Home Estimating the volume of the 1978 Rissa quick clay landslide in Central Norway using historical aerial imagery
Article Open Access

Estimating the volume of the 1978 Rissa quick clay landslide in Central Norway using historical aerial imagery

  • Benjamin Aubrey Robson ORCID logo EMAIL logo , Daniel Hölbling , Pål Ringkjøb Nielsen and Max Koller
Published/Copyright: March 23, 2022
Become an author with De Gruyter Brill

Abstract

Quick clay is found across Scandinavia and is especially prominent in south-eastern and central Norway. Quick clay is prone to failure and can cause landslides with high velocities and large run-outs. The 1978 Rissa landslide is one of the best-known quick clay landslides to have occurred in the last century, both due to its size and the fact that it was captured on film. In this article, we utilise Structure from Motion Multi-View Stereo (SfM-MVS) photogrammetry to process historical aerial photography from 1964 to 1978 and derive the first geodetic volume of the Rissa landslide. We found that the landslide covered a total onshore area of 0.36 km2 and had a geodetic volume of 2.53 ± 0.52 × 106 m3 with up to 20 m of surface elevation changes. Our estimate differs profusely from previous estimates by 43–56% which can partly be accounted for our analysis not being able to measure the portion of the landslide that occurred underwater, nor account for the material deposited within the landslide area. Given the accuracy and precision of our analyses, we believe that the total volume of the Rissa landslide may have been less than originally reported. The use of modern image processing techniques such as SfM-MVS for processing historical aerial photography is recommended for understanding landscape changes related to landslides, volcanoes, glaciers, or river erosion over large spatial and temporal scales.

1 Introduction

Quick clay is a fine-grained sediment with high porosity and water content that is highly sensitive to disturbances such as vibration, loading, or bank erosion and may cause retrogressive landslides [1]. Quick clay is found in Scandinavia and Canada, but it is also found in northern parts of Russia, Alaska, New Zealand, Greenland, and Japan [1,2,3,4]. Landslides in clay have been a major contributor in shaping the landscape following the last major deglaciation [5].

In Norway, highly sensitive clays are found in areas where land has been submerged by isostatic depression due to glaciations, making up approximately 1,000 km2 of land in total [6]. As the Scandinavian ice sheet retreated, large amounts of clay were deposited in the transgressing sea. The deposits are characterised by random orientation of particles due to the flocculation in saltwater, upheld by the positive charges in the salt. Following post-glacial isostatic rebound, the clay deposits were elevated above sea level and exposed to leaching of salt from groundwater flow and rainfall, compromising the internal structure of the clays. The weakened material structure makes the clay prone to liquidation following ground disturbance which causes landslides with high velocities and large run-out distances. Such landslides can occur on very gently inclined slopes, the quick clay landslides in Norway were reported on slopes as low as 4–5° [3,7]. Deposits are related to the post-glacial marine limit and are most prominent in the Trøndelag region and south-eastern Norway [8]. Depending on the location, the post-glacial marine limit was up to 220 m higher than the mean sea level in present days in Norway [9].

Major efforts have been made to map and characterise quick clay landslides [8,10]. For example, L’Heureux prepared an inventory of 37 well-documented quick clay landslides in Norway and reported that at least 1,150 people have died as a consequence of landslides in clay (as of 2012) [11]. Approximately 110,000 people live on quick clay in Norway. The occurrence of quick clay landslides larger than 50,000 m3 has nearly doubled over the last two decades [6]. One of the largest and most well-known quick clay landslides occurred on April 29, 1978 near Rissa, a small community close to the city of Trondheim, which killed one person and destroyed several buildings [12,13]. Apart from the Rissa slide, there are several other examples of destructive quick clay landslides in Norway, such as the 1893 Verdal slide [14] killing 116 people, the 1959 Sokkelvik landslide [15], which resulted in nine casualties, destructed farms and infrastructure, and initiated a tsunami wave, or the 2009 Kattmarka slide [16] which destroyed a highway and several buildings. The 2015 Skjeggestad slide resulted in the collapse of the Skjeggestad bridge and caused damages worth several million dollars [3,9]. A quick clay landslide occurred at Kråknes in Alta, northern Norway on June 3, 2020. The event destroyed several houses but did not lead to fatalities. Another retrogressive failure happened two days later and destroyed the old E6 road [17]. An even more recent event took place in the town of Ask, in Gjerdrum municipality, on December 30, 2020. Several buildings were destroyed by the landslide, killing ten people and leading to over 1,000 people being evacuated [6]. It has been described as the most deadly landslide in modern Norwegian history [18].

Due to the liquid nature of quick clay combined with human activities (e.g. agricultural activity), traces of past slides are often difficult to detect or are not visible in the landscape anymore [5]. Thus, the availability of historical remote sensing images is of great value to be able to better map, characterise, and understand past quick clay slides. Interpretation of digital elevation models (DEMs) can complement the analysis of quick clay slides, by either using hillshade models to visualise the terrain or by determining changes in surface elevation over time. DEMs can be derived from a variety of remote sensing sources including aerial or terrestrial laser scanning, stereo satellite imagery, or aerial photography. Aerial images have been used for several decades for preparing inventories of landslides in sensitive clays by visual image interpretation, but historical aerial images have seldom been used for DEM creation to calculate the volume of clay slides. Advanced and efficient image analysis techniques have opened a new era for performing retrospective analysis based on historical images [19].

Norway possesses an extensive archive of historical aerial images dating back to the 1930s. The Norwegian Mapping Authorities (Kartverket) are currently in the process of scanning the archive, with much of the collection already digitised and available at a nominal cost [20]. This opens a wealth of new possibilities for the generation of high-resolution DEMs in order to study changes in the landscape over considerable time periods.

Historical aerial photography is traditionally processed using conventional photogrammetric software such as PCI Geomatica or ERDAS Imagine. Such software packages typically require information on the interior orientation of the images (focal length, radial distortion, and image coordinates of fiducial marks) as well as sufficient tie points and ground control points (GCPs) to calculate the relative and exterior orientations. Generally, at least three GCPs must be located on each image that is processed, with each GCP containing both the image coordinates of the point as well as the X, Y, and Z coordinates from a reference dataset (for example a high-resolution aerial image, topographic map, or ground survey data). As such, GCPs should be located on stable terrain that can be identified in both the imagery being processed and the reference dataset. The location and spatial distribution of GCPs are crucial in solving the exterior orientation, estimating camera positions, and ultimately producing high-quality DEMs. The selection of suitable GCPs, however, can be a problem when working with historical imagery that covers large areas of change, for example glaciers, or landslides, when large portions of one of several images are unstable and therefore unsuitable for collecting GCPs [21].

Structure from Motion Multi-View Stereo (SfM-MVS) photogrammetry is a method for processing photogrammetric data, which compared to conventional photogrammetry requires less user input, less pre-processing such as georeferencing, and is capable of automatically solving the camera positions and geometry. SfM-MVS is typically used to process data from unmanned aerial vehicles (UAVs) where one survey can contain several hundred images [22,23].

SfM-MVS offers an alternative workflow for processing historical imagery [24,25,26,27]. SfM-MVS is more automated when compared to conventional photogrammetry, and while the processing principles remain the same, the sequence of processing is different. The raw aerial photographs are matched together based on the identification of key points within the images. If the same key point is found in several images, it is classed as a tie point and is used to solve the relative orientation. A bundle adjustment can then be performed, before a dense point cloud is generated, which can be gridded and saved as a DEM. An important distinction between the SfM-MVS and conventional photogrammetry methods relates to how GCPs are handled. SfM-MVS only requires a minimum of three GCPs per project as opposed to per image, and the GCPs can be added directly onto individual images or onto the orthorectified mosaic of all images. This reduces the amount of manual work required in processing sets of imagery and also mitigates the aforementioned problem of finding GCPs on images with little stable terrain. SfM-MVS is also less dependent on the initial camera calibration parameters, with the software able to estimate much of the inner orientation.

