Home Physical Sciences Organometallic complexes and reaction methods for synthesis: a review
Article
Licensed
Unlicensed Requires Authentication

Organometallic complexes and reaction methods for synthesis: a review

  • Kwestan Namiq Aziz , Karzan Mahmood Ahmed ORCID logo , Rebaz Anwar Omer ORCID logo , Aryan Fathulla Qader ORCID logo EMAIL logo and Eman Ibraheem Abdulkareem ORCID logo
Published/Copyright: August 13, 2024

Abstract

Organometallics are chemical compounds that consist of carbon-metal linkages. They have emerged as a result of the combination of organic and inorganic chemistry and exhibit a stable metal-carbon bond in solution. These compounds possess properties that lie between those of ionic and covalent bonds, making them highly significant in various industries. The fact that organometallics are present in all living organisms further emphasises their importance. In this overview, we will explore general reactions, such as substitution and insertion reactions, as well as different techniques for creating organometallic complexes. Additionally, we will provide a brief synthesis review of various types of organometallic complexes, including carbonyls, hydrides, alkyls, carbenes, and carbines. Organometallic compounds find extensive applications in stoichiometric chemical processes in both research and industry. Moreover, they serve as catalysts to enhance these reactions, making them more than just theoretical compounds. For example, organotin compounds are widely used as fire retardants, polymers, medications, insecticides, and stabilizers for polyvinyl chloride.


Corresponding author: Aryan Fathulla Qader, Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region – F.R., Iraq, E-mail:

Acknowledgments

We want to express our gratitude to the heads of the chemistry departments at Koya University.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Abbott, J. K. C.; Smith, B. A.; Cook, T. M.; Xue, Z. L. Chapter 10 – Synthesis of Organometallic Compounds. In Modern Inorganic Synthetic Chemistry; Xu, R., Xu, Y., Eds., 2nd ed.; Elsevier: Amsterdam, Netherlands, 2017; pp 247–277.10.1016/B978-0-444-63591-4.00010-0Search in Google Scholar

2. Bulatov, E. Synthetic and Structural Studies of Covalent and Non-covalent Interactions of Ligands and Metal Center in Platinum (II) Complexes Containing 2, 2′-dipyridylamine or Oxime Ligands. JYU Dissertations, 2019.Search in Google Scholar

3. Chavain, N.; Biot, C. Organometallic Complexes: New Tools for Chemotherapy. Curr. Med. Chem. 2010, 17 (25), 2729–2745; https://doi.org/10.2174/092986710791859306.Search in Google Scholar PubMed

4. Hosmane, N. S. Chapter 10 – Organometallic Chemistry. In Advanced Inorganic Chemistry; Hosmane, N. S., Ed.; Academic Press: Amsterdam, Netherlands, 2017; pp 199–208.10.1016/B978-0-12-801982-5.00010-2Search in Google Scholar

5. Yunus, M. Y. B. M. Synthesis and Characterization of Novel Organometallic Chromium Hexacarbonyl Derivatives Via Ligand (l) Substitution. Uni. M. Pahang 2012, 3, 1–24.Search in Google Scholar

6. Allardyce, C. S.; Dyson, P. J. Medicinal Properties of Organometallic Compounds. Bioorganomet. Chem. 2006, 177–210. https://doi.org/10.1007/3418_001.Search in Google Scholar

7. Kavaklı, C. Synthesis and Characterization Carbonyl-Tungsten (0) Complexes [n, n’-Bis (Ferrocenylmethylene) Ethylenediamine]; Middle East Technical University: Ankara, Turkey, 2005.Search in Google Scholar

8. Andersen, J.-A. M. The Synthesis and Reactivity of Some Hydrocarbyl Complexes of Manganese, Rhenium and Iron. Uni. Cape Town 1993, 1, 1–22.Search in Google Scholar

9. Cotton, F. A.; Hong, B. Polydentate Phosphines: Their Syntheses, Structural Aspects, and Selected Applications. Prog. Inorg. Chem. 1992, 40, 179; https://doi.org/10.1002/9780470166413.ch3.Search in Google Scholar

