Home Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
Article
Licensed
Unlicensed Requires Authentication

Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface

  • Rohit Kumar Srivastav and Anuraj Panwar EMAIL logo
Published/Copyright: March 7, 2023
Become an author with De Gruyter Brill

Abstract

We propose a mechanism for the generation of second harmonic terahertz surface plasmon waves by incident terahertz electromagnetic radiation (ω, k0) over a graphene surface deposited on the rippled dielectric substrate (SiO2). A p-polarized THz radiation incident obliquely on the graphene surface exerts a nonlinear ponderomotive force on free electrons in the rippled regime. This nonlinear ponderomotive force imparts oscillatory velocity to the electrons at frequency 2ω. Second harmonic oscillatory velocity couples with the modulated electron density and generates a nonlinear current density that drives second harmonic terahertz surface plasmon waves. Rippled surface provides an extra wave number for the phase matching condition to produce resonantly second harmonic at frequency 2ω and wavenumber (2k0z + q). We examine the tunable response of second harmonic terahertz surface plasmon waves with respect to change in Fermi energy of graphene and laser incident angle. Second harmonic amplitude gets higher values by lowering the Fermi energy (EF) and increasing incident angle.


Corresponding author: Anuraj Panwar, Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology Noida, 201309, Noida, UP, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Maier, S. A. Plasmonics: Fundamentals and Applications; SpringerScience and Business Media: New York, 2007, https://doi.org/10.1007/0-387-37825-1.Search in Google Scholar

2. Ding, Y., Wei, C., Su, H., Sun, S., Tang, Z., Wang, Z., Li, G., Liu, D., Gwo, S., Dai, J., Shi, J. Second harmonic generation covering the entire visible range from a 2d material–plasmon hybrid metasurface. Adv. Opt. Mater. 2021, 9, 2100625. https://doi.org/10.1002/adom.202100625.Search in Google Scholar

3. Sadaghiani, V. K., Tavakoli, M. B., Horri, A. Second harmonic generation in a graphene-based plasmonic waveguide. Photonic Netw. Commun. 2021, 42, 117–122. https://doi.org/10.1007/s11107-021-00930-2.Search in Google Scholar

4. Jin, B., Guo, T., Argyropoulos, C. Enhanced third harmonic generation with graphene metasurfaces. J. Opt. 2017, 19, 094005. https://doi.org/10.1088/2040-8986/aa8280.Search in Google Scholar

5. Ghazialsharif, M., Fakhar, B. H., Abrishamian, M. S. Low power third harmonic generation and all-optical switching by graphene surface plasmons. J. Opt. 2019, 21, 105503. https://doi.org/10.1088/2040-8986/ab410d.Search in Google Scholar

6. Sharif, M. A. Spatio-temporal modulation instability of surface plasmon polaritons in graphene-dielectric heterostructure. Phys. E Low-dimens. Syst. Nanostruct. 2019, 105, 174–181. https://doi.org/10.1016/j.physe.2018.09.011.Search in Google Scholar

7. Moiseev, S. G., Korobko, D. A., Zolotovskii, I. O., Fotiadi, A. A. Evolution of surface plasmon–polariton wave in a thin metal film: the modulation-instability effect. Ann. Phys. 2017, 529, 1600167. https://doi.org/10.1002/andp.201600167.Search in Google Scholar

8. Kumar, M., Porsezian, K., Tchofo-Dinda, P., Grelu, P., Mithun, T., Uthayakumar, T. Spatial modulation instability of coupled surface plasmon polaritons in a dielectric–metal–dielectric structure. JOSA B 2017, 34, 198–206. https://doi.org/10.1364/josab.34.000198.Search in Google Scholar

9. Ghamsari, B. G., Olivieri, A., Variola, F., Berini, P. Enhanced Raman scattering in graphene by plasmonic resonant Stokes emission. Nanophotonics 2014, 3, 363–371. https://doi.org/10.1515/nanoph-2014-0014.Search in Google Scholar

10. Rao, S. J. M., Sarkar, R., Kumar, G., Chowdhury, D. R. Gradual cross polarization conversion of transmitted waves in near field coupled planar terahertz metamaterials. OSA Continuum 2019, 2, 603–614. https://doi.org/10.1364/osac.2.000603.Search in Google Scholar

11. Rao, S. J. M., Srivastava, Y. K., Kumar, G., Chowdhury, D. R. Modulating fundamental resonance in capacitive coupled asymmetric terahertz metamaterials. Sci. Rep. 2018, 8, 1–8. https://doi.org/10.1038/s41598-018-34942-2.Search in Google Scholar PubMed PubMed Central

