Home On the order of approximation by modified summation-integral-type operators based on two parameters
Article Open Access

On the order of approximation by modified summation-integral-type operators based on two parameters

  • Syed Abdul Mohiuddine EMAIL logo , Karunesh Kumar Singh and Abdullah Alotaibi
Published/Copyright: February 8, 2023
Become an author with De Gruyter Brill

Abstract

In this article, we the study generalized family of positive linear operators based on two parameters, which are a broad family of many well-known linear positive operators, e.g., Baskakov-Durrmeyer, Baskakov-Szász, Szász-Beta, Lupaş-Beta, Lupaş-Szász, genuine Bernstein-Durrmeyer, and Pǎltǎnea. We first find direct estimates in terms of the second-order modulus of continuity, then we find an estimate of error in the Ditzian-Totik modulus of smoothness. Then we discuss the rate of approximation for functions in the Lipschitz class. Furthermore, we study the pointwise Grüss-Voronovskaja-type result and also establish the Grüss-Voronovskaja-type asymptotic formula in quantitative form.

MSC 2010: 41A25; 41A28; 41A36

1 Introduction

In approximation theory, linear positive operators (LPO) play a vital contribution to approximate functions of various classes. In this direction, several operators were constructed by various researchers, but here we mention the operators related to work, namely, Miheşan-Durrmeyer [1], summation-integral type [2,3] and references therein. The researchers are attempting to modify the order of approximation of their operators as well as study their local and global approximation results.

Suppose Π 2 [ 0 , ) is the set of all functions ζ that are real-valued and defined on [ 0 , ) such that ζ ( y ) M ζ ( 1 + y 2 ) , where a constant M ζ is dependent on ζ and M ζ > 0 . In addition, let C 2 [ 0 , ) denote the subspace of all continuous functions in Π 2 [ 0 , ) . Furthermore, let C 2 [ 0 , ) be the space of all functions ζ C 2 [ 0 , ) for which lim y ζ ( y ) 1 + y 2 exists and is finite. The norm on space Π 2 [ 0 , ) is

ζ 2 = sup y [ 0 , ) ζ ( y ) 1 + y 2 .

It was shown (see [4]) that for every ζ C 2 [ 0 , ) , there hold:

lim δ 0 Ω ( ζ , δ ) = 0

and

(1.1) Ω ( ζ , l δ ) 2 ( 1 + l ) ( 1 + δ 2 ) Ω ( ζ , δ ) , l > 0 ,

where Ω ( ζ , δ ) is the weighted modulus of continuity, given by

Ω ( ζ , δ ) = sup 0 h < δ , y [ 0 , ) ζ ( y + h ) ζ ( y ) ( 1 + y 2 ) ( 1 + h 2 ) .

Using the above definition and in view of (1.1), we may write

(1.2) ζ ( w ) ζ ( u ) ( 1 + u 2 ) ( 1 + ( w u ) 2 ) Ω ( ζ , w u ) 2 1 + w u δ ( 1 + δ 2 ) Ω ( ζ , δ ) ( 1 + w 2 ) ( 1 + ( w u ) 2 ) .

Recently, Gupta [5] studied the general class of family of LPO for ζ C 2 [ 0 , ) for parameters ρ , τ > 0 as:

(1.3) L n , τ σ , ρ ( ζ , y ) = ν = 1 ϒ n , ν τ ( y ) 0 ϒ n , ν 1 σ + 1 , ρ ( v ) ζ ( v ) d v + ϒ n , 0 τ ( y ) ζ ( 0 ) , y 0 ,

where

(1.4) ϒ n , ν τ ( y ) = ( τ ) ν ν ! n y τ ν 1 + n y τ τ + ν ,

ϒ n , ν 1 σ + 1 , ρ ( v ) = n σ B ( ν ρ , σ ρ + 1 ) n v σ ν ρ 1 1 + n v σ σ ρ + ν ρ + 1 ,

and

B ( ν ρ , σ ρ + 1 ) = Γ ( ν ρ ) Γ ( σ ρ + 1 ) Γ ( ν ρ + σ ρ + 1 )

having rising factorial ( τ ) ν = τ ( τ + 1 ) ( τ + ν 1 ) and ( τ ) 0 = 1 (also see [6]). We see that this sequence of LPO reproduces linear functions.

Stancu [7] presented the modification of renowned Bernstein operators by using real parameters and discussed some approximation properties. Inspired from this modification, most recently, Alotaibi et al. [8], Milovanovic et al. [9], Mohiuddine et al. [10], and Mohiuddine and Özger [11] defined and discussed the Durrmeyer-Stancu, Stancu-type modification of Szász-Kantorovich, α -Baskakov-Kantorovich, and α -Bernstein-Kantorovich operators, respectively.

Motivated by the study of the above operators and their order of convergence, in the proceeding section, we will first define the Stancu kind modification of (1.3) and then moment estimates of our newly defined operators and their bound. An interesting property of LPO is to find the estimate of their differences using K -functional approach and in terms of appropriate modulus of continuity, so, in Section 3, we discuss the rate of convergence of our operators, i.e., estimation of error in terms of the usual modulus of continuity of second order as well as in terms of Ditzian-Totik modulus of smoothness using Peetre’s K -functional approach. For more details, we refer to [1222].

In [23], Grüss introduced an inequality, nowadays called Grüss inequality, in which he discusses the difference between the product of the integrals of two functions and the integral of the product of the same functions. Furthermore, Andrica and Badea [24] studied Grüss inequality by taking into account positive linear functionals. Acu et al. [25] extended this inequality for the Bernstein operators, convolution-type operators, and Hermite-Fejer interpolation operators. Motivated by the study in this direction (cf. [2528]), it is very interesting topic to study Grüss-Voronovskaja asymptotic result for general family of our newly aforementioned operators. In continuation, we derive the Grüss-Voronovskaja-type approximation theorem and also establish Grüss-Voronovskaja-type asymptotic result in quantitative form in the last section.

2 Construction of operators and estimates of moments

For real parameters a , b ( 0 a b ) , we define the Stancu generalization of operators (1.3) as follows:

(2.1) L n , τ σ , ρ , a , b ( ζ , y ) = ν = 1 ϒ n , ν τ ( y ) 0 ϒ n , ν 1 σ + 1 , ρ ( v ) ζ n v + a n + b d v + ϒ n , 0 τ ( y ) ζ a n + b , y 0 .

For specific values a = b = 0 in (2.1), we obtain

L n , τ σ , ρ , 0 , 0 ( ζ , y ) = ν = 1 ϒ n , ν τ ( y ) 0 ϒ n , ν 1 σ + 1 , ρ ( v ) ζ ( v ) d v + ϒ n , 0 τ ( y ) ζ ( 0 ) ,

which is (1.3).

Equivalently, our operators L n , τ σ , ρ , a , b ( ζ , y ) can also be written as follows:

L n , τ σ , ρ , a , b ( ζ , y ) = ν = 0 ϒ n , ν τ ( y ) ϱ n , ν σ , ρ , a , b ( ζ ) ,

where ϒ n , ν τ ( y ) is as given in (1.4) and

ϱ n , ν σ , ρ , a , b ( ζ ) = 0 ϒ n , ν 1 σ + 1 , ρ ( v ) ζ n v + a n + b d v , 1 ν < ζ a n + b , ν = 0 .