10. Stoumpos, C. C.; Soe, C. M. M.; Tsai, H.; Nie, W.; Blancon, J.-C.; Cao, D. H.; Liu, F.; Traoré, B.; Katan, C.; Even, J. High Members of the 2D Ruddlesden-Popper Halide Perovskites: Synthesis, Optical Properties, and Solar Cells of (CH3 (CH2) 3NH3) 2 (CH3NH3) 4Pb5I16. Chem 2017, 2 (3), 427–440; https://doi.org/10.1016/j.chempr.2017.02.004.Search in Google Scholar

11. Chalkley, M. J.; Drover, M. W.; Peters, J. C. Catalytic N2-to-NH3 (Or-N2h4) Conversion by Well-Defined Molecular Coordination Complexes. Chem. Rev. 2020, 120 (12), 5582–5636; https://doi.org/10.1021/acs.chemrev.9b00638.Search in Google Scholar PubMed PubMed Central

12. Paskevicius, M.; Jepsen, L. H.; Schouwink, P.; Černý, R.; Ravnsbæk, D. B.; Filinchuk, Y.; Dornheim, M.; Besenbacher, F.; Jensen, T. R. Metal Borohydrides and Derivatives–Synthesis, Structure and Properties. Chem. Soc. Rev. 2017, 46 (5), 1565–1634; https://doi.org/10.1039/c6cs00705h.Search in Google Scholar PubMed

13. Bünzli, J.-C. G.; Piguet, C. Lanthanide-Containing Molecular and Supramolecular Polymetallic Functional Assemblies. Chem. Rev. 2002, 102 (6), 1897–1928; https://doi.org/10.1021/cr010299j.Search in Google Scholar PubMed

14. Kaltsoyannis, N.; McGrady, J.; Harvey, J. N. DFT Computation of Relative Spin-State Energetics of Transition Metal Compounds. In Principles and Applications of Density Functional Theory in Inorganic Chemistry I; Springer: Berlin, Germany, 2004; pp 151–184.10.1007/b97939Search in Google Scholar

15. Rezaei, Z.; Solimannejad, M.; Esrafili, M. D. Interplay Between Hydrogen Bond and Single-Electron Tetrel Bond: H3C⃛ COX2⃛ HY and H3C⃛ CSX2⃛ HY (X= F, Cl; Y= CN, NC) Complexes as a Working Model. Comput. Theor. Chem. 2015, 1074, 101–106; https://doi.org/10.1016/j.comptc.2015.10.015.Search in Google Scholar

16. Smith, M. B. Biochemistry: An Organic Chemistry Approach; CRC Press: Boca Raton, Florida, USA, 2020.Search in Google Scholar

17. Soriano, E.; Fernández, I. Allenes and Computational Chemistry: from Bonding Situations to Reaction Mechanisms. Chem. Soc. Rev. 2014, 43 (9), 3041–3105; https://doi.org/10.1039/c3cs60457h.Search in Google Scholar PubMed

18. Dolai, M. Organometallic and Catalysis; Purba Medinipur: India, 2020.Search in Google Scholar

19. Conradie, M. M. Rhodium and Iron Complexes and Transition States: a Computational, Spectroscopic and Electrochemical Study; University of the Free State: Bloemfontein, South Africa, 2010.Search in Google Scholar

20. Crabtree, R. H. The Organometallic Chemistry of the Transition Metals; John Wiley & Sons: New Jersey, USA, 2009.Search in Google Scholar

21. Hill, A. F. Organotransition Metal Chemistry; Royal Society of Chemistry: Cambridge, UK, 2002.10.1039/9781847551597Search in Google Scholar

22. Wales, D. J.; King, R. B. Electronic Structure of Clusters. In Encyclopedia of Inorganic Chemistry, 2nd ed.; King, R. B., Ed-in-Chief; John-Wiley and Sons, Ltd, 2005; pp 1506–1525.Search in Google Scholar

23. Lawrance, G. A. Introduction to Coordination Chemistry; John Wiley & Sons: New Jersey, USA, 2013.Search in Google Scholar

24. Constable, E. C.; Albrecht, M. Metals and Ligand Reactivity; Ellis Horwood: Chichester, UK, 1990.Search in Google Scholar

25. Crabtree, H. The Organometallic Chemistry of the Transition Metals; John Wiley & Sons: New Jersey, USA, 2009.Search in Google Scholar