As such, SfM-MVS has increased the usability of archives of historical imagery [24,25], and has permitted the extraction of DEMs from otherwise complicated aerial surveys [26,28,29]. SfM-MVS has been used to process historical imagery to investigate glacier changes [25,29], measure rockfall volumes [30], study the morphology of volcanoes [31], quantify rates of cliff erosion [32], and assess river flood-plain systems [33,34].

Differencing of multi-temporal DEMs allows changes in surface elevation and volume to be quantified [35,36]. This is useful within many fields of geoscience such as glaciology [37,38,39,40], landslides [41,42,43,44,45], and fluvial and coastal geomorphology [33,46]. DEM-derived volume changes are also useful for calibrating and validating glacier mass-balance models [47], characterising landslide dams [48,49], and modelling landslide-induced tsunamis [50]. As a prerequisite to calculating elevation changes, it is necessary to first co-register the DEMs. This is typically done by examining elevation biases over stable terrain (i.e. terrain not affected by mass movements, glacial, fluvial, or other processes) where one would expect to see no changes in elevation over time. Several methods exist for co-registering DEMs and/or point clouds [51,52,53,54], although a comparison by Paul et al. [55] found that the most computationally effective and accurate method was that by Nuth and Kääb [53]. This method compares slope normalised elevation differences over stable ground with the aspect in order to derive the necessary shifts in X, Y, and Z dimensions. Once a pair of DEMs is co-registered, then changes in surface elevation and volume can be extracted.

In this study, we apply SfM-MVS photogrammetry on two sets of historical aerial photographs over the Rissa quick clay landslide, in order to generate pre- and post-landslide DEMs from 1964 and 1978, respectively. Based on this we derive the first geodetic volume estimate of the 1978 Rissa landslide and assess topographic and planimetric dimensions of the landslide.

2 Study area

The Rissa landslide occurred on April 29, 1978 on the southern end of the Botn inland fjord approximately 25 km northwest of the city of Trondheim in central Norway (Figure 1). Botn is connected to the sea through the river Straumen, which during high tides brings sea water into the lake, making it brackish. The maximum depth of the lake is measured to be ∼36 m [56]. Most of the superficial deposits around the lake are mapped to be marine deposits (mainly clay and silt), and the marine limit is estimated to be 160 m a.s.l. [57].

Figure 1 
               Location of the study area within central Norway (a) and within Trøndelag county (b). The setting of the Rissa landslide and the spatial extent of the aerial photography (c). Background sources are natural earth data (a), Sentinel-2 2019 mosaic (b), and 2018 Norge i bilder imagery (c). The imagery for (b) and (c) were accessed through ArcGIS online.
Figure 1

Location of the study area within central Norway (a) and within Trøndelag county (b). The setting of the Rissa landslide and the spatial extent of the aerial photography (c). Background sources are natural earth data (a), Sentinel-2 2019 mosaic (b), and 2018 Norge i bilder imagery (c). The imagery for (b) and (c) were accessed through ArcGIS online.

The Rissa slide was the largest quick clay landslide to occur in Norway in the last century and covered 0.33 km2 with volume estimates ranging from 5 to 6 million m³ of quick clay [12,13]. The slide consisted of two stages. The initial stage has been linked to excavation work on a farm along the shoreline and covered an area of 25–30,000 m2. A second larger slide was then triggered which propagated to the mountainside, covering an area of 330,000 m2 in total [12,13]. One person was killed during this event, and in total seven farms and five houses were destroyed by the landslide [13]. The landslide also caused a tsunami, which hit the village Leira ∼5 km northeast of the slide area and caused damage to houses and infrastructure [6,12]. Apart from the Rissa landslide area, several stretches around the lake are mapped as potential quick clay zones [58,59]. Today, the landslide scar has been restored to farmland.

3 Data

Two sets of archived aerial photographs from 1964 (pre-landslide – ten images with a scale of 1:15,000) and 1978 (post-landslide – six images with a scale of 1:6,000) were delivered digitally from the Norwegian Mapping Authorities. The 1964 images were part of a routine acquisition, while the 1978 images were taken specifically to capture the landslide. An orthorectified 10 cm resolution Red-Green-Blue (RGB) orthophotomosaic from 2018 was downloaded through the Norge i bilder portal, which was used as a reference dataset along with a 25 cm gridded airborne LiDAR digital terrain model (DTM) from 2018 accessed through the Norwegian Høydedata service. The data used in this study are summarised in Table 1. The 1978 imagery was taken at a lower flying height specifically targeting the landslide. As such it has a finer scale than the 1964 aerial photographs but has a reduced spatial coverage. This meant that the majority of the stable terrain used to co-register the DEMs was found on the west of the landslide, while a smaller area was found on the east.

Table 1

Data used in this study

Date Sensor/platform Scale/resolution (m) Data type
13/07/1964 Aerial photographs 1:15,000 Black and white
22/05/1978 Aerial photographs 1:6,000 Black and white
12/05/2018 Aerial photographs 0.1 RGB
21/05/2018 LiDAR DSM 0.25 Gridded LiDAR DSM

4 Methods

4.1 Photogrammetric processing, co-registration, and volume estimation

Two sets of historical aerial photographs were ingested into Agisoft MetaShape 1.6.2. The same procedure was followed for both image sets. The camera frame information was masked out for each image, the fiducial markers automatically detected, and the camera calibration (fiducial marker location in image coordinates and the radial lens distortion) were entered into the software. The remainder of the aerial photography processing was mostly automatic with the processing parameters set to “Ultra High” for each step within the software. Points of noticeable image contrast, or “key points” were identified and matched between each set of images to solve the relative orientations. Any point with a reconstruction uncertainty of 15 or a reprojection error greater than 1 pixel was removed. This resulted in a dense cloud with a point density of 5 and 13 points per m2 for the 1964 and 1978 datasets, respectively. The resulting point cloud was then meshed before being converted into a gridded DEM. The aerial photographs were then orthorectified and mosaicked together. Using the 2018 aerial photography and LiDAR digital surface model (DSM), several GCPs (30 for the 1964 imagery and 19 for the 1978 imagery) were added onto the orthophotomosaic to solve the exterior orientation. In total, the GCPs had root mean square errors (RMSEs) of 6.9 and 3.3 pixels for the 1964 and 1978 datasets, respectively. The orthomosaicked images were exported at 0.2 m resolution and the DEMs at 0.5 m resolution. The DEMs were filtered to produce DTMs as opposed to DSMs using the DSM2DTM tool within Catalyst Professional setting an object size to 30 m and a gradient threshold of 30°. Bumps and pits were removed from the DTMs using a 7 × 7 moving window filter with a gradient threshold of 5°. Finally, a 5 × 5 median filter was used to smooth each DTM. The filtering was successful at removing buildings and sparse vegetation, although some patches of forest remained.

The two DTMs were co-registered using the method of Nuth and Kääb [53] applied on stable pixels, i.e. those not affected by the landslide, but also excluding water, and areas of poor image contrast where DTM values are most likely erroneous, such as shadows and dense forest. The co-registration was repeated six times, until the improvement of the co-registration was less than 2%, as suggested by Nuth and Kääb [53]. The surface elevation change was smoothed using a 3 × 3 median filter. Lastly, the mean elevation change as well as the volume change within the slide area was calculated.

A combination of the mosaicked images, the hillshade model from the post-landslide DTM, and the surface elevation changes was used to guide the manual digitisation of the landslide area. The top of the scarp was especially noticeable in both the hillshade model and the orthophotomosaic from 1978 (Figure 2). As we did not have sufficient post-landslide elevation data over the portion of the lake affected by the landslide, we set these pixels to the mean elevation of the shoreline (0.6 m a.s.l.).