We can obtain the following lemma with the help of Remark 4 of [5].

Lemma 1

The r-th moment is defined as follows:

L n , τ σ , ρ , a , b ( e r , y ) , e r = v r , r = 0 , 1 , 2 , .

Using the definition of operators (2.1), we obtain

L n , τ σ , ρ , a , b ( e 0 , y ) = 1 , L n , τ σ , ρ , a , b ( e 1 , y ) = n y + a n + b ,

and

L n , τ σ , ρ , a , b ( e 2 , y ) = 1 ( n + b ) 2 a 2 + n y σ ρ 1 ( 2 a ( σ ρ 1 ) + σ ( 1 + ρ ) ) + σ ρ 1 + 1 τ n y .

Remark 1

Let us define the central moments of r -th order by λ n , τ , r σ , ρ , a , b ( y ) = L n , τ σ , ρ , a , b ( ( v y ) r , y ) . Then, central moments of operators of order 1 and 2 are given as follows:

λ n , τ , 1 σ , ρ , a , b ( y ) = a b y n + b

and

λ n , τ , 2 σ , ρ , a , b ( y ) = 1 ( n + b ) 2 a 2 + n y σ ρ 1 ( 2 a ( σ ρ 1 ) + σ ( 1 + ρ ) ) + σ ρ 1 + 1 τ n y + y ( ( b n ) y 2 a ) ( n + b ) ,

respectively.

Remark 2

We have

λ n , τ , 1 σ , ρ , a , b ( y ) a + b y n + b .

3 Direct results

We start this section by discussing the pointwise convergence theorem for (2.1).

Theorem 1

Let ζ C 2 [ 0 , ) . Then, for each y [ 0 , ) , we have

(3.1) lim n L n , τ σ , ρ , a , b ( ζ , y ) = ζ ( y ) .

Proof

From Lemma 1, it is evident that

lim n L n , τ σ , ρ , a , b ( e i , y ) = y m , m = 0 , 1 , 2 .

Hence, (3.1) follows by applying the universal Korovkin theorem (see [29]).□

Let C B [ 0 , ) denote the class of bounded and continuous functions on [ 0 , ) , normed by

ξ = sup v [ 0 , ) ξ ( y ) .

For ξ C ¯ B [ 0 , ) { ξ C B [ 0 , ) : ξ is uniformly continuous on [ 0 , ) } and δ > 0 , the modulus of continuity of order j is given as follows:

ω j ( ξ , δ ) = sup 0 < η δ sup y [ 0 , ) Δ η j ξ ( y ) ,

where Δ η j is the j th order forward difference of step length η . For j = 1 , we call it the usual modulus of continuity which is denoted by ω ( ξ , δ ) .

Furthermore, let ϰ 2 = { p C ¯ B [ 0 , ) : p , p C ¯ B [ 0 , ) } . For ξ C ¯ B [ 0 , ) , the κ -functional is defined as

κ 2 ( ξ , δ ) = inf p ϰ 2 { ξ p + δ p } ,

where δ > 0 .

By Theorem 2.4 of [30], there is an absolute constant C > 0 such that

κ 2 ( ξ , δ ) C ω 2 ( ξ , δ ) ,

where ω 2 ( ξ , δ ) is the modulus of continuity of the second order of ξ .

Let us define

λ n , τ , i σ , ρ , a , b , ( y ) = sup y [ 0 , ) λ n , τ , i σ , ρ , a , b ( y ) ( i = 1 , 2 ) .

We are now ready to estimate the error of approximation by (2.1) in terms of first- and second-order moduli of continuity.

Theorem 2

If g C ¯ B [ 0 , ) and y [ 0 , ) , then

L n , τ σ , ρ , a , b ( g ) g C ω 2 g , λ n , τ , 2 σ , ρ , a , b , ( y ) + ( λ n , τ , 1 σ , ρ , a , b , ( y ) ) 2 2 + ω ( g , λ n , τ , 1 σ , ρ , a , b , ( y ) )

for any constant C > 0 .

Proof

Define the auxiliary operators L n , τ σ , ρ , a , b , as

(3.2) L n , τ σ , ρ , a , b , ( g , y ) = L n , τ σ , ρ , a , b ( g , y ) g ( s ) + g ( y ) ,

where s = n y + a n + b , y [ 0 , ) .

By Lemma 1, we see that the operator L n , τ σ , ρ , a , b , is linear and preserves the linear functions. Hence,

(3.3) L n , τ σ , ρ , a , b , ( u y , y ) = 0 .

Let ζ ϰ 2 . From Taylor’s expansion,

ζ ( u ) = ζ ( y ) + ζ ( y ) ( u y ) + y u ( u w ) ζ ( w ) d w , u [ 0 , ) .

Using (3.3), we have

L n , τ σ , ρ , a , b , ( ζ , y ) = ζ ( y ) + L n , τ σ , ρ , a , b , y u ( u w ) ζ ( w ) d w , y .

Hence, by (3.2), one has

L n , τ σ , ρ , a , b , ( ζ , y ) ζ ( y ) = L n , τ σ , ρ , a , b y u ( u w ) ζ ( w ) d w , y y s ( s w ) ζ ( w ) d w .

Now,

L n , τ σ , ρ , a , b , ( ζ , y ) ζ ( y ) L n , τ σ , ρ , a , b y u ( u w ) ζ ( w ) d w , y + y s ( s w ) ζ ( w ) d w [ L n , τ σ , ρ , a , b , ( ( u y ) 2 ; y ) + ( s y ) 2 ] ζ ( λ n , τ , 2 σ , ρ , a , b , ( y ) + ( λ n , τ , 1 σ , ρ , a , b , ( y ) ) 2 ) ζ .

For ζ ϰ 2 and g C ¯ B [ 0 , ) , we have

L n , τ σ , ρ , a , b ( g , y ) g ( y ) L n , τ σ , ρ , a , b , ( g ζ , y ) + L n , τ σ , ρ , a , b , ( ζ , y ) ζ ( y ) + g ( y ) ζ ( y ) + g ( s ) g ( x ) 4 g ζ + ( λ n , τ , 2 σ , ρ , a , b , ( y ) + ( λ n , τ , 1 σ , ρ , a , b , ( y ) ) 2 ) ζ + ω ( g , λ n , τ , 1 σ , ρ , a , b , ( y ) ) .

Taking inf ζ ϰ 2 , we obtain

L n , τ σ , ρ , a , b ( g ) g 4 κ 2 g , ( λ n , τ , 2 σ , ρ , a , b , ( y ) + ( λ n , τ , 1 σ , ρ , a , b , ( y ) ) 2 ) 4 + ω ( g , λ n , τ , 1 σ , ρ , a , b , ( y ) ) .