26. Denny, J. A.; Darensbourg, M. Y. Metallodithiolates as Ligands in Coordination, Bioinorganic, and Organometallic Chemistry. Chem. Rev. 2015, 115 (11), 5248–5273; https://doi.org/10.1021/cr500659u.Search in Google Scholar PubMed

27. McCleverty, J. A.; Connelly, N. G. Nomenclature of Inorganic Chemistry II: Recommendations 2000; Royal Society of Chemistry: Cambridge, UK, 2001.10.1039/9781849732529Search in Google Scholar

28. Leigh, G. J. Nomenclature of Inorganic Chemistry: Recommendations 1990; Institut d’Estudis Catalans: Barcelona, Spain, 1990.Search in Google Scholar

29. Damhus, T.; Hartshorn, R.; Hutton, A. Nomenclature of Inorganic Chemistry: IUPAC Recommendations; Royal Society of Chemistry: Cambridge, 2005.Search in Google Scholar

30. Jeannin, Y. P. The Nomenclature of Polyoxometalates: How to Connect a Name and a Structure. Chem. Rev. 1998, 98 (1), 51–76; https://doi.org/10.1021/cr960397i.Search in Google Scholar PubMed

31. Poli, R. Open-shell Organometallics as a Bridge between Werner-type and Low-Valent Organometallic Complexes. The Effect of the Spin State on the Stability, Reactivity, and Structure. Chem. Rev. 1996, 96 (6), 2135–2204; https://doi.org/10.1021/cr9500343.Search in Google Scholar PubMed

32. Tsarevsky, N. V.; Matyjaszewski, K. “Green” Atom Transfer Radical Polymerization: from Process Design to Preparation of Well-Defined Environmentally Friendly Polymeric Materials. Chem. Rev. 2007, 107 (6), 2270–2299; https://doi.org/10.1002/chin.200736258.Search in Google Scholar

33. Kubas, G. J. Fundamentals of H2 Binding and Reactivity on Transition Metals Underlying Hydrogenase Function and H2 Production and Storage. Chem. Rev. 2007, 107 (10), 4152–4205; https://doi.org/10.1002/chin.200750233.Search in Google Scholar

34. Komiya, S. Synthesis of Organometallic Compounds: A Practical Guide; John Wiley & Sons: New Jersey, USA, 1997.Search in Google Scholar

35. Werner, H.; Werner, H. The Nineteenth Century: A Sequence of Accidental Discoveries. In Landmarks in Organo-Transition Metal Chemistry: A Personal View; Springer: Berlin, Germany, 2009; pp 1–16.10.1007/978-0-387-09848-7_3Search in Google Scholar

36. Werner, H.; Werner, H. Transition Metal Carbonyls: From Small Molecules to Giant Clusters. In Landmarks in Organo-Transition Metal Chemistry: A Personal View; Springer: New York, 2009; pp 1–43.10.1007/978-0-387-09848-7_4Search in Google Scholar

37. Anderson, J. Chemistry of the Metal Carbonyls. Q. Rev. Chem. Soc. 1947, 1 (4), 331–357; https://doi.org/10.1039/qr9470100331.Search in Google Scholar

38. Albers, M. O.; Coville, N. J. Reagent and Catalyst Induced Substitution Reactions of Metal Carbonyl Complexes. Coord. Chem. Rev. 1984, 53, 227–259; https://doi.org/10.1016/0010-8545(84)85009-2.Search in Google Scholar

39. Wilcox, R. J. Sorption to Dissolution: The Reactivity of Small Molecules with Condensed Phase Metal Halide Networks; Raleigh: North Carolina, 2009.Search in Google Scholar

40. Astruc, D. Organometallic Chemistry and Catalysis; Springer: Berlin, Germany, 2007.Search in Google Scholar

41. Leininger, S.; Olenyuk, B.; Stang, P. J. Self-assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals. Chem. Rev. 2000, 100 (3), 853–908; https://doi.org/10.1021/cr9601324.Search in Google Scholar PubMed

42. Frenking, G.; Fröhlich, N. The Nature of the Bonding in Transition-Metal Compounds. Chem. Rev. 2000, 100 (2), 717–774; https://doi.org/10.1021/cr980401l.Search in Google Scholar PubMed

43. Geiger, W. E.; Barrière, F. Organometallic Electrochemistry Based on Electrolytes Containing Weakly-Coordinating Fluoroarylborate Anions. Acc. Chem. Res. 2010, 43 (7), 1030–1039; https://doi.org/10.1021/ar1000023.Search in Google Scholar PubMed