Figure 2 
                  Orthophotomosaics from 1964 and 1978 for two locations that were affected by the Rissa landslide. The yellow line indicates the landslide outline.
Figure 2

Orthophotomosaics from 1964 and 1978 for two locations that were affected by the Rissa landslide. The yellow line indicates the landslide outline.

4.2 Accuracy assessment

Errors from volume change assessments can be either systematic, i.e. relating to the co-registration of the DEMs, or stochastic, i.e. relating to the accuracy of the DEMs themselves. We quantified the uncertainty in the analysis in two ways, first, we assessed the elevation biases between the 1964 and 1978 DEMs on terrain that was assumed to be stable and not have undergone any elevation changes. Second, we independently co-registered both the DEMs we created to the 2018 LiDAR DTM in order to establish the absolute accuracy of our elevation products. In both cases, we assessed a range of statistics including the mean elevation bias, the standard deviation, and the RMSE. The RMSE gives larger errors a higher weighting than smaller errors and is the standard methodology for ascertaining DEM uncertainty. Some studies have highlighted that the RMSE is typically computed using a limited amount of data points [60,61]; however, in our case we used over 30,000 data points.

The uncertainty of the volume change ( E Δ v i ) was determined by considering the standard error (SE) weighted by the hypsometry of the landslide. In the absence of a well-documented error assessment method applicable to landslide volume estimates, we followed the steps set out by Gardelle et al. [62] and Falaschi et al. [63] who applied them on glacier elevation changes. The SE is derived using the standard deviation over stable terrain (SDSTABLE) and the number of independent pixels included in the DEM differencing (n):

(1) SE =   SD STABLE n ,

where n depends on the original number of pixels (N tot), the pixel size (PS), and spatial autocorrelation (d):

(2) n =   N tot PS 2 d ,

Following Bolch et al. [64] we estimated d as 20 pixels, i.e. 10 m. We calculated the SE for each 10 m elevation band and multiplied it by the area of the landslide in that band in order to determine the volume uncertainty. These were then summed up to calculate the total volume change uncertainty (Ev i ):

(3) E Δ v i = i n SE × A i .

We also accounted for the error in the DSM to DTM filtering (Ev filt) by including the difference between the volume change with filtering and the volume change without filtering. This resulted in an additional error term of 0.08 km3 (80,000,000 m3) which was added to the EV to form the total volume change uncertainty, (Ev):

(4) E Δ v = E Δ v i + ( E Δ v filt ) .

Lastly, in order to derive a vertical accuracy (EΔh), we divided this error term by the area.

5 Results and discussion

The Rissa landslide was typically 220–300 m wide and extended approximately 1 km in southwest–northeast direction. Several farm buildings have been either displaced or destroyed in the event (Figure 2). One area of the shoreline of the lake retreated ∼150 m inland. In total, the landslide covered an area of 364,940 m2 (0.36 km2) as measured on the aerial photography, including the land that fell into the lake in 1978.

The Rissa landslide, as measured by the difference between the two DTMs, had a geodetic volume of 2.53 ± 0.52 × 106 m3. Up to 20 m were vertically excavated at the eastern side of the landslide, falling to 4–6 m at the edge of the lake (Figure 3). The flanks of the landslide were very prominent on all sides, with typically a change in elevation of ∼5 m. The mean slope for the area that failed was 11.9° in 1964. The majority of surface elevation change happened in the centre of the slide area with some areas dropping by 20 m. The surface dropped by an average of 6.93 ± 0.82 m.

Figure 3 
               (a) Surface elevation changes between 1964 and 1978. Two profiles (X–X′, Y–Y′) that transects the landslide are shown in (b) and (c). Profile Y–Y′ overlays the area of greatest surface elevation changes, where the surface dropped by up to 20 m. The result from transect Z is shown in Figure 5.
Figure 3

(a) Surface elevation changes between 1964 and 1978. Two profiles (XX′, YY′) that transects the landslide are shown in (b) and (c). Profile YY′ overlays the area of greatest surface elevation changes, where the surface dropped by up to 20 m. The result from transect Z is shown in Figure 5.

In the delineation of the landslide area we included the north western part close to the shoreline of the lake since obvious changes were visible in the 1978 photographs and the corresponding DTM. This area, however, shows a gain in elevation (<3 m), indicating that landslide material was deposited (Figure 3). This is in line with the findings from Gregersen [13], who reported that during the second stage of the sliding, the mass started moving in the direction of the terrain slope, and not towards the lake.

5.1 Uncertainty of DTMs and DTM differencing

Both the standard deviation and mean elevation change over stable terrain can be used as a first estimate of the uncertainty of a DTM; however, it can significantly overestimate the error as spatial correlation is not considered [65,66]. This is especially true in our case, where elevation biases are typically <0.5 m on gently sloping terrain with high image contrast (such as farmland and bare soil), where the majority of the landslide occurred, and elevation biases are larger (5–10 m) over steep terrain, or in areas of low image contrast, such as forests or shadows. For comparisons between the historical DTMs and the LiDAR data, as well as between the two historical DTMs, the standard deviation over stable ground was <2 m (Table 2). Both the historical DTMs are positively skewed against the LiDAR DTM, while the 1964 DTM is strongly negatively skewed relative to the 1978 DTM. E V is most likely a better estimate of our volume change uncertainty, as it considers the hypsometry of the landslide, i.e. the majority of the surface elevation change occurred on gently sloping terrain with lower elevation biases. Our estimate of the vertical uncertainty (Eh) in our surface elevation change calculation is 0.8 m.

Table 2

Metrics for assessing the accuracy of the two DTMs produced as well as the elevation change between them. The accuracies for the 1964 and 1978 DTMs were calculated based on comparison with the 2018 LiDAR DTM on stable terrain. The inter-comparison of the 1964 and 1978 DTMs was based on stable ground

DEM of difference Mean deviation (m) SD (m) Skewness (m) RMSE (m) Elevation change uncertainty, Eh (m)
1964–2018 0.06 1.27 0.87 1.39
1978–2018 0.08 1.34 1.60 0.31
1964–1978 0.01 1.21 0.47 0.24 0.52

When comparing the DTMs to the 2018 LiDAR DTM, the 1964 and 1978 DTMs have mean elevation bias over stable ground of −0.06 and −0.08 m, with standard deviations of 1.27 and 1.34 m, respectively. The mean elevation changes in stable ground between the two DTMs is even lower (−0.01 m) with a standard deviation of 1.21 m. If the elevation biases are assumed to be distributed normally, then 95% of the stable ground elevation biases are <1.47 m (Figure 4). This indicates that the systematic errors relating to DEM co-registration are minimal in our analysis. A degree of uncertainty in the accuracy values might be associated with the circumstance that the reference LiDAR DTM was acquired several decades after the aerial photographs. Thus, even the area assumed to be stable ground may have undergone minor changes, such as building construction or vegetation change. This most likely explains the skewing of our results and indicates that our accuracy assessment is most likely too conservative. The accuracy and precision of the DTMs based on historical imagery is heavily dependent on the flying height, scanning spatial resolution (dots per inch), and radiometric resolution [67]. In our case, the photographs were digitised professionally by Kartverket and no scanning artefacts were visible, and the flying height allowed sub-metre DTMs to be produced, although in cases of poorer image quality we would not expect such precise results.

Figure 4 
                  Plotted elevation biases calculated by comparison with the 2018 LiDAR DTM over stable ground for the 1964 and 1978 DTMs. The inter-comparison between the 1964 and 1978 DTMs is also shown.
Figure 4

Plotted elevation biases calculated by comparison with the 2018 LiDAR DTM over stable ground for the 1964 and 1978 DTMs. The inter-comparison between the 1964 and 1978 DTMs is also shown.