12. Sarkar, R., Ghindani, D., Devi, K. M., Prabhu, S., Ahmad, A., Kumar, G. Independently tunable electromagnetically induced transparency effect and dispersion in a multi-band terahertz metamaterial. Sci. Rep. 2019, 9, 1–10. https://doi.org/10.1038/s41598-019-54414-5.Search in Google Scholar PubMed PubMed Central

13. Devi, K. M., Chowdhury, D. R., Kumar, G., Sarma, A. K. Dual-band electromagnetically induced transparency effect in a concentrically coupled asymmetric terahertz metamaterial. J. Appl. Phys. 2018, 124, 063106. https://doi.org/10.1063/1.5040734.Search in Google Scholar

14. Mathanker, S. K., Weckler, P. R., Wang, N. Terahertz (thz) applications in food and agriculture: a review. Trans. ASABE 2013, 56, 1213–1226.10.13031/trans.56.9390Search in Google Scholar

15. Federici, J. F., Schulkin, B., Huang, F., Gary, D., Barat, R., Oliveira, F., Zimdars, D. Thz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol. 2005, 20, S266. https://doi.org/10.1088/0268-1242/20/7/018.Search in Google Scholar

16. Sen, S., Abdullah-Al-Shafi, M., Sikder, A. S., Hossain, M. S., Azad, M. M. Zeonex based decagonal photonic crystal fiber (d-pcf) in the terahertz (thz) band for chemical sensing applications. Sens. Bio-Sens. Res. 2021, 31, 100393. https://doi.org/10.1016/j.sbsr.2020.100393.Search in Google Scholar

17. Siegel, P. H. Terahertz technology in biology and medicine. IEEE Trans. Microw. Theor. Tech. 2004, 52, 2438–2447. https://doi.org/10.1109/tmtt.2004.835916.Search in Google Scholar

18. Nguyen Pham, H. H., Hisatake, S., Minin, O. V., Nagatsuma, T., Minin, I. V. Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube. APL Photonics 2017, 2, 056106. https://doi.org/10.1063/1.4983114.Search in Google Scholar

19. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D. E., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. https://doi.org/10.1126/science.1102896.Search in Google Scholar PubMed

20. Horng, J., Chen, C. F., Geng, B., Girit, C., Zhang, Y., Hao, Z., Bechtel, H. A., Martin, M., Zettl, A., Crommie, M. F., Shen, Y. R., Wang, F. Drude conductivity of Dirac fermions in graphene. Phys. Rev. B 2011, 83, 165113. https://doi.org/10.1103/physrevb.83.165113.Search in Google Scholar

21. Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S., Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. https://doi.org/10.1103/revmodphys.81.109.Search in Google Scholar

22. Scarfe, S., Cui, W., Luican-Mayer, A., Ménard, J.-M. Systematic thz study of the substrate effect in limiting the mobility of graphene. Sci. Rep. 2021, 11, 1–9. https://doi.org/10.1038/s41598-021-87894-5.Search in Google Scholar PubMed PubMed Central

23. Wang, J., Zhao, R., Yang, M., Liu, Z., Liu, Z. Inverse relationship between carrier mobility and bandgap in graphene. J. Chem. Phys. 2013, 138, 084701. https://doi.org/10.1063/1.4792142.Search in Google Scholar PubMed

24. Farmani, A., Mir, A. Graphene sensor based on surface plasmon resonance for optical scanning. IEEE Photon. Technol. Lett. 2019, 31, 643–646. https://doi.org/10.1109/lpt.2019.2904618.Search in Google Scholar

25. El-Khozondar, H. J., El-Khozondar, R. J., Shabat, M. M. Dispersion characteristics and sensitivity properties of graphene surface plasmon sensor. Sens. Lett. 2017, 15, 249–252. https://doi.org/10.1166/sl.2017.3802.Search in Google Scholar

26. Omar, N. A. S., Fen, Y. W., Saleviter, S., Daniyal, W. M. E. M. M., Anas, N. A. A., Ramdzan, N. S. M., Roshidi, M. D. A. Development of a graphene-based surface plasmon resonance optical sensor chip for potential biomedical application. Materials 2019, 12, 1928. https://doi.org/10.3390/ma12121928.Search in Google Scholar PubMed PubMed Central

27. Cui, L., Wang, J., Sun, M. Graphene plasmon for optoelectronics. Rev. Phys. 2021, 6, 100054. https://doi.org/10.1016/j.revip.2021.100054.Search in Google Scholar

28. He, Z., Li, L., Ma, H., Pu, L., Xu, H., Yi, Z., Cao, X., Cui, W. Graphenebased metasurface sensing applications in terahertz band. Results Phys. 2021, 21, 103795. https://doi.org/10.1016/j.rinp.2020.103795.Search in Google Scholar