In view of κ 2 ( g , δ ) ω 2 ( g , δ ) , we obtain

L n , τ σ , ρ , a , b ( g ) g 4 ω 2 g , λ n , τ , 2 σ , ρ , a , b , ( y ) + ( λ n , τ , 1 σ , ρ , a , b , ( y ) ) 2 2 + ω ( g , λ n , τ , 1 σ , ρ , a , b , ( y ) ) ,

which completes the proof.□

For the choice of a = b = 0 in the last Theorem 2, we obtain the following corollary:

Corollary 1

If g C ¯ B [ 0 , ) and y [ 0 , ) , then

L n , τ σ , ρ , 0 , 0 ( g ) g C ω 2 g , λ n , τ , 2 σ , ρ , 0 , 0 , ( y ) + ( λ n , τ , 1 σ , ρ , 0 , 0 , ( y ) ) 2 2 + ω ( g , λ n , τ , 1 σ , ρ , 0 , 0 , ( y ) )

for any constant C > 0 . Note that the operators L n , τ σ , ρ , 0 , 0 were discussed in [5].

For ζ C ¯ B [ 0 , ) and δ > 0 , the Ditzian-Totik modulus of smoothness of second order is defined as follows:

ω φ 2 ( ζ , δ ) = sup 0 < η δ sup y ± η φ ( y ) [ 0 , ) ζ ( y + η φ ( y ) ) 2 ζ ( y ) + ζ ( y η φ ( y ) ) ,

where φ ( y ) = y ( 1 y ) .

The corresponding κ -functional is given as follows:

κ 2 , φ ( ζ , δ 2 ) = inf g ϰ 2 ( φ ) { ζ g + δ 2 φ 2 g } ,

where ϰ 2 ( φ ) = { g C B [ 0 , ) : g A C loc [ 0 , ) , φ 2 g C B [ 0 , ) } and φ is an admissible step-function on [ 0 , ) .

By Theorem 2.11 of [31], there is an absolute constant C > 0 such that

C 1 ω φ 2 ( ζ , δ ) κ 2 , φ ( ζ , δ 2 ) C ω φ 2 ( ζ , δ ) .

Now, we estimate an error in terms of weighted Ditzian-Totik modulus of smoothness using κ -functional approach.

Theorem 3

Let ζ C ¯ B [ 0 , ) and y ( 0 , ) . Then,

L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) C ω 2 , φ ζ , λ n , τ , 2 σ , ρ , a , b , ( y ) + ( λ n , τ , 1 σ , ρ , a , b , ( y ) ) 2 φ ( y ) + ω ψ ζ , 1 n + b ,

where φ ( y ) = y ( 1 y ) and ψ ( x ) = a + b y .

Proof

Let the operator L n , τ σ , ρ , a , b , be defined as in (3.2). For p ϰ 2 ( φ ) and by Taylor’s series expansion, we obtain

(3.4) p ( v ) = p ( y ) + ( v y ) p ( y ) + y v ( v u ) p ( u ) d u .

Applying L n , τ σ , ρ , a , b , on both sides of (3.4) and in view of (3.2), we obtain

(3.5) L n , τ σ , ρ , a , b , ( p , y ) p ( y ) L n , τ σ , ρ , a , b y v v u p ( u ) d u , y + y s s u p ( u ) d u L n , τ σ , ρ , a , b ( ( v y ) 2 , y ) φ 2 ( y ) φ 2 p + φ 2 p y s s u φ 2 ( y ) d u φ 2 p φ 2 ( y ) ( λ n , τ , 2 σ , ρ , a , b ( y ) + ( λ n , τ , 1 σ , ρ , a , b ( y ) ) 2 ) ,

since v u φ 2 ( u ) v y φ 2 ( y ) for u between v and y .

Now, for ζ C ¯ B [ 0 , ) and any p ϰ 2 ( φ ) , we write

L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) L n , τ σ , ρ , a , b , ( ζ p , y ) + L n , τ σ , ρ , a , b , ( p , y ) p ( y ) + ζ ( y ) p ( y ) + ζ ( s ) ζ ( y ) 4 ζ p + φ 2 p φ 2 ( y ) ( λ n , τ , 2 σ , ρ , a , b ( y ) + ( λ n , τ , 1 σ , ρ , a , b ( y ) ) 2 ) + ζ ( s ) ζ ( y ) .

Letting inf p ϰ 2 ( φ ) , we obtain

L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) 4 κ 2 , φ ζ , λ n , τ , 2 σ , ρ , a , b , ( y ) + ( λ n , τ , 1 σ , ρ , a , b , ( y ) ) 2 4 φ 2 ( y ) + ζ y + ψ ( y ) λ n , τ , 1 σ , ρ , a , b ( y ) ψ ( y ) ζ ( y ) 4 κ 2 , φ ζ , λ n , τ , 2 σ , ρ , a , b , ( y ) + ( λ n , τ , 1 σ , ρ , a , b , ( y ) ) 2 4 φ 2 ( y ) + ω ψ ζ , 1 ψ ( y ) λ n , τ , 1 σ , ρ , a , b ( y ) 4 κ 2 , φ ζ , λ n , τ , 2 σ , ρ , a , b , ( y ) + ( λ n , τ , 1 σ , ρ , a , b , ( y ) ) 2 4 φ 2 ( y ) + ω ψ ζ , 1 n + b ,

in view of Remark 2.

Using the equivalence between κ 2 , φ ( ζ , δ 2 ) and ω φ 2 ( ζ , δ ) , the theorem follows.□

We consider the Lipschitz-type space (see [32]) for parameters c , d > 0 to investigate the approximation of functions as follows:

Lip M ( c , d ) ( ϱ ) = ζ C [ 0 , ) : ζ ( v ) ζ ( y ) M v y ϱ ( v + c y 2 + d y ) ϱ 2 , v , y [ 0 , ) ,

where a constant M > 0 and 0 < ϱ 1 .

The proceeding result gives the degree of approximation for L n , τ σ , ρ , a , b ( ζ ) for ζ Lip M ( c , d ) ( ϱ ) .

Theorem 4

Let 0 < ϱ 1 and ζ Lip M ( a , b ) ( ϱ ) . Then,

L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) M λ n , τ , 2 σ , ρ , a , b ( y ) c y 2 + d y ϱ 2 ( y > 0 ) .

Proof

We first consider to obtain our result for ϱ = 1 . Then, for ζ Lip M ( c , d ) ( ϱ ) and y > 0 , we have

L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) L n , τ σ , ρ , a , b ( ζ ( v ) ζ ( y ) , y ) M L n , τ σ , ρ , a , b v y ( v + c y 2 + d y ) 1 2 , y M ( v + c y 2 + d y ) 1 2 L n , τ σ , ρ , a , b ( v y , y ) ,

since

1 v + c y 2 + d y 1 c y 2 + d y .

Using Cauchy’s Schwarz inequality together with Lemma 1, we obtain

L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) M ( c y 2 + d y ) 1 2 ( L n , τ σ , ρ , a , b ( ( v y ) 2 , y ) ) 1 2 M λ n , τ , 2 σ , ρ , a , b ( y ) c y 2 + d y 1 2 .

Thus, result is true for ϱ = 1 .

Now, let us prove the result for the case 0 < ϱ < 1 . So,

L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) L n , τ σ , ρ , a , b ( ζ ( v ) ζ ( y ) , y ) M L n , τ σ , ρ , a , b v y ϱ ( v + c y 2 + d y ) ϱ 2 , y M ( c y 2 + d y ) ϱ 2 L n , τ σ , ρ , a , b ( v y ϱ , y ) .