5.2 Comparison with other studies

Our geodetic estimate of the Rissa landslide volume (2.53 ± 0.52 × 106 m3) varies considerably from existing estimates. A volume of 4.4–5.8 × 106 m3 was estimated by L’Heureux et al. [12], which was based on bathymetric data in order to examine the morphology of the landslide deposits and combine it with an estimate of the deposit depth based on seismic data. Gregersen [13] estimated a total landslide volume of 5–6 × 106 m3 but did not specify how this number was determined. The areal extent of the landslide as determined by this study (0.36 km²) is however very similar to that demarked by Gregersen 0.33 km2 [13]. A recent study modelled the Rissa landslide based on the post-event topography and bathymetry, and modelled the resulting tsunami [6]. Although the scope of their research was different from ours, part of their analysis involved estimating the thickness of the material that slid into the lake. They showed a maximum thickness of 18 m, which corresponds well with our maximum measured surface elevation change of 20 m.

We digitised the profile and volumetric zones presented by Gregersen [13] in order to compare his results to our own (Figure 5 and Table 3). In both cases it is clear that our estimates are noticably smaller than those reported by Gregersen [13]. When we calculated the mean surface elevation change per volumetric zone reported by Gregersen [13], it is noticable that our results are smaller by 25.05–64.94% (Table 3).

Figure 5 
                  Comparison between (a) the transect after Gregersen [13] across the landslide and (b) the surface elevation change derived from the comparison of the photogrammetric DEMs generated in this study. The house visible on “a” is left unfiltered on “b” for reference. Note that the terrain data shown in (b) is a DSM to include the buildings. The position of the lake in 1978 is shown with a blue dashed line.
Figure 5

Comparison between (a) the transect after Gregersen [13] across the landslide and (b) the surface elevation change derived from the comparison of the photogrammetric DEMs generated in this study. The house visible on “a” is left unfiltered on “b” for reference. Note that the terrain data shown in (b) is a DSM to include the buildings. The position of the lake in 1978 is shown with a blue dashed line.

Table 3

Comparison between the volumes reported by Gregersen [13] and the geodetic surface elevation change derived from this study

Volumetric range (derived from Gregersen [13] (m) Mid-point of volumetric range (m) Mean surface elevation change (this study) (m) Percentage deviation (%)
0 to −5 −2.5 −0.88 −64.96
−5 to −10 −7.5 −4.71 −37.23
−10 to −15 −12.5 −9.37 −25.05
>(−15) −15.0 −8.80 −34.70

This leads us to infer that the landslide was correctly delineated, yet the disparity in analysis could stem from the different methods for volume calculation. Our geodetic approach does not account for material that was deposited in the landslide area. We calculated the surface volume change based on the difference between the pre- and post-event DTMs, while the actual slip surface was at least partly covered by the deposited material and thus likely lower than the surface as represented by the post-event DTM.

Moreover, our geodetic volume estimation does not fully account for the parts of the landslide that occurred within Rissa-Botn lake which can partly explain the difference between our results and previous estimates. Our results show that at the northern front of the landslide – at the shore of the lake – there are elevation changes between −7 and −10 m. It can therefore be expected that a portion of the landslide failure occurred underwater.

In order to fully quantify the Rissa landslide, it is necessary to cover both the areas where clay was removed and where it was deposited. As such combined multi-temporal and high-resolution topography and bathymetry datasets would be ideal to get an overall picture of the total volume changes [68]. However, since the landslide entered the lake it is not possible to apply the same method for estimating the volume on land and below the water, i.e. analysing the depletion zone and the accumulation zone in one step. This is an additional reason why a direct comparison of our calculated volume, i.e. the removed material, with the existing volume estimation by L’Heureux et al. [12], i.e. the accumulated material, is difficult, even when accounting for an underestimation of our volume calculation. Furthermore, apart from potential technical and methodological limitations, additional factors such as reworking of the slide material during movement [41,69,70] and erosional and depositional processes that shape the deposited material [6] – the bathymetry data was acquired more than three decades after the landslide – may contribute to differences in volume estimations. We also believe that our remote sensing-based elevation changes could be useful in calibrating models of landslides and their resulting tsunamis (for example, Liu et al. [6]).

5.3 Use of SfM-MVS for determining historical landscape change

Our analysis has demonstrated that it is possible to efficiently process historical aerial images to produce high precision and highly accurate DTMs with RMSEs between 1.44 and 1.79 m using a mostly automated workflow, and subsequently quantify the geodetic volume of the Rissa 1978 landslide.

Our study adds to the growing amount of literature using SfM-MVS to process historical aerial photography in order to investigate landscape changes over time. In our case, the landslide covered the majority of two of the 1978 aerial photographs, making it very difficult to identify features distributed over the imagery to be used as GCPs, as required by conventional photogrammetry.

As such, SfM-MVS is well suited for studying the landscape changes related to landslides, volcanoes, glaciers, or river systems where the changes can take up a large proportion of individual images. Additionally, as SfM-MVS requires much less user input than conventional photogrammetry techniques it is possible to efficiently process huge datasets. Given the extensive archives of aerial photography that exist for many regions, there is a large potential for assessing changes in landscapes over extensive spatial and temporal scales using SfM-MVS.

6 Conclusion

This study derived a geodetic volume of the 1978 Rissa landslide of 2.53 ± 0.52 × 106 m3 with drops in surface elevation of up to 20 m, and a mean surface lowering of 6.93 ± 0.82 m. The actual landslide volume calculated is underestimated due to the challenges remaining in the computation of such landslide volumes. A large portion of the landslide failure occurred underwater, and additionally, we could not account for material deposited in the landslide area. However, our study provides an updated estimate of the landslide considering the stochastic and systematic uncertainties. Our chosen workflow was largely automated and the DTMs produced were both precise and accurate when compared to a reference dataset, which can help quantify and understand quick clay landslides in high-resolution. As such, we can recommend SfM-MVS for processing large datasets of historical imagery in order to quantify landscape changes over large spatial and temporal scales. Such high-resolution volume estimates of quick clay landslides are necessary to better comprehend their development, and model their impacts, such as the triggering of tsunami waves. Knowledge derived from the analysis of historical aerial images can fill critical information gaps and provide useful information for hazard and risk analysis.

Acknowledgements

This research is an initiative of the Remote Sensing of Earth Surface Dynamics (RSESD) research group. We are thankful to Kartverket for the provision of aerial photography and LiDAR data. Thanks to the three reviewers for constructive feedback on how to improve this article.

  1. Funding information: This study was partially supported by the Austrian Research Promotion Agency (FFG) in the Austrian Space Applications Program (ASAP) through the project SliDEM (contract number: 885370). Additionally, D. Hölbling has been partly supported by the Austrian Science Fund (FWF) through the project MORPH (FWF-P29461-N29). B. Robson, D. Hölbling, and M. Koller were supported by a mobility grant provided by Equinor through the Akademiaavtalen programme.