29. Teng, D., Wang, K. Theoretical analysis of terahertz dielectric–loaded graphene waveguide. Nanomaterials 2021, 11, 210. https://doi.org/10.3390/nano11010210.Search in Google Scholar PubMed PubMed Central

30. Wang, Y., Liu, H., Wang, S., Cai, M., Zhang, H., Qiao, Y. Electrical phase control based on graphene surface plasmon polaritons in mid-infrared. Nanomaterials 2020, 10, 576. https://doi.org/10.3390/nano10030576.Search in Google Scholar PubMed PubMed Central

31. Li, Z., Huang, J., Zhao, Z., Wang, Y., Huang, C., Zhang, Y. Single-layer graphene optical modulator based on arrayed hybrid plasmonic nanowires. Opt Express 2021, 29, 30104–30113. https://doi.org/10.1364/oe.434916.Search in Google Scholar

32. Lu, H., Gan, X., Mao, D., Zhao, J. Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides. Photon. Res. 2017, 5, 162–167. https://doi.org/10.1364/prj.5.000162.Search in Google Scholar

33. Singh, P. K., Aizin, G., Thawdar, N., Medley, M., Jornet, J. M. Graphenebased plasmonic phase modulator for terahertz-band communication. In 2016 10th European Conference on Antennas and Propagation (EuCAP); IEEE, 2016; pp. 1–5.10.1109/EuCAP.2016.7481218Search in Google Scholar

34. Khattak, M. I., Anab, M., Muqarrab, N. A duo of graphene-copper based wideband planar plasmonic antenna analysis for lower region of terahertz (thz) communications. Prog. Electromagn. Res. C 2021, 111, 83–96. https://doi.org/10.2528/pierc21010603.Search in Google Scholar

35. Elayan, H., Shubair, R. M., Kiourti, A. On graphene-based thz plasmonic nano-antennas. In 2016 16th Mediterranean Microwave Symposium (MMS); IEEE, 2016; pp. 1–3.10.1109/MMS.2016.7803807Search in Google Scholar

36. Wei, W., Chen, N., Nong, J., Lan, G., Wang, W., Yi, J., Tang, L. Grapheneassisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy. Opt Express 2018, 26, 16903–16916. https://doi.org/10.1364/oe.26.016903.Search in Google Scholar

37. Heydari, M. B., Samiei, M. H. V. Analytical study of tm-polarized surface plasmon polaritons in nonlinear multi-layer graphene-based waveguides. Plasmonics 2021, 16, 841–848. https://doi.org/10.1007/s11468-020-01336-y.Search in Google Scholar

38. Heydari, M. B., Vadjed Samiei, M. H. An analytical study of magnetoplasmons in anisotropic multi-layer structures containing magnetically biased graphene sheets. Plasmonics 2020, 15, 1183–1198. https://doi.org/10.1007/s11468-020-01136-4.Search in Google Scholar

39. Heydari, M. B., Samiei, M. H. V. New analytical investigation of anisotropic graphene nano-waveguides with bi-gyrotropic cover and substrate backed by a pemc layer. Opt. Quant. Electron. 2020, 52, 1–16. https://doi.org/10.1007/s11082-020-2222-0.Search in Google Scholar

40. Wu, J., Guo, S., Li, Z., Li, X., Xue, H., Wang, Z. Graphene hybrid surface plasmon waveguide with low loss transmission. Plasmonics 2020, 15, 1621–1627. https://doi.org/10.1007/s11468-020-01181-z.Search in Google Scholar

41. Kaveh, H., Karimi, A. Second harmonic generation using imi grating structure. Optik 2019, 183, 247–252. https://doi.org/10.1016/j.ijleo.2019.02.138.Search in Google Scholar

42. Mousavi, S. H. S., Lemasters, R., Wang, F., Dorche, A. E., Taheri, H., Eftekhar, A. A., Harutyunyan, H., Adibi, A. Phase-matched nonlinear second-harmonic generation in plasmonic metasurfaces. Nanophotonics 2019, 8, 607–612. https://doi.org/10.1515/nanoph-2018-0181.Search in Google Scholar

43. Majérus, B., Butet, J., Bernasconi, G. D., Valapu, R. T., Lobet, M., Henrard, L., Martin, O. J. Optical second harmonic generation from nanostructured graphene: a full wave approach. Opt Express 2017, 25, 27015–27027. https://doi.org/10.1364/oe.25.027015.Search in Google Scholar PubMed