In view of Lemma 1 and Hölder’s inequality with p = 1 ϱ and q = 1 1 ϱ , we obtain

L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) L n , τ σ , ρ , a , b ( ζ ( v ) ζ ( y ) , y ) M ( c y 2 + d y ) ϱ 2 ( L n , τ σ , ρ , a , b ( v y , y ) ) ϱ .

It follows from the Cauchy’s Schwarz inequality and Lemma 1 that

L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) M λ n , τ , 2 σ , ρ , a , b ( x ) c y 2 + d y ϱ 2 ,

which completes the proof.□

In the last result of this section, we consider the Lipschitz-type maximal function of order ϱ (see [33]) as

(3.6) ω ˜ ϱ ( ζ , y ) = sup v y , v [ 0 , ) ζ ( v ) ζ ( y ) v y ϱ , y [ 0 , ) and ϱ ( 0 , 1 ]

to study the local direct estimate for (2.1).

Theorem 5

Let 0 < ϱ 1 and ζ C B [ 0 , ) . Then,

L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) C ω ˜ ϱ ( ζ , y ) ( λ n , τ , 2 σ , ρ , a , b ( y ) ) ϱ 2 ( y [ 0 , ) ) .

Proof

From (3.6), we have

ζ ( v ) ζ ( y ) ω ˜ ϱ ( ζ , y ) v y ϱ

and

L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) L n , τ σ , ρ , a , b ( ζ ( v ) ζ ( y ) , y ) ω ˜ ϱ ( ζ , y ) L n , τ σ , ρ , a , b ( v y ϱ , y ) .

It follows by using Hölder’s inequality with

p 1 = 2 ϱ , 1 p 2 = 1 1 p 1

and Lemma 1 that

L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) ω ˜ ϱ ( ζ , y ) ( L n , τ σ , ρ , a , b ( ( v y ) 2 , y ) ) ϱ 2 ω ˜ ϱ ( ζ , y ) ( λ n , τ , 2 σ , ρ , a , b ( y ) ) ϱ 2 .

Consequently, the proof follows.□

4 Grüss-Voronovskaja-type asymptotic result

We establish the Grüss-Voronovskaja-type theorem for (2.1). First, we derive a Grüss-type approximation theorem and then prove the Grüss-Voronovskaja-type asymptotic result.

The weighted modulus of continuity is given as follows:

Ω ( ζ , δ ) = sup 0 < ξ < δ , y [ 0 , ) ζ ( y + ξ ) ζ ( y ) ( 1 + ξ 2 ) ( 1 + y 2 )

for the functions ζ C 2 [ 0 , ) .

Theorem 6

If ζ , p , ζ 2 , p 2 , and ζ g C 2 [ 0 , ) then for fixed y 0 , there holds:

L n , τ σ , ρ , a , b ( ζ p , y ) L n , τ σ , ρ , a , b ( ζ , y ) L n , τ σ , ρ , a , b ( p , y ) ζ ( x ) p ( y ) ,

where

ζ ( y ) = 32 ( 1 + y 2 ) Ω ( ζ 2 , ( λ n , τ , 4 σ , ρ , a , b ( y ) ) 1 4 ) + 32 ( 1 + C ) ζ 2 ( 1 + y 2 ) 2 Ω ( ζ , ( λ n , τ , 4 σ , ρ , a , b ( y ) ) 1 4 ) ,

p ( y ) is the analogue of ζ ( y ) , and C is a constant.

Proof

Define L n , τ σ , ρ , a , b ( ζ , p , y ) = L n , τ σ , ρ , a , b ( ζ p , x ) L n , τ σ , ρ , a , b ( ζ , y ) L n , τ σ , ρ , a , b ( p , y ) . Using Cauchy-Schwarz inequality, one obtains

L n , τ σ , ρ , a , b ( ζ , p , y ) L n , τ σ , ρ , a , b ( ζ , ζ , y ) L n , τ σ , ρ , a , b ( p , p , y ) .

In view of (1.2), we reach to

(4.1) L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) 2 ( 1 + y 2 ) ( 1 + δ 2 ) Ω ( ζ , δ ) × L n , τ σ , ρ , a , b 1 + z y δ ( 1 + ( z y ) 2 ) , y .

Let us define ( y , z , δ ) 1 + z y δ ( 1 + ( z y ) 2 ) . So,

( y , z , δ ) 2 ( 1 + δ 2 ) , z y < δ 2 ( 1 + δ 2 ) ( z y ) 4 δ 4 , z y δ .

Now, combining both cases for all y , z 0 , we obtain

(4.2) ( y , z , δ ) 2 ( 1 + δ 2 ) 1 + ( z y ) 4 δ 4 .

Combining (4.1)–(4.2), for 0 < δ < 1 , we obtain

(4.3) L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) 16 ( 1 + y 2 ) 1 + 1 δ 4 λ n , τ , 4 σ , ρ , a , b ( y ) Ω ( ζ , δ ) .

We can write

L n , τ σ , ρ , a , b ( ζ , ζ , y ) = L n , τ σ , ρ , a , b ( ζ 2 , y ) ζ 2 ( y ) + ζ 2 ( y ) ( L n , τ σ , ρ , a , b ( ζ , y ) ) 2 = L n , τ σ , ρ , a , b ( ζ 2 , y ) ζ 2 ( y ) + ( ζ ( y ) L n , τ σ , ρ , a , b ( ζ , y ) ) ( ζ ( y ) + L n , τ σ , ρ , a , b ( ζ , y ) ) .

Now,

L n , τ σ , ρ , a , b ( ζ , y ) 1 + y 2 ζ 2 L n , τ σ , ρ , a , b ( 1 + t 2 , y ) 1 + y 2 ζ 2 C ( 1 + y 2 ) 1 + y 2 = C ζ 2 .

So, we have

L n , τ σ , ρ , a , b ( ζ , ζ , y ) L n , τ σ , ρ , a , b ( ζ 2 , y ) ζ 2 ( y ) + ζ ( y ) L n , τ σ , ρ , a , b ( ζ , y ) ( ζ 2 + M ζ 2 ) ( 1 + y 2 ) .

Furthermore, using (4.3), we obtain

L n , τ σ , ρ , a , b ( ζ , ζ , y ) 16 ( 1 + y 2 ) 1 + 1 δ 4 λ n , τ , 4 σ , ρ , a , b ( y ) Ω ( ζ 2 , δ ) + 16 ( 1 + C ) ζ 2 ( 1 + y 2 ) 2 1 + 1 δ 4 λ n , τ , 4 σ , ρ , a , b ( y ) Ω ( ζ , δ ) .

Choosing δ = ( λ n , τ , 4 σ , ρ , a , b ( y ) ) 1 4 , we obtain

L n , τ σ , ρ , a , b ( ζ , ζ , y ) 32 ( 1 + y 2 ) Ω ζ 2 , ( λ n , τ , 4 σ , ρ , a , b ( y ) ) 1 4 + 32 ( 1 + C ) ζ 2 ( 1 + y 2 ) 2 Ω ζ , ( λ n , τ , 4 σ , ρ , a , b ( y ) ) 1 4 .

We find similar estimate for L n , τ σ , ρ , a , b ( p , p , y ) .□

Next, we discuss the quantitative Voronovskaja-type result with a view of (2.1) for functions belonging to C 2 [ 0 , ) .