44. Al-Muwallad, S. A. A. Synthesis and Characterization of Tungsten Carbonyl Complexes with some Schiff base ligands including phosphine derivatives (PR3); King Abdulaziz University Jeddah: Saudi Arabia, 2023.Search in Google Scholar

45. Li, J.; Huang, C. Y.; Li, C. J. Deoxygenative Functionalizations of Aldehydes, Ketones and Carboxylic Acids. Angew. Chem. 2022, 134 (10), e202112770; https://doi.org/10.1002/anie.202112770.Search in Google Scholar PubMed

46. Warwick, G. The Mechanism of Action of Alkylating Agents. Cancer Res. 1963, 23 (8_Part_1), 1315–1333.Search in Google Scholar

47. Lersch, M.; Tilset, M. Mechanistic Aspects of C− H Activation by Pt Complexes. Chem. Rev. 2005, 105 (6), 2471–2526; https://doi.org/10.1021/cr030710y.Search in Google Scholar PubMed

48. Hahn, C. Enhancing Electrophilic Alkene Activation by Increasing the Positive Net Charge in Transition-Metal Complexes and Application in Homogeneous Catalysis. Chem. Eur. J. 2004, 10 (23), 5888–5899; https://doi.org/10.1002/chem.200400550.Search in Google Scholar PubMed

49. Brown, S.; Brown, S. L. Mechanistic Organometallic Chemistry; University of Oxford: UK, 1986.Search in Google Scholar

50. Burt, J.; Levason, W.; Reid, G. Coordination Chemistry of the Main Group Elements with Phosphine, Arsine and Stibine Ligands. Coord. Chem. Rev. 2014, 260, 65–115; https://doi.org/10.1016/j.ccr.2013.09.020.Search in Google Scholar

51. Pratt, J. M.; Craig, P. J. Preparation and Reactions of Organocobalt (III) Complexes. In Advances in Organometallic Chemistry; Stone, F. G. A., West, R., Eds.; Academic Press: California, USA, Vol. 11, 1973; pp 331–446, https://doi.org/10.1016/s0065-3055(08)60164-1.Search in Google Scholar

52. Mestroni, G.; Camus, A.; Mestroni, E. Cobalt Complexes of 2, 2′-Bipyridine and 1, 10-Phenanthroline: I. Reaction with Alkyl Halides and π-Acids. J. Organomet. Chem. 1970, 24 (3), 775–781; https://doi.org/10.1016/s0022-328x(00)84510-6.Search in Google Scholar

53. Wilke, G.; Bogdanović, B.; Hardt, P.; Heimbach, P.; Keim, W.; Kröner, M.; Oberkirch, W.; Tanaka, K.; Steinrücke, E.; Walter, D. Allyl-Transition Metal Systems. Angew Chem. Int. Ed. Engl. 1966, 5 (2), 151–164; https://doi.org/10.1002/anie.196601511.Search in Google Scholar

54. Cope, A.; Gourley, R. J. A New σ-Bonded Arylsingle Bondcobalt(III) Complex. J. Organometa. Chem. 1967, 8, 527; https://doi.org/10.1016/s0022-328x(00)83675-x.Search in Google Scholar

55. Seyferth, D. Cadet’s Fuming Arsenical Liquid and the Cacodyl Compounds of Bunsen; ACS Publications: Washington, D.C., USA, Vol. 20, 2001; pp 1488–1498.10.1021/om0101947Search in Google Scholar

56. Jana, R.; Pathak, T. P.; Sigman, M. S. Advances in Transition Metal (Pd, Ni, Fe)-Catalyzed Cross-Coupling Reactions Using Alkyl-Organometallics as Reaction Partners. Chem. Rev. 2011, 111 (3), 1417–1492; https://doi.org/10.1021/cr100327p.Search in Google Scholar PubMed PubMed Central

57. Lenhert, P. The Structure of Vitamin B12-VII. The X-Ray Analysis of the Vitamin B12 Coenzyme. Proc. Roy. Soc. Lond. Math. Phys. Sci. 1968, 303 (1472), 45–84.10.1098/rspa.1968.0039Search in Google Scholar