  2. Conflict of interest: The authors declare that they have no conflict of interest.

  3. Data availability statement: DEMs generated from the aerial photography are available on request

References

[1] Torrance JK. Towards a general model of quick clay development. Sedimentology. 1983;30:547–55.10.1111/j.1365-3091.1983.tb00692.xSearch in Google Scholar

[2] Geertsema M, Blais-Stevens A, Kwoll E, Menounos B, Venditti JG, Grenier A, et al. Sensitive clay landslide detection and characterization in and around Lakelse Lake, British Columbia, Canada. Sediment Geol. 2018;364:217–27.10.1016/j.sedgeo.2017.12.025Search in Google Scholar

[3] Thakur V, L’Heureux J-S, Locat A. Landslide in sensitive clays – from research to implementation. Advances in Natural and Technological Hazards Research. Vol. 46. Netherlands: Springer; 2017. p. 1–11.10.1007/978-3-319-56487-6_1Search in Google Scholar

[4] Nadim F, Pedersen SAS, Schmidt-Thome P, Sigmundsson F, Engdahls M. Natural hazards in Nordic countries. Episodes, 2008;31:176–84.10.18814/epiiugs/2008/v31i1/024Search in Google Scholar

[5] Hansen L, Eilertsen RS, Solberg I-L, Sveian H, Rokoengen K. Facies characteristics, morphology and depositional models of clay-slide deposits in terraced fjord valleys, Norway. Sediment Geol. 2007;202:710–29.10.1016/j.sedgeo.2007.08.004Search in Google Scholar

[6] Liu Z, L’Heureux JS, Glimsdal S, Lacasse S. Modelling of mobility of Rissa landslide and following tsunami. Comput Geotech. 2021;140:104388.10.1016/j.compgeo.2021.104388Search in Google Scholar

[7] Hermanns RL, Hansen L, Sletten K, Böhme M, Bunkholt H, Dehls JF, et al. Systematic geological mapping for landslide understanding in the Norwegian context. In: Eberhardt E, Froese C, Turner AK, Leroueil S, editors. Landslides and engineered slopes: protecting society through improved understanding. Taylor & Francis Group; 2012. p. 265–71.Search in Google Scholar

[8] Havnen I, Ottesen HB, Haugen ED, Frekhaug MH. Quick-Clay Hazard mapping in Norway Advances in natural and technological hazards research. Vol. 46. Netherlands: Springer; 2017. p. 581–91.10.1007/978-3-319-56487-6_50Search in Google Scholar

[9] Le TMH, Gjelsvik V, Lacasse S, Strand SA, Traae E, Thakur V. Forensic geotechnical investigation of the skjeggestad quick clay landslide, Norway. In: Vilímek V, Wang F, Strom A, Sassa K, Bobrowsky PT, Takara K, editors. Understanding and reducing landslide disaster risk. WLF 2020. ICL contribution to landslide disaster risk reduction. Cham: Springer; 2021.10.1007/978-3-030-60319-9_31Search in Google Scholar

[10] Donohue S, Long M, Peter O, Helle TE, Pfaffhuber AA, Rømoen M. Multi-method geophysical mapping of quick clay. Near Surf Geophys. 2012;10:207–19.10.3997/1873-0604.2012003Search in Google Scholar

[11] L’Heureux JS. A study of the retrogressive behaviour and mobility of Norwegian quick clay landslides. Landslides and Engineered Slopes: Protecting Society through Improved Understanding - Proceedings of the 11th International and 2nd North American Symposium on Landslides and Engineered Slopes, 2012; 2012. p. 981–8.Search in Google Scholar

[12] L’Heureux J-S, Eilertsen RS, Glimsdal S, Issler D, Solberg IL, Harbitz CB. The 1978 quick clay landslide at Rissa, Mid Norway: Subaqueous Morphology and Tsunami Simulations. In: Yamada Y, et al. (eds.), Submarine mass movements and their consequences. Advances in natural and technological hazards research, vol 31. Dordrecht: Springer; 2012.10.1007/978-94-007-2162-3_45Search in Google Scholar

[13] Gregersen O. The quick clay landslide in Rissa. Norway Nor Geotech Inst Publ. 1981;135:1–6.Search in Google Scholar

[14] Holmsen P. Landslips in Norwegian quick clays. Géotechnique. 1953;3:187–94.10.1680/geot.1953.3.5.187Search in Google Scholar

[15] L’Heureux J-S, Nordal S, Austefjord SW. Revisiting the 1959 quick clay landslide at Sokkelvik, Norway. In: Thakur V, L’Heureux JS, Locat A, editors. Landslides in sensitive clays. Advances in natural and technological hazards research, vol 46. Cham: Springer; 2017.10.1007/978-3-319-56487-6_35Search in Google Scholar

[16] Nordal S, Alén C, Emdal A, Jendeby L, Lyche E, Madshus C. Skredet i Kattmarkvegen i Namsos 13 mars 2009 Rapport fra undersøkelsesgruppe satt ned av Samferdselsdepartementet Institutt for Bygg, Anlegg og Transport, Faggruppe for Geoteknikk, NTNU [In Norwegian]; 2009.Search in Google Scholar

[17] NVE. Kvikkleireskredet i Alta: NVE undersøker grunnforholdene - NVE. https://www.nve.no/nytt-fra-nve/nyheter-skred-og-vassdrag/kvikkleireskredet-i-alta-nve-undersoker-grunnforholdene/, 2020.Search in Google Scholar

[18] Olsen JM. Rescuers in Norway lose hope of finding landslide survivors. ABC News. New York. USA: 2021. Available at https://abcnews.go.com/International/wireStory/dog-found-alive-raises-hopes-deadly-norway-landslide-75051419. [Accessed January 11, 2021].Search in Google Scholar

[19] Hölbling D, Betts H, Spiekermann R, Phillips C. Identifying spatio-temporal landslide hotspots on North Island, New Zealand, by analyzing historical and recent aerial photography. Geosciences. 2016;6:48.10.3390/geosciences6040048Search in Google Scholar

[20] Kartverket. Sentralarkiv for flyfoto og satellittbilder | Kartverket. https://www.kartverket.no/geodataarbeid/Flyfoto/Sentralarkiv-for-flyfoto/, 2019.Search in Google Scholar

[21] Walstra J, Chandler JH, Dixon N, Dijkstra TA. Time for change - quantifying landslide evolution using historical aerial photographs and modern photogrammetric methods. Int Arch Photogramm Remote Sens Spat Inf Sci. 2004;35:475–80.Search in Google Scholar

[22] Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM. “Structure-from-Motion” photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology. 2012;179:300–14.10.1016/j.geomorph.2012.08.021Search in Google Scholar

[23] Smith MW, Carrivick JL, Quincey DJ. Structure from motion photogrammetry in physical geography. Prog Phys Geogr Earth Environ. 2016;40:247–75.10.1177/0309133315615805Search in Google Scholar

[24] Seccaroni S, Santangelo M, Marchesini I, Mondini A, Cardinali M. High resolution historical topography: getting more from archival aerial photographs. Proceedings. 2018;2:347.10.3390/ecrs-2-05160Search in Google Scholar

[25] Mölg N, Bolch T. Structure-from-motion using historical aerial images to analyse changes in glacier surface elevation. Remote Sens. 2017;9:1021.10.3390/rs9101021Search in Google Scholar

[26] Mertes JR, Gulley JD, Benn DI, Thompson SS, Nicholson LI. Using structure-from-motion to create glacier DEMs and orthoimagery from historical terrestrial and oblique aerial imagery. Earth Surf Process Landforms. 2017;42:2350–64.10.1002/esp.4188Search in Google Scholar

[27] Gomez C, Hayakawa Y, Obanawa H. A study of Japanese landscapes using structure from motion derived DSMs and DEMs based on historical aerial photographs: New opportunities for vegetation monitoring and diachronic geomorphology. Geomorphology. 2015;242:11–20.10.1016/j.geomorph.2015.02.021Search in Google Scholar

[28] Girod L, Nielsen NI, Couderette F, Nuth C, Kääb A. Precise DEM extraction from Svalbard using 1936 high oblique imagery. Geosci Instrum, Methods Data Syst. 2018;7:277–88.10.5194/gi-7-277-2018Search in Google Scholar

[29] Holmlund ES, Holmlund P. Constraining 135 years of mass balance with historic structure-from-motion photogrammetry on Storglaciären, Sweden. Geogr Ann Ser A, Phys Geogr. 2019;101:195–210.10.1080/04353676.2019.1588543Search in Google Scholar