Theorem 7

If ζ , ζ , and ζ C 2 [ 0 , ) , then for y [ 0 , ) , there holds

L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) 1 2 ζ ( y ) μ n , τ . 2 σ , ρ , a , b ( y ) 16 ( 1 + y 2 ) Ω ζ , λ n , τ , 6 σ , ρ , a , b ( y ) λ n , τ , 2 σ , ρ , a , b ( y ) 1 4 λ n , τ , 2 σ , ρ , a , b ( y ) .

Proof

We obtain our result by proceeding along the similar lines of the proof of Theorem 2 of [26], hence the details are omitted.□

Finally, we prove the following Grüss-Voronovskaja-type quantitative result for L n , τ σ , ρ , a , b .

Theorem 8

Let ζ , p , ζ p , ζ , p , ( ζ p ) , ζ , p , and ( ζ p ) C 2 [ 0 , ) , then at any point y [ 0 , ) , we have

n L n , τ σ , ρ , a , b ( ζ p , y ) L n , τ σ , ρ , a , b ( ζ , y ) L n , τ σ , ρ , a , b ( p , y ) λ n , τ , 2 σ , ρ , a , b ( y ) ζ ( y ) p ( y ) 16 ( 1 + y 2 ) n λ n , τ , 2 σ , ρ , a , b ( y ) Ω ( ζ p ) , λ n , τ , 6 σ , ρ , a , b ( y ) λ n , τ , 2 σ , ρ , a , b ( y ) 1 4 + ζ 2 ( 1 + y 2 ) Ω p , λ n , τ , 6 σ , ρ , a , b ( y ) λ n , τ , 2 σ , ρ , a , b ( y ) 1 4 + p 2 ( 1 + y 2 ) Ω ζ , λ n , τ , 6 σ , ρ , a , b ( y ) λ n , τ , 2 σ , ρ , a , b ( y ) 1 4 + n n ( ζ ) n ( p ) ,

where

n ( ζ ) = 1 2 ζ 2 ( 1 + y 2 ) 2 λ n , τ , 2 σ , ρ , a , b ( y ) + 2 y 1 + y 2 λ n , τ , 3 σ , ρ , a , b ( y ) + 1 1 + y 2 λ n , τ , 4 σ , ρ , a , b ( y )

and n ( p ) is the analogue of n ( ζ ) .

Proof

By Taylor’s series expansion, we have

L n , τ σ , ρ , a , b ( ζ p , y ) L n , τ σ , ρ , a , b ( ζ , y ) L n , τ σ , ρ , a , b ( p , y ) L n , τ σ , ρ , a , b ( ( v y ) 2 , y ) ζ ( y ) p ( y ) = L n , τ σ , ρ , a , b ( ζ p , y ) ζ ( y ) p ( y ) L n , τ σ , ρ , a , b ( ( v y ) 2 , y ) 2 ( ζ ( y ) p ( y ) ) ζ ( y ) L n , τ σ , ρ , a , b ( p , y ) p ( y ) L n , τ σ , ρ , a , b ( ( v y ) 2 , y ) 2 p ( y ) p ( y ) L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) L n , τ σ , ρ , a , b ( ( v y ) 2 , y ) 2 ζ ( y ) + ( p ( y ) L n , τ σ , ρ , a , b ( p , y ) ) . ( L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) ) = Γ 1 + Γ 2 + Γ 3 + Γ 4 .

Using Theorem 7, we obtain

Γ 1 16 ( 1 + y 2 ) Ω ( ζ p ) , λ n , τ , 6 σ , ρ , a , b ( y ) λ n , τ , 2 σ , ρ , a , b ( y ) 1 4 λ n , τ , 2 σ , ρ , a , b ( y ) , Γ 2 16 ζ ( y ) ( 1 + y 2 ) Ω p , λ n , τ , 6 σ , ρ , a , b ( y ) λ n , τ , 2 σ , ρ , a , b ( y ) 1 4 λ n , τ , 2 σ , ρ , a , b ( y ) , Γ 3 16 p ( y ) ( 1 + y 2 ) Ω ζ , λ n , τ , 6 σ , ρ , a , b ( y ) λ n , τ , 2 σ , ρ , a , b ( y ) 1 4 λ n , τ , 2 σ , ρ , a , b ( y ) .

Next, since ζ C 2 [ 0 , ) , we can write

L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) = 1 2 L n , τ σ , ρ , a , b ( ζ ( ξ ) ( v y ) 2 , y ) ,

and hence, we obtain

L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) 1 2 L n , τ σ , ρ , a , b ( ζ ( ξ ) ( v y ) 2 , y ) ζ 2 1 2 L n , τ σ , ρ , a , b ( ( 1 + ξ 2 ) ( v y ) 2 , y ) ,

where v < ξ < y .

If ξ lies between v and y , then we obtain 1 + ξ 2 1 + y 2 . So, in this case, we obtain

L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) ζ 2 ( 1 + y 2 ) 2 λ n , τ , 2 σ , ρ , a , b ( y ) .

Moreover, if ξ lies between y and v , then we obtain 1 + ξ 2 1 + v 2 . So, we obtain

L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) ζ 2 2 L n , τ σ , ρ , a , b ( ( 1 + v 2 ) ( v y ) 2 , y ) = ζ 2 2 ( ( 1 + y 2 ) λ n , τ , 2 σ , ρ , a , b ( y ) + 2 y λ n , τ , 3 σ , ρ , a , b ( y ) + λ n , τ , 4 σ , ρ , a , b ( y ) ) .

Therefore, by combining the two cases of ξ , we obtain

L n , τ σ , ρ , a , b ( ζ , y ) ζ ( y ) ζ 2 ( 1 + y 2 ) 2 2 λ n , τ , 2 σ , ρ , a , b ( y ) + 2 y 1 + y 2 λ n , τ , 3 σ , ρ , a , b ( y ) + 1 1 + y 2 λ n , τ , 4 σ , ρ , a , b ( y ) n ( ζ ) .

Analogously, we determine L n , τ σ , ρ , a , b ( p , y ) p ( y ) n ( p ) . Thus, we reach to

n L n , τ σ , ρ , a , b ( ζ p , y ) L n , τ σ , ρ , a , b ( ζ , y ) L n , τ σ , ρ , a , b ( p , y ) λ n , τ , 2 σ , ρ , a , b ( y ) ζ ( y ) p ( y ) 16 ( 1 + y 2 ) n Ω ( ζ p ) , λ n , τ , 6 σ , ρ , a , b ( y ) λ n , τ , 2 σ , ρ , a , b ( y ) 1 4 λ n , τ , 2 σ , ρ , a , b ( y ) + 16 ζ 2 ( 1 + y 2 ) 2 n Ω p , λ n , τ , 6 σ , ρ , a , b ( y ) λ n , τ , 2 σ , ρ , a , b ( y ) 1 4 λ n , τ , 2 σ , ρ , a , b ( y ) + 16 p 2 ( 1 + y 2 ) 2 n Ω ζ , λ n , τ , 6 σ , ρ , a , b ( y ) λ n , τ , 2 σ , ρ , a , b ( y ) 1 4 λ n , τ , 2 σ , ρ , a , b ( y ) + n n ( ζ ) n ( p ) .

