, M. N. J. Eur. Ceram. Soc. 2012, 32, 3637; https://doi.org/10.1016/j.jeurceramsoc.2012.05.005.Search in Google Scholar

56. Li, Y. Y., Li, L. T., Li, B. J. Alloys Compd. 2015, 620, 125; https://doi.org/10.1016/j.jallcom.2014.09.124.Search in Google Scholar

57. Roos, A., Creton, C., Novikov, M. B., Feldstein, M. M. J. Polym. Sci., Part B: Polym. Phys. 2002, 40, 2395; https://doi.org/10.1002/polb.10279.Search in Google Scholar

58. Nan, B., Galindo-Rosales, F. J., Ferreira, J. M. F. Mater. Today 2020, 35, 16; https://doi.org/10.1016/j.mattod.2020.01.003.Search in Google Scholar

Received: 2022-05-26
Accepted: 2022-08-23
Published Online: 2023-10-18
Published in Print: 2023-10-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Additive manufacturing and allied technologies
  4. Original Papers
  5. Influence of process parameters on ageing and free vibration characteristics of fiber-reinforced polymer composites by fusion filament fabrication process
  6. 3D biomimetic scaffold’s dimensional accuracy: a crucial geometrical response for bone tissue engineering
  7. Investigation of mechanical and microstructure properties of metal inert gas based wire arc additive manufactured Inconel 600 superalloy
  8. Study on the influence of surface roughness on tensile and low-cycle fatigue behavior of electron beam melted Ti‐6Al‐4V
  9. Effect of tool pin profile on the heat generation model of the friction stir welding of aluminium alloy
  10. Effect of clamping position on the residual stress in wire arc additive manufacturing
  11. Effect of welding speed on butt joint quality of laser powder bed fusion AlSi10Mg parts welded using Nd:YAG laser
  12. Mechanical behaviour, microstructure and texture studies of wire arc additive manufactured 304L stainless steel
  13. Evolution of microstructure and properties of CoCrFeMnNi high entropy alloy fabricated by selective laser melting
  14. Effect of laser energy density on surface morphology, microstructure and mechanical behaviour of direct metal laser melted 17-4 PH stainless steel
  15. The influence of rheology in the fabrication of ceramic-based scaffold for bone tissue engineering
  16. Behaviour of glass fiber reinforced polymer (GFRP) structural profile columns under axial compression
  17. Desirability function analysis approach for optimization of fused deposition modelling process parameters
  18. Effect of robotic weaving motion on mechanical and microstructural characteristics of wire arc additively manufactured NiTi shape memory alloy
  19. Rapid tooling of composite aluminium filled epoxy mould for injection moulding of polypropylene parts with small protruded features
  20. Investigation of microstructural evolution in a hybrid additively manufactured steel bead
  21. Fused filament fabricated PEEK based polymer composites for orthopaedic implants: a review
  22. Design of fixture for ultrasonic assisted gas tungsten arc welding using an integrated approach
  23. Effect of post-processing treatment on 3D-printed polylactic acid parts: layer interfaces and mechanical properties
  24. Investigating the effect of input parameters on tool wear in incremental sheet metal forming
  25. Microstructural evolution and improved corrosion resistance of NiCrSiFeB coatings prepared by laser cladding
  26. Microstructure and electrochemical behaviour of laser clad stainless steel 410 substrate with stainless steel 420 particles
  27. News
  28. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0245/pdf
Scroll to top button