[30] Guerin A, Stock GM, Radue MJ, Jaboyedoff M, Collins BD, Matasci B, et al. Quantifying 40 years of rockfall activity in Yosemite Valley with historical Structure-from-Motion photogrammetry and terrestrial laser scanning. Geomorphology. 2020;356:107069.10.1016/j.geomorph.2020.107069Search in Google Scholar

[31] Derrien A, Peltier A, Villeneuve N, Staudacher T. The 2007 caldera collapse at Piton de la Fournaise: new insights from multi-temporal structure-from-motion. Volcanica. 2020;3:55–65.10.30909/vol.03.01.5565Search in Google Scholar

[32] Warrick JA, Ritchie AC, Adelman G, Adelman K, Limber PW. New techniques to measure cliff change from historical oblique aerial photographs and structure-from-motion photogrammetry. J Coast Res. 2017;33:39.10.2112/JCOASTRES-D-16-00095.1Search in Google Scholar

[33] Spiekermann R, Betts H, Dymond J, Basher L. Volumetric measurement of river bank erosion from sequential historical aerial photography. Geomorphology. 2017;296:193–208.10.1016/j.geomorph.2017.08.047Search in Google Scholar

[34] Bakker M, Lane SN. Archival photogrammetric analysis of river-floodplain systems using Structure from Motion (SfM) methods. Earth Surf Process Landforms. 2017;42:1274–86.10.1002/esp.4085Search in Google Scholar

[35] Williams RD. DEMs of difference. In: Cook SJ, Clarke LE, Nield JM, editors. Geomorphological techniques (Online Edition). London, UK: British Society for Geomorphology; 2012.Search in Google Scholar

[36] James LA, Hodgson ME, Ghoshal S, Latiolais MM. Geomorphic change detection using historic maps and DEM differencing: The temporal dimension of geospatial analysis. Geomorphology. 2012;137:181–98.10.1016/j.geomorph.2010.10.039Search in Google Scholar

[37] Robson BA, Nuth C, Nielsen PR, Girod L, Hendrickx M, Dahl SO. Spatial variability in patterns of glacier change across the manaslu range, central Himalaya. Front Earth Sci. 2018;6:12.10.3389/feart.2018.00012Search in Google Scholar

[38] Andreassen LM, Elvehøy H, Kjøllmoen B, Engeset RV. Reanalysis of long-term series of glaciological and geodetic mass balance for 10 Norwegian glaciers. Cryosph. 2016;10:535–52.10.5194/tc-10-535-2016Search in Google Scholar

[39] Deschamps-Berger C, Nuth C, Van Pelt W, Berthier E, Kohler J, Altena BAS. Closing the mass budget of a tidewater glacier: the example of Kronebreen, Svalbard. J Glaciol. 2019;65:136–48.10.1017/jog.2018.98Search in Google Scholar

[40] Braun MH, Malz P, Sommer C, Farías-Barahona D, Sauter T, Casassa G, et al. Constraining glacier elevation and mass changes in South America. Nat Clim Chang. 2019;9:130–6.10.1038/s41558-018-0375-7Search in Google Scholar

[41] Turner D, Lucieer A, de Jong S. Time Series analysis of landslide dynamics using an unmanned aerial vehicle (UAV). Remote Sens. 2015;7:1736–57.10.3390/rs70201736Search in Google Scholar

[42] Ventura G, Vilardo G, Terranova C, Sessa EB. Tracking and evolution of complex active landslides by multi-temporal airborne LiDAR data: The Montaguto landslide (Southern Italy). Remote Sens Environ. 2011;115:3237–48.10.1016/j.rse.2011.07.007Search in Google Scholar

[43] Tang C, Tanyas H, van Westen CJ, Tang C, Fan X, Jetten VG. Analysing post-earthquake mass movement volume dynamics with multi-source DEMs. Eng Geol. 2019;248:89–101.10.1016/j.enggeo.2018.11.010Search in Google Scholar

[44] Dewitte O, Jasselette JC, Cornet Y, Van Den Eeckhaut M, Collignon A, Poesen J, et al. Tracking landslide displacements by multi-temporal DTMs: a combined aerial stereophotogrammetric and LIDAR approach in western Belgium. Eng Geol. 2008;99(1–2):11–22.10.1016/j.enggeo.2008.02.006Search in Google Scholar

[45] Dabiri Z, Hölbling D, Abad L, Helgason JK, Sæmundsson Þ, Tiede D. Assessment of landslide-induced geomorphological changes in Hítardalur Valley, Iceland, using Sentinel-1 and Sentinel-2. Data Appl Sci. 2020;10:5848.10.3390/app10175848Search in Google Scholar

[46] Chen B, Yang Y, Wen H, Ruan H, Zhou Z, Luo K, et al. High-resolution monitoring of beach topography and its change using unmanned aerial vehicle imagery. Ocean Coast Manag. 2018;160:103–16.10.1016/j.ocecoaman.2018.04.007Search in Google Scholar

[47] Kronenberg M, Barandun M, Hoelzle M, Huss M, Farinotti D, Azisov E, et al. Mass-balance reconstruction for Glacier No. 354, Tien Shan, from 2003 to 2014. Ann Glaciol. 2016;57:92–102.10.3189/2016AoG71A032Search in Google Scholar

[48] Brideau MA, Shugar DH, Bevington AR, Willis MJ, Wong C. Evolution of the 2014 Vulcan Creek landslide-dammed lake, Yukon, Canada, using field and remote survey techniques. Landslides. 2019;16(10):1823–40.10.1007/s10346-019-01199-3Search in Google Scholar

[49] Korup O. Geomorphic hazard assessment of landslide dams in South Westland, New Zealand: Fundamental problems and approaches. Geomorphology. 2005;66:167–88.10.1016/j.geomorph.2004.09.013Search in Google Scholar

[50] Higman B, Shugar DH, Stark CP, Ekström G, Koppes MN, Lynett P, et al. The 2015 landslide and tsunami in Taan Fiord, Alaska. Sci Rep. 2018;8(1):1–12.10.1038/s41598-018-30475-wSearch in Google Scholar PubMed PubMed Central

[51] Miller P, Mills J, Edwards S, Bryan P, Marsh S, Mitchell H, et al. A robust surface matching technique for coastal geohazard assessment and management. ISPRS J Photogramm Remote Sens. 2008;63:529–42.10.1016/j.isprsjprs.2008.02.003Search in Google Scholar

[52] Berthier E, Arnaud Y, Kumar R, Ahmad S, Wagnon P, Chevallier P, et al. Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sens Environ. 2007;108:327–38.10.1016/j.rse.2006.11.017Search in Google Scholar

[53] Nuth C, Kääb A. Co-registration and bias corrections of satellite elevation datasets for quantifying glacier thickness change. Cryosph. 2011;5:271–90.10.5194/tc-5-271-2011Search in Google Scholar

[54] Alba M, Barazzetti L, Scaioni M, Remondino F. Automatic registration of multiple laser scans using panoramic RGB and intensity images. Int Arch Photogramm Remote Sens Spat Inf Sci. 2012;XXXVIII-5/:49–54.10.5194/isprsarchives-XXXVIII-5-W12-49-2011Search in Google Scholar

[55] Paul F, Bolch T, Kääb A, Nagler T, Nuth C, Scharrer K, et al. The glaciers climate change initiative: methods for creating glacier area, elevation change and velocity products. Remote Sens Environ. 2015;162:408–26.10.1016/j.rse.2013.07.043Search in Google Scholar

[56] L’Heureux JS, Eilertsen RS, Hansen L, Sletten K. Morfologi og skredkartlegging i Botn, Rissa, Sør-Trøndelag. Norges Geologiske Undersøkelse, Rapport 2011.037 (in Norwegian).Search in Google Scholar