Hence, the result of the theorem is established.□

5 Conclusion

In our discussion, we defined the Stancu-type modification of L n , τ σ , ρ ( ζ , y ) with the help of parameters by

(5.1) L n , τ σ , ρ , a , b ( ζ , y ) = ν = 1 ( τ ) ν ν ! n y τ ν 1 + n y τ τ + ν 0 n Γ ( ν ρ + σ ρ + 1 ) σ Γ ( ν ρ ) Γ ( σ ρ + 1 ) . n v σ ν ρ 1 1 + n v σ σ ρ + ν ρ + 1 × ζ n v + a n + b d v + 1 1 + n y τ τ ζ a n + b .

We discussed several approximation results for (5.1), namely, pointwise convergence, degree of approximation, error estimations by means of suitable moduli of continuity as well as moduli of smoothness, Grüss-Voronovskaja-type results, etc.

By taking different values and limiting conditions of parameters τ and σ in (5.1), we obtain various linear positive operators, which were studied by several authors. In Table 1, we see that our operators L n , τ σ , ρ , a , b ( ζ , y ) reduced to several previously studied operators.

Table 1

The operators L n , τ σ , ρ , a , b ( ζ , y ) for some specific values

For the choice of (5.1) reduces to Studied in
a = b = 0 The operators L n , τ σ , ρ ( ζ , y ) [5]
a = b = 0 , ρ = 1 , τ = σ Phillips operators [34] (also see [35])
a = b = 0 , ρ = 1 , τ = σ = n Baskakov-Durrmeyer type operators [36]
a = b = 0 , ρ = 1 , τ σ , τ = n , σ Baskakov-Szász type operators [37]
a = b = 0 , ρ = 1 , τ σ , σ = n , τ Szász-Beta type operators [38]
a = b = 0 , ρ = 1 , τ σ , τ = n y , σ = n Lupaş-Beta integral operators [39]
a = b = 0 , ρ = 1 , τ σ , τ = n y , σ Lupaş-Szász operators [40]
a = b = 0 , ρ = 1 , τ = σ = n Genuine Bernstein-Durrmeyer operator [41] (also see [42])
a = b = 0 , ρ > 0 , τ = σ Pǎltǎnea operators [43]

It is worth noting to the reader that one can further modify these operators to improve the order of approximation by taking their linear and iterative combination and studying their approximation properties. Moreover, the q -variant of these operators may also be constructed and studied.



Acknowledgments

The Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia, has funded this project, under grant no. (RG-101-130-42).

  1. Funding information: The Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia, has funded this project, under grant no. (RG-101-130-42).

  2. Author contributions: The authors contributed equally in writing this article.

  3. Conflict of interest: The authors state that there is no conflict of interest.

  4. Ethical approval: The conducted research is not related to either human or animal use.

  5. Data availability statement: Data sharing is not applicable to this article as no data sets were generated or analyzed during this study.

References

[1] A. Kajla, Direct estimates of certain Miheşan-Durrmeyer type operators, Adv. Oper. Theory 2 (2017), no. 2, 162–178. Search in Google Scholar

[2] H. M. Srivastava and V. Gupta, A certain family of summation-integral type operators, Math. Comput. Model. 37 (2003), 1307–1315. 10.1016/S0895-7177(03)90042-2Search in Google Scholar

[3] S. A. Mohiuddine, A. Kajla, and A. Alotaibi, Bézier-summation-integral-type operators that include Pólya-Eggenberger distribution, Mathematics 10 (2022), no. 13, Article 2222. 10.3390/math10132222Search in Google Scholar

[4] N. Ispir, On modified Baskakov operators on weighted spaces, Turk. J. Math. 25 (2001), 355–365. Search in Google Scholar

[5] V. Gupta, A note on the general family of operators preserving linear functions, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM 113 (2019), 3717–3725. 10.1007/s13398-019-00727-zSearch in Google Scholar

[6] N. Malik, On approximation properties of Gupta-type operators, J. Anal. 28 (2020), 559–571. 10.1007/s41478-019-00195-zSearch in Google Scholar

[7] D. D. Stancu, Asupra unei generalizari a polinoamelor lui Bernstein, Studia Univ. Babes-Bolyai Ser. Math.-Phys 14 (1969), 31–45. Search in Google Scholar

[8] A. Alotaibi, F. Özger, S. A. Mohiuddine, and M. A. Alghamdi, Approximation of functions by a class of Durrmeyer-Stancu type operators which includes Euleras beta function, Adv. Difference Equ. 2021 (2021), Article 13. 10.1186/s13662-020-03164-0Search in Google Scholar

[9] G. V. Milovanovic, M. Mursaleen, and M. Nasiruzzaman, Modified Stancu type Dunkl generalization of Szász-Kantorovich operators, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM 112 (2018), no. 1, 135–151. 10.1007/s13398-016-0369-0Search in Google Scholar

[10] S. A. Mohiuddine, N. Ahmad, F. Özger, A. Alotaibi, and B. Hazarika, Approximation by the parametric generalization of Baskakov-Kantorovich operators linking with Stancu operators, Iran. J. Sci. Technol. Trans. Sci. 45 (2021), 593–605. 10.1007/s40995-020-01024-wSearch in Google Scholar

[11] S. A. Mohiuddine and F. Özger, Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter α, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM 14 (2020), Article 70. 10.1007/s13398-020-00802-wSearch in Google Scholar

[12] A. Aral, M. Limmam, and F. Ozsarac, Approximation properties of Szász-Mirakyan Kantorovich type operators, Math. Meth. Appl. Sci. 42 (2019), no. 16, 5233–5240. 10.1002/mma.5280Search in Google Scholar

[13] D. Bărbosu, On the remainder term of some bivariate approximation formulas based on linear and positive operators, Constr. Math. Anal. 1 (2018), no. 2, 73–87. 10.33205/cma.442151Search in Google Scholar

[14] K. Bozkurt, F. Ozsarac, and A. Aral, Bivariate Bernstein polynomials that reproduce exponential functions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 70 (2021), no. 1, 541–554. 10.31801/cfsuasmas.793968Search in Google Scholar

[15] Z. Finta, A quantitative variant of Voronovskaja’s theorem for King-type operators, Constr. Math. Anal. 2 (2019), no. 3, 124–129. 10.33205/cma.553427Search in Google Scholar

[16] S. G. Gal and I. T. Iancu, Grüss and Grüss-Voronovskaya-type estimates for complex convolution polynomial operators, Constr. Math. Anal. 4 (2021), no. 1, 20–33. 10.33205/cma.780906Search in Google Scholar

[17] V. Gupta, A. Aral, and F. Ozsarac, On semi-exponential Gauss-Weierstrass operators, Anal. Math. Phys. 12 (2022), no. 5, 1–16. 10.1007/s13324-022-00723-4Search in Google Scholar

[18] A. Kajla, S. A. Mohiuddine, and A. Alotaibi, Durrmeyer-type generalization of μ-Bernstein operators, Filomat 36 (2022), no. 1, 349–360. 10.2298/FIL2201349KSearch in Google Scholar

[19] M. Mursaleen and M. Nasiruzzaman, Approximation of modified Jakimovski-Leviatan-Beta type operators, Constr. Math. Anal. 1 (2018), no. 2, 88–98. 10.33205/cma.453284Search in Google Scholar