44. Zhao, Y., Huo, Y., Man, B., Ning, T. Grating-assisted surface plasmon resonance for enhancement of optical harmonic generation in graphene. Plasmonics 2019, 14, 1911–1918. https://doi.org/10.1007/s11468-019-00986-x.Search in Google Scholar

45. Ochiai, T. Enhanced second-harmonic generation and photon drag effect in a doped graphene placed on a two-dimensional diffraction grating. JOSA B 2017, 34, 740–749. https://doi.org/10.1364/josab.34.000740.Search in Google Scholar

46. Nasari, H., Abrishamian, M. S. Numerical study of plasmonic resonance enhanced, terahertz second harmonic generation from graphene in the otto configuration. IEEE J. Quant. Electron. 2017, 53, 1–7. https://doi.org/10.1109/jqe.2017.2708525.Search in Google Scholar

47. Daneshfar, N., Noormohamadi, Z. Optical surface second harmonic generation from plasmonic graphene-coated nanoshells: influence of shape, size, dielectric core and embedding medium. Appl. Phys. A 2020, 126, 1–7. https://doi.org/10.1007/s00339-019-3228-y.Search in Google Scholar

48. Bhattacharya, A., Devi, K. M., Nguyen, T., Kumar, G. Actively tunable toroidal excitations in graphene based terahertz metamaterials. Opt Commun. 2020, 459, 124919. https://doi.org/10.1016/j.optcom.2019.124919.Search in Google Scholar

49. Devi, K. M., Islam, M., Chowdhury, D. R., Sarma, A. K., Kumar, G. Plasmon-induced transparency in graphene-based terahertz metamaterials. EPL (Europhys. Lett.) 2018, 120, 27005. https://doi.org/10.1209/0295-5075/120/27005.Search in Google Scholar

50. Borca, B., Barja, S., Garnica, M., Minniti, M., Politano, A., RodriguezGarcía, J. M., Hinarejos, J. J., Farías, D., de Parga, A. L. V., Miranda, R. Electronic and geometric corrugation of periodically rippled, selfnanostructured graphene epitaxially grown on ru (0001). New J. Phys. 2010, 12, 093018. https://doi.org/10.1088/1367-2630/12/9/093018.Search in Google Scholar

51. Feng, W., Lei, S., Li, Q., Zhao, A. Periodically modulated electronic properties of the epitaxial monolayer graphene on ru (0001). J. Phys. Chem. C 2011, 115, 24858–24864. https://doi.org/10.1021/jp2082962.Search in Google Scholar

52. Singh, D., Tripathi, V. Surface plasmon excitation at second harmonic over a rippled surface. J. Appl. Phys. 2007, 102, 083301. https://doi.org/10.1063/1.2795575.Search in Google Scholar

53. Parashar, J., Sharma, A. Second-harmonic generation by an obliquely incident laser on a vacuum-plasma interface. EPL (Europhys. Lett.) 1998, 41, 389. https://doi.org/10.1209/epl/i1998-00162-1.Search in Google Scholar

54. Tewari, D., Tripathi, V. Second-harmonic generation of upper-hybrid radiation in a plasma. Phys. Rev. A 1980, 21, 1698. https://doi.org/10.1103/physreva.21.1698.Search in Google Scholar

55. Ryzhii, V., Otsuji, T., Shur, M. Graphene based plasma-wave devices for terahertz applications. Appl. Phys. Lett. 2020, 116, 140501. https://doi.org/10.1063/1.5140712.Search in Google Scholar

56. Maradudin, A. A., Sambles, J. R., Barnes, W. L., Modern Plasmonics; Elsevier Science: Burlington, 2014.Search in Google Scholar

Received: 2021-12-28
Accepted: 2022-02-24
Published Online: 2023-03-07
Published in Print: 2023-07-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. International conference on energy and advanced materials
  4. Review
  5. Analysis of different printing technologies for metallization of crystalline silicon solar cells
  6. Original Papers
  7. DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
  8. Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
  9. Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
  10. Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
  11. Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
  12. Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
  13. Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
  14. Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
  15. A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
  16. Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
  17. Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
  18. Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
  19. Impact of top metal electrodes on current conduction in WO3 thin films
  20. Atomistic simulation of Stoner–Wohlfarth (SW) particle
  21. Optimization of Coulomb glass system using quenching and annealing at small disorders
  22. Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
  23. Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
  24. Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
  25. Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
  26. Thermal properties of AlN (nano) filled LDPE composites
  27. Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
  28. Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
  29. AlGaN/GaN heterostructures for high power and high-speed applications
  30. Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
  31. Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
  32. Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
  33. Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
  34. Rotating magnetic field configuration for controlled particle flux in material processing applications
  35. News
  36. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8753/html?lang=en
Scroll to top button