[57] Reite AJ. Rissa 1522 II, Kvartærgeologisk kart – M 1:50,000; 1986.Search in Google Scholar

[58] Gregersen O, Eggen A, Korbøl B. Kartlegging av Områder med potensiell fare for kvikkleireskred: Rissa kommune; 1989, http://webfileservice.nve.no/API/PublishedFiles/Download/201601148/2113537.Search in Google Scholar

[59] Gregersen O, Vernang T, Høydal ØA, Paulsen EM. Program for økt sikkerhet i vassdrag: Evaluering av risiko for kvikkleireskred Rissa kommune; 2006, http://webfileservice.nve.no/API/PublishedFiles/Download/201600907/1866891.Search in Google Scholar

[60] Fisher PF, Tate NJ. Causes and consequences of error in digital elevation models. Prog Phys Geogr Earth Environ. 2006;30:467–89.10.1191/0309133306pp492raSearch in Google Scholar

[61] Höhle J, Höhle M. Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J Photogramm Remote Sens. 2009;64:398–406.10.1016/j.isprsjprs.2009.02.003Search in Google Scholar

[62] Gardelle J, Berthier E, Arnaud Y, Kaab A, Kääb A. The Cryosphere. Copernicus. 2013;7:1263–86.10.5194/tc-7-1263-2013Search in Google Scholar

[63] Falaschi D, Lenzano MG, Villalba R, Bolch T, Rivera A, Lo Vecchio A, et al. Six decades (1958–2018) of geodetic glacier mass balance in Monte San Lorenzo, Patagonian Andes. Front Earth Sci. 2019;7:326.10.3389/feart.2019.00326Search in Google Scholar

[64] Bolch T, Pieczonka T, Benn DI. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosph. 2011;5:349–58.10.5194/tc-5-349-2011Search in Google Scholar

[65] Rolstad C, Haug T, Denby B. Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap, Norway. J Glaciol. 2009;55:666–80.10.3189/002214309789470950Search in Google Scholar

[66] Magnússon E, Muñoz-Cobo Belart J, Pálsson F, Ágústsson H, Crochet P. Geodetic mass balance record with rigorous uncertainty estimates deduced from aerial photographs and lidar data – case study from Drangajökull ice cap, NW Iceland. Cryosph. 2016;10:159–77.10.5194/tc-10-159-2016Search in Google Scholar

[67] Seccaroni S, Santangelo M, Marchesini I, Mondini AC, Cardinali M. High resolution historical topography: getting more from archival aerial photographs. Proc 2018. 2018;2:347.10.3390/ecrs-2-05160Search in Google Scholar

[68] Haeussler PJ, Gulick SPS, McCall N, Walton M, Reece R, Larsen C, et al. Submarine deposition of a subaerial landslide in Taan Fiord, Alaska. J Geophys Res Earth Surf. 2018;123:2443–63.10.1029/2018JF004608Search in Google Scholar

[69] Parise M, Guzzi R. Volume and shape of the active and inactive parts of the Slumgullion landslide. Hinsdale County, Colorado. US Department of the Interior, US Geological Survey; 1992.10.3133/ofr92216Search in Google Scholar

[70] Stock JD, Dietrich WE. Erosion of steepland valleys by debris flows. Geol Soc Am Bull. 2006;118:1125–48.10.1130/B25902.1Search in Google Scholar

Received: 2021-09-17
Revised: 2021-12-10
Accepted: 2021-12-28
Published Online: 2022-03-23