[20] F. Ozsarac, V. Gupta, and A. Aral, Approximation by some Baskakov-Kantorovich exponential-type operators, Bull. Iran. Math. Soc. 48 (2022), no. 1, 227–241. 10.1007/s41980-020-00513-3Search in Google Scholar

[21] M. Qasim, M. S. Mansoori, A. Khan, Z. Abbas, and M. Mursaleen, Convergence of modified Szász-Mirakyan-Durrmeyer operators depending on certain parameters, Math. Found. Comput. 5 (2022), no. 3, 187–196. 10.3934/mfc.2021027Search in Google Scholar

[22] F. Wang, D. Yu, and B. Zhang, On approximation of Bernstein-Durrmeyer operators in movable interval, Math. Found. Comp. 5 (2022), no. 4, 331–342. 10.3934/mfc.2022008Search in Google Scholar

[23] G. Grüss, Über das Maximum des absoluten Betrages von (1∕(b−a))∫abζ(x)g(x)dx−(1∕(b−a)2)∫abζ(x)dx∫abg(x)dx, Math. Z. 39 (1935), 215–226. 10.1007/BF01201355Search in Google Scholar

[24] D. Andrica and C. Badea, Grüss’s inequality for positive linear functionals, Period. Math. Hung. 19 (1988), 155–167. 10.1007/BF01848061Search in Google Scholar

[25] A. M. Acu, H. Gonska, and I. Raşa, Grüss-type and Ostrowski-type inequalities in approximation theory, Ukr. Math. J. 63 (2011), 843–864. 10.1007/s11253-011-0548-2Search in Google Scholar

[26] T. Acar, A. Aral, and I. Raşa, The new forms of Voronovskaya’s theorem in weighted spaces, Positivity 20 (2016), 25–40. 10.1007/s11117-015-0338-4Search in Google Scholar

[27] P. Gupta and P. N. Agrawal, Quantitative Voronovskaja and Grüss Voronovskaja-type theorems for operators of Kantorovich type involving multiple Appell polynomials, Iran. J. Sci. Technol. Trans. Sci. 43 (2019), 1679–1687. 10.1007/s40995-018-0613-xSearch in Google Scholar

[28] A. Kajla, S. A. Mohiuddine, and A. Alotaibi, Blending-type approximation by Lupaş-Durrmeyer-type operators involving Pólya distribution, Math. Meth. Appl. Sci. 44 (2021), 9407–9418. 10.1002/mma.7368Search in Google Scholar

[29] F. Altomare and M. Campiti, Korovkin-Type Approximation Theory and Its Applications, De Gruyter Studies in Mathematics, vol. 17, Walter de Gruyter, Berlin, Germany, 1994. 10.1515/9783110884586Search in Google Scholar

[30] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer, Berlin, 1993. 10.1007/978-3-662-02888-9Search in Google Scholar

[31] Z. Ditzian and V. Totik, Moduli of Smoothness, Springer-Verlag, New York, 1987. 10.1007/978-1-4612-4778-4Search in Google Scholar

[32] M. A. Ózarslan and H. Aktuĝlu, Local approximation for certain King type operators, Filomat 27 (2013), no. 1, 173–181. 10.2298/FIL1301173OSearch in Google Scholar

[33] B. Lenze, On Lipschitz-type maximal functions and their smoothness spaces, Nederl. Akad. Wetensch. Indag. Math. 50 (1988), no. 1, 53–63. 10.1016/1385-7258(88)90007-8Search in Google Scholar

[34] R. S. Phillips, An inversion formula for Laplace transformation and semi-groups of linear operators, Ann. Math. 59 (1954), 325–356. 10.2307/1969697Search in Google Scholar

[35] Z. Finta and V. Gupta, Direct and inverse estimates for Phillips type operators, J. Math. Anal. Appl. 303 (2005), no. 2, 627–642. 10.1016/j.jmaa.2004.08.064Search in Google Scholar

[36] Z. Finta, On converse approximation theorems, J. Math. Anal. Appl. 312 (2005), 159–180. 10.1016/j.jmaa.2005.03.044Search in Google Scholar

[37] P. N. Agrawal and A. J. Mohammad, Linear combination of a new sequence of linear positive operators, Revista de la UMA 42 (2001), no. 2, 57–65. Search in Google Scholar

[38] V. Gupta and M. A. Noor, Convergence of derivatives for certain mixed Szász-Beta operators, J. Math. Anal. Appl. 321 (2006), no. 1, 1–9. 10.1016/j.jmaa.2005.07.036Search in Google Scholar

[39] V. Gupta, T. M. Rassias, and R. Yadav, Approximation by Lupaş-Beta integral operators, Appl. Math. Comput. 236 (2014), no. 1, 19–26. 10.1016/j.amc.2014.03.033Search in Google Scholar

[40] N. K. Govil, V. Gupta, and D. Soybaş, Certain new classes of Durrmeyer type operators, Appl. Math. Comput. 225 (2013), 195–203. 10.1016/j.amc.2013.09.030Search in Google Scholar

[41] W. Chen, On the modified Durrmeyer-Bernstein operator (handwritten, in Chinese, 3 pages), In: Report of the Fifth Chinese Conference on Approximation Theory, Zhen Zhou, China, 1987. Search in Google Scholar

[42] T. N. T. Goodman and A. Sharma, A modified Bernstein-Schoenberg operator, In: Sendov, Bl (ed.), Constructive Theory of Functions, Varna, 1987, pp. 166–173. Publ. House Bulgar. Acad. Sci, Sofia, 1988. Search in Google Scholar

[43] R. Pǎltǎnea, Modified Szász-Mirakjan operators of integral form, Carpathian J. Math. 24 (2008), no. 3, 378–385. Search in Google Scholar

Received: 2022-05-09
Revised: 2022-10-29
Accepted: 2022-11-15
Published Online: 2023-02-08

© 2023 the author(s), published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Regular Articles
  2. A novel class of bipolar soft separation axioms concerning crisp points
  3. Duality for convolution on subclasses of analytic functions and weighted integral operators
  4. Existence of a solution to an infinite system of weighted fractional integral equations of a function with respect to another function via a measure of noncompactness
  5. On the existence of nonnegative radial solutions for Dirichlet exterior problems on the Heisenberg group
  6. Hyers-Ulam stability of isometries on bounded domains-II
  7. Asymptotic study of Leray solution of 3D-Navier-Stokes equations with exponential damping
  8. Semi-Hyers-Ulam-Rassias stability for an integro-differential equation of order 𝓃
  9. Jordan triple (α,β)-higher ∗-derivations on semiprime rings
  10. The asymptotic behaviors of solutions for higher-order (m1, m2)-coupled Kirchhoff models with nonlinear strong damping
  11. Approximation of the image of the Lp ball under Hilbert-Schmidt integral operator
  12. Best proximity points in -metric spaces with applications
  13. Approximation spaces inspired by subset rough neighborhoods with applications
  14. A numerical Haar wavelet-finite difference hybrid method and its convergence for nonlinear hyperbolic partial differential equation
  15. A novel conservative numerical approximation scheme for the Rosenau-Kawahara equation
  16. Fekete-Szegö functional for a class of non-Bazilevic functions related to quasi-subordination
  17. On local fractional integral inequalities via generalized ( h ˜ 1 , h ˜ 2 ) -preinvexity involving local fractional integral operators with Mittag-Leffler kernel
  18. On some geometric results for generalized k-Bessel functions
  19. Convergence analysis of M-iteration for 𝒢-nonexpansive mappings with directed graphs applicable in image deblurring and signal recovering problems
  20. Some results of homogeneous expansions for a class of biholomorphic mappings defined on a Reinhardt domain in ℂn
  21. Graded weakly 1-absorbing primary ideals
  22. The existence and uniqueness of solutions to a functional equation arising in psychological learning theory
  23. Some aspects of the n-ary orthogonal and b(αn,βn)-best approximations of b(αn,βn)-hypermetric spaces over Banach algebras
  24. Numerical solution of a malignant invasion model using some finite difference methods
  25. Increasing property and logarithmic convexity of functions involving Dirichlet lambda function
  26. Feature fusion-based text information mining method for natural scenes
  27. Global optimum solutions for a system of (k, ψ)-Hilfer fractional differential equations: Best proximity point approach
  28. The study of solutions for several systems of PDDEs with two complex variables
  29. Regularity criteria via horizontal component of velocity for the Boussinesq equations in anisotropic Lorentz spaces
  30. Generalized Stević-Sharma operators from the minimal Möbius invariant space into Bloch-type spaces
  31. On initial value problem for elliptic equation on the plane under Caputo derivative
  32. A dimension expanded preconditioning technique for block two-by-two linear equations
  33. Asymptotic behavior of Fréchet functional equation and some characterizations of inner product spaces
  34. Small perturbations of critical nonlocal equations with variable exponents
  35. Dynamical property of hyperspace on uniform space
  36. Some notes on graded weakly 1-absorbing primary ideals
  37. On the problem of detecting source points acting on a fluid
  38. Integral transforms involving a generalized k-Bessel function
  39. Ruled real hypersurfaces in the complex hyperbolic quadric
  40. On the monotonic properties and oscillatory behavior of solutions of neutral differential equations
  41. Approximate multi-variable bi-Jensen-type mappings
  42. Mixed-type SP-iteration for asymptotically nonexpansive mappings in hyperbolic spaces
  43. On the equation fn + (f″)m ≡ 1
  44. Results on the modified degenerate Laplace-type integral associated with applications involving fractional kinetic equations
  45. Characterizations of entire solutions for the system of Fermat-type binomial and trinomial shift equations in ℂn#
  46. Commentary
  47. On I. Meghea and C. S. Stamin review article “Remarks on some variants of minimal point theorem and Ekeland variational principle with applications,” Demonstratio Mathematica 2022; 55: 354–379
  48. Special Issue on Fixed Point Theory and Applications to Various Differential/Integral Equations - Part II
  49. On Cauchy problem for pseudo-parabolic equation with Caputo-Fabrizio operator
  50. Fixed-point results for convex orbital operators
  51. Asymptotic stability of equilibria for difference equations via fixed points of enriched Prešić operators
  52. Asymptotic behavior of resolvents of equilibrium problems on complete geodesic spaces
  53. A system of additive functional equations in complex Banach algebras
  54. New inertial forward–backward algorithm for convex minimization with applications
  55. Uniqueness of solutions for a ψ-Hilfer fractional integral boundary value problem with the p-Laplacian operator
  56. Analysis of Cauchy problem with fractal-fractional differential operators
  57. Common best proximity points for a pair of mappings with certain dominating property
  58. Investigation of hybrid fractional q-integro-difference equations supplemented with nonlocal q-integral boundary conditions
  59. The structure of fuzzy fractals generated by an orbital fuzzy iterated function system
  60. On the structure of self-affine Jordan arcs in ℝ2
  61. Solvability for a system of Hadamard-type hybrid fractional differential inclusions
  62. Three solutions for discrete anisotropic Kirchhoff-type problems
  63. On split generalized equilibrium problem with multiple output sets and common fixed points problem
  64. Special Issue on Computational and Numerical Methods for Special Functions - Part II
  65. Sandwich-type results regarding Riemann-Liouville fractional integral of q-hypergeometric function
  66. Certain aspects of Nörlund -statistical convergence of sequences in neutrosophic normed spaces
  67. On completeness of weak eigenfunctions for multi-interval Sturm-Liouville equations with boundary-interface conditions
  68. Some identities on generalized harmonic numbers and generalized harmonic functions
  69. Study of degenerate derangement polynomials by λ-umbral calculus
  70. Normal ordering associated with λ-Stirling numbers in λ-shift algebra
  71. Analytical and numerical analysis of damped harmonic oscillator model with nonlocal operators
  72. Compositions of positive integers with 2s and 3s
  73. Kinematic-geometry of a line trajectory and the invariants of the axodes
  74. Hahn Laplace transform and its applications
  75. Discrete complementary exponential and sine integral functions
  76. Special Issue on Recent Methods in Approximation Theory - Part II
  77. On the order of approximation by modified summation-integral-type operators based on two parameters
  78. Bernstein-type operators on elliptic domain and their interpolation properties
  79. A class of strongly convergent subgradient extragradient methods for solving quasimonotone variational inequalities
  80. Special Issue on Recent Advances in Fractional Calculus and Nonlinear Fractional Evaluation Equations - Part II
  81. Application of fractional quantum calculus on coupled hybrid differential systems within the sequential Caputo fractional q-derivatives
  82. On some conformable boundary value problems in the setting of a new generalized conformable fractional derivative
  83. A certain class of fractional difference equations with damping: Oscillatory properties
  84. Weighted Hermite-Hadamard inequalities for r-times differentiable preinvex functions for k-fractional integrals
  85. Special Issue on Recent Advances for Computational and Mathematical Methods in Scientific Problems - Part II
  86. The behavior of hidden bifurcation in 2D scroll via saturated function series controlled by a coefficient harmonic linearization method
  87. Phase portraits of two classes of quadratic differential systems exhibiting as solutions two cubic algebraic curves
  88. Petri net analysis of a queueing inventory system with orbital search by the server
  89. Asymptotic stability of an epidemiological fractional reaction-diffusion model
  90. On the stability of a strongly stabilizing control for degenerate systems in Hilbert spaces
  91. Special Issue on Application of Fractional Calculus: Mathematical Modeling and Control - Part I
  92. New conticrete inequalities of the Hermite-Hadamard-Jensen-Mercer type in terms of generalized conformable fractional operators via majorization
  93. Pell-Lucas polynomials for numerical treatment of the nonlinear fractional-order Duffing equation
  94. Impacts of Brownian motion and fractional derivative on the solutions of the stochastic fractional Davey-Stewartson equations
  95. Some results on fractional Hahn difference boundary value problems
  96. Properties of a subclass of analytic functions defined by Riemann-Liouville fractional integral applied to convolution product of multiplier transformation and Ruscheweyh derivative
  97. Special Issue on Development of Fuzzy Sets and Their Extensions - Part I
  98. The cross-border e-commerce platform selection based on the probabilistic dual hesitant fuzzy generalized dice similarity measures
  99. Comparison of fuzzy and crisp decision matrices: An evaluation on PROBID and sPROBID multi-criteria decision-making methods
  100. Rejection and symmetric difference of bipolar picture fuzzy graph
Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/dema-2022-0182/html?lang=en
Scroll to top button