© 2022 Benjamin Aubrey Robson et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Regular Articles
  2. Study on observation system of seismic forward prospecting in tunnel: A case on tailrace tunnel of Wudongde hydropower station
  3. The behaviour of stress variation in sandy soil
  4. Research on the current situation of rural tourism in southern Fujian in China after the COVID-19 epidemic
  5. Late Triassic–Early Jurassic paleogeomorphic characteristics and hydrocarbon potential of the Ordos Basin, China, a case of study of the Jiyuan area
  6. Application of X-ray fluorescence mapping in turbiditic sandstones, Huai Bo Khong Formation of Nam Pat Group, Thailand
  7. Fractal expression of soil particle-size distribution at the basin scale
  8. Study on the changes in vegetation structural coverage and its response mechanism to hydrology
  9. Spatial distribution analysis of seismic activity based on GMI, LMI, and LISA in China
  10. Rock mass structural surface trace extraction based on transfer learning
  11. Hydrochemical characteristics and D–O–Sr isotopes of groundwater and surface water in the northern Longzi county of southern Tibet (southwestern China)
  12. Insights into origins of the natural gas in the Lower Paleozoic of Ordos basin, China
  13. Research on comprehensive benefits and reasonable selection of marine resources development types
  14. Embedded deformation of the rubble-mound foundation of gravity-type quay walls and influence factors
  15. Activation of Ad Damm shear zone, western Saudi Arabian margin, and its relation to the Red Sea rift system
  16. A mathematical conjecture associates Martian TARs with sand ripples
  17. Study on spatio-temporal characteristics of earthquakes in southwest China based on z-value
  18. Sedimentary facies characterization of forced regression in the Pearl River Mouth basin
  19. High-precision remote sensing mapping of aeolian sand landforms based on deep learning algorithms
  20. Experimental study on reservoir characteristics and oil-bearing properties of Chang 7 lacustrine oil shale in Yan’an area, China
  21. Estimating the volume of the 1978 Rissa quick clay landslide in Central Norway using historical aerial imagery
  22. Spatial accessibility between commercial and ecological spaces: A case study in Beijing, China
  23. Curve number estimation using rainfall and runoff data from five catchments in Sudan
  24. Urban green service equity in Xiamen based on network analysis and concentration degree of resources
  25. Spatio-temporal analysis of East Asian seismic zones based on multifractal theory
  26. Delineation of structural lineaments of Southeast Nigeria using high resolution aeromagnetic data
  27. 3D marine controlled-source electromagnetic modeling using an edge-based finite element method with a block Krylov iterative solver
  28. A comprehensive evaluation method for topographic correction model of remote sensing image based on entropy weight method
  29. Quantitative discrimination of the influences of climate change and human activity on rocky desertification based on a novel feature space model
  30. Assessment of climatic conditions for tourism in Xinjiang, China
  31. Attractiveness index of national marine parks: A study on national marine parks in coastal areas of East China Sea
  32. Effect of brackish water irrigation on the movement of water and salt in salinized soil
  33. Mapping paddy rice and rice phenology with Sentinel-1 SAR time series using a unified dynamic programming framework
  34. Analyzing the characteristics of land use distribution in typical village transects at Chinese Loess Plateau based on topographical factors
  35. Management status and policy direction of submerged marine debris for improvement of port environment in Korea
  36. Influence of Three Gorges Dam on earthquakes based on GRACE gravity field
  37. Comparative study of estimating the Curie point depth and heat flow using potential magnetic data
  38. The spatial prediction and optimization of production-living-ecological space based on Markov–PLUS model: A case study of Yunnan Province
  39. Major, trace and platinum-group element geochemistry of harzburgites and chromitites from Fuchuan, China, and its geological significance
  40. Vertical distribution of STN and STP in watershed of loess hilly region
  41. Hyperspectral denoising based on the principal component low-rank tensor decomposition
  42. Evaluation of fractures using conventional and FMI logs, and 3D seismic interpretation in continental tight sandstone reservoir
  43. U–Pb zircon dating of the Paleoproterozoic khondalite series in the northeastern Helanshan region and its geological significance
  44. Quantitatively determine the dominant driving factors of the spatial-temporal changes of vegetation-impacts of global change and human activity
  45. Can cultural tourism resources become a development feature helping rural areas to revitalize the local economy under the epidemic? An exploration of the perspective of attractiveness, satisfaction, and willingness by the revisit of Hakka cultural tourism
  46. A 3D empirical model of standard compaction curve for Thailand shales: Porosity in function of burial depth and geological time
  47. Attribution identification of terrestrial ecosystem evolution in the Yellow River Basin
  48. An intelligent approach for reservoir quality evaluation in tight sandstone reservoir using gradient boosting decision tree algorithm
  49. Detection of sub-surface fractures based on filtering, modeling, and interpreting aeromagnetic data in the Deng Deng – Garga Sarali area, Eastern Cameroon
  50. Influence of heterogeneity on fluid property variations in carbonate reservoirs with multistage hydrocarbon accumulation: A case study of the Khasib formation, Cretaceous, AB oilfield, southern Iraq
  51. Designing teaching materials with disaster maps and evaluating its effectiveness for primary students
  52. Assessment of the bender element sensors to measure seismic wave velocity of soils in the physical model
  53. Appropriated protection time and region for Qinghai–Tibet Plateau grassland
  54. Identification of high-temperature targets in remote sensing based on correspondence analysis
  55. Influence of differential diagenesis on pore evolution of the sandy conglomerate reservoir in different structural units: A case study of the Upper Permian Wutonggou Formation in eastern Junggar Basin, NW China
  56. Planting in ecologically solidified soil and its use
  57. National and regional-scale landslide indicators and indexes: Applications in Italy
  58. Occurrence of yttrium in the Zhijin phosphorus deposit in Guizhou Province, China
  59. The response of Chudao’s beach to typhoon “Lekima” (No. 1909)
  60. Soil wind erosion resistance analysis for soft rock and sand compound soil: A case study for the Mu Us Sandy Land, China
  61. Investigation into the pore structures and CH4 adsorption capacities of clay minerals in coal reservoirs in the Yangquan Mining District, North China
  62. Overview of eco-environmental impact of Xiaolangdi Water Conservancy Hub on the Yellow River
  63. Response of extreme precipitation to climatic warming in the Weihe river basin, China and its mechanism
  64. Analysis of land use change on urban landscape patterns in Northwest China: A case study of Xi’an city
  65. Optimization of interpolation parameters based on statistical experiment
  66. Late Cretaceous adakitic intrusive rocks in the Laimailang area, Gangdese batholith: Implications for the Neo-Tethyan Ocean subduction
  67. Tectonic evolution of the Eocene–Oligocene Lushi Basin in the eastern Qinling belt, Central China: Insights from paleomagnetic constraints
  68. Geographic and cartographic inconsistency factors among different cropland classification datasets: A field validation case in Cambodia
  69. Distribution of large- and medium-scale loess landslides induced by the Haiyuan Earthquake in 1920 based on field investigation and interpretation of satellite images
  70. Numerical simulation of impact and entrainment behaviors of debris flow by using SPH–DEM–FEM coupling method
  71. Study on the evaluation method and application of logging irreducible water saturation in tight sandstone reservoirs
  72. Geochemical characteristics and genesis of natural gas in the Upper Triassic Xujiahe Formation in the Sichuan Basin
  73. Wehrlite xenoliths and petrogenetic implications, Hosséré Do Guessa volcano, Adamawa plateau, Cameroon
  74. Changes in landscape pattern and ecological service value as land use evolves in the Manas River Basin
  75. Spatial structure-preserving and conflict-avoiding methods for point settlement selection
  76. Fission characteristics of heavy metal intrusion into rocks based on hydrolysis
  77. Sequence stratigraphic filling model of the Cretaceous in the western Tabei Uplift, Tarim Basin, NW China
  78. Fractal analysis of structural characteristics and prospecting of the Luanchuan polymetallic mining district, China
  79. Spatial and temporal variations of vegetation coverage and their driving factors following gully control and land consolidation in Loess Plateau, China
  80. Assessing the tourist potential of cultural–historical spatial units of Serbia using comparative application of AHP and mathematical method
  81. Urban black and odorous water body mapping from Gaofen-2 images
  82. Geochronology and geochemistry of Early Cretaceous granitic plutons in northern Great Xing’an Range, NE China, and implications for geodynamic setting
  83. Spatial planning concept for flood prevention in the Kedurus River watershed
  84. Geophysical exploration and geological appraisal of the Siah Diq porphyry Cu–Au prospect: A recent discovery in the Chagai volcano magmatic arc, SW Pakistan
  85. Possibility of using the DInSAR method in the development of vertical crustal movements with Sentinel-1 data
  86. Using modified inverse distance weight and principal component analysis for spatial interpolation of foundation settlement based on geodetic observations
  87. Geochemical properties and heavy metal contents of carbonaceous rocks in the Pliocene siliciclastic rock sequence from southeastern Denizli-Turkey
  88. Study on water regime assessment and prediction of stream flow based on an improved RVA
  89. A new method to explore the abnormal space of urban hidden dangers under epidemic outbreak and its prevention and control: A case study of Jinan City
  90. Milankovitch cycles and the astronomical time scale of the Zhujiang Formation in the Baiyun Sag, Pearl River Mouth Basin, China
  91. Shear strength and meso-pore characteristic of saturated compacted loess
  92. Key point extraction method for spatial objects in high-resolution remote sensing images based on multi-hot cross-entropy loss
  93. Identifying driving factors of the runoff coefficient based on the geographic detector model in the upper reaches of Huaihe River Basin
  94. Study on rainfall early warning model for Xiangmi Lake slope based on unsaturated soil mechanics
  95. Extraction of mineralized indicator minerals using ensemble learning model optimized by SSA based on hyperspectral image
  96. Lithofacies discrimination using seismic anisotropic attributes from logging data in Muglad Basin, South Sudan
  97. Three-dimensional modeling of loose layers based on stratum development law
  98. Occurrence, sources, and potential risk of polycyclic aromatic hydrocarbons in southern Xinjiang, China
  99. Attribution analysis of different driving forces on vegetation and streamflow variation in the Jialing River Basin, China
  100. Slope characteristics of urban construction land and its correlation with ground slope in China
  101. Limitations of the Yang’s breaking wave force formula and its improvement under a wider range of breaker conditions
  102. The spatial-temporal pattern evolution and influencing factors of county-scale tourism efficiency in Xinjiang, China
  103. Evaluation and analysis of observed soil temperature data over Northwest China
  104. Agriculture and aquaculture land-use change prediction in five central coastal provinces of Vietnam using ANN, SVR, and SARIMA models
  105. Leaf color attributes of urban colored-leaf plants
  106. Application of statistical and machine learning techniques for landslide susceptibility mapping in the Himalayan road corridors
  107. Sediment provenance in the Northern South China Sea since the Late Miocene
  108. Drones applications for smart cities: Monitoring palm trees and street lights
  109. Double rupture event in the Tianshan Mountains: A case study of the 2021 Mw 5.3 Baicheng earthquake, NW China
  110. Review Article
  111. Mobile phone indoor scene features recognition localization method based on semantic constraint of building map location anchor
  112. Technical Note
  113. Experimental analysis on creep mechanics of unsaturated soil based on empirical model
  114. Rapid Communications
  115. A protocol for canopy cover monitoring on forest restoration projects using low-cost drones
  116. Landscape tree species recognition using RedEdge-MX: Suitability analysis of two different texture extraction forms under MLC and RF supervision
  117. Special Issue: Geoethics 2022 - Part I
  118. Geomorphological and hydrological heritage of Mt. Stara Planina in SE Serbia: From river protection initiative to potential geotouristic destination
  119. Geotourism and geoethics as support for rural development in the Knjaževac municipality, Serbia
  120. Modeling spa destination choice for leveraging hydrogeothermal potentials in Serbia
Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/geo-2020-0331/html
Scroll to top button