58. Hill, J.; Pratt, J.; Williams, R. The Corphyrins. J. Theor. Biol. 1962, 3 (3), 423–445; https://doi.org/10.1016/s0022-5193(62)80035-6.Search in Google Scholar

59. Iguchi, M. A Study on the Contact Oxidation–Reduction Effect of Metal Complexes. Hydrogen Adsorption of Cobalt-Thiane Complexes. J. Chem. Soc. Jap. 1942, 63, 634.Search in Google Scholar

60. Brown, L. D.; Raymond, K. N.; Goldberg, S. Z. Preparation and Structural Characterization of Barium Decacyanodicobaltate (II) Tridecahydrate, Ba3 [Co2 (CN) 10]. 13H2O, an Air-Stable Salt of the [Co2 (CN) 10] 6-ion. J. Am. Chem. Soc. 1972, 94 (22), 7664–7674; https://doi.org/10.1021/ja00777a010.Search in Google Scholar

61. Halpern, J.; Maher, J. P. Pentacyanobenzylcobaltate (III): A New Series of Stable Organocobalt Compounds. J. Am. Chem. Soc. 1964, 86 (11), 2311; https://doi.org/10.1021/ja01065a060.Search in Google Scholar

62. Kwiatek, J.; Seyler, J. K. Preparation of Organocyanocobaltate (III) Complexes. J. Organomet. Chem. 1965, 3 (6), 421–432; https://doi.org/10.1016/s0022-328x(00)83570-6.Search in Google Scholar

63. Schollhorn, R. Intercalation Compounds; Academic Press: New York, Vol. 1, 1984; pp 249–349.Search in Google Scholar

64. Cutler, A. R.; Hanna, P. K.; Vites, J. C. Carbon Monoxide and Carbon Dioxide Fixation: Relevant C1 and C2 Ligand Reactions Emphasizing (. Eta. 5-C5H5) Fe-Containing Complexes. Chem. Rev. 1988, 88 (7), 1363–1403; https://doi.org/10.1021/cr00089a016.Search in Google Scholar

65. Garnovskii, A. D.; Kharissov, B. I. Main Methods of the Synthesis of Coordination Compounds. In Synthetic Coordination and Organometallic Chemistry; CRC Press: Florida, USA, 2003; pp 172–354.10.1201/9780203911525-7Search in Google Scholar

66. Lee, T.-Y.; Messerle, L. Utility of Hydridotributyltin as Both Reductant and Hydride Transfer Reagent in Organotransition Metal Chemistry: I. A Convenient Synthesis of the Organoditantalum (IV) Hydrides (η-C5Me4R) 2Ta2 (μ-H) 2Cl4 (R= Me, Et) from (η-C5Me4R) TaCl4, and Probes of the Possible Reaction Pathways. J. Organomet. Chem. 1998, 553 (1–2), 397–403; https://doi.org/10.1016/s0022-328x(97)00620-7.Search in Google Scholar

67. Hermann, M. Ueber die bei der technischen Gewinnung des Broms beobachtete flüchtige Bromverbindung. Justus Liebigs Ann. Chem. 1855, 95 (2), 211–225; https://doi.org/10.1002/jlac.18550950211.Search in Google Scholar

68. Rouschias, G.; Shaw, B. A Revised Structure for Chugaev’s Salt [PtC 8 H 15 N 6] X Cl X. J. Chem. Soc. D Chem. Commun. 1970 (3), 183. https://doi.org/10.1039/c29700000183.Search in Google Scholar

69. Badley, E.; Chatt, J.; Richards, R.; Sim, G. The Reactions of Isocyanide Complexes of Platinum (II): A Convenient Route to Carbene Complexes. J. Chem. Soc. D Chem. Commun. 1969 (22), 1322–1323. https://doi.org/10.1039/c29690001322.Search in Google Scholar

70. Burke, A.; Balch, A. L.; Enemark, J. H. Palladium and Platinum Complex Resulting from the Addition of Hydrazine to Coordinated Isocyanide. J. Am. Chem. Soc. 1970, 92 (8), 2555–2557; https://doi.org/10.1021/ja00711a063.Search in Google Scholar

71. Butler, W. M.; Enemark, J. H. Chelative Addition of Hydrazine to Coordinated Isocyanides. Structure of 1, 1’-dichloropallado-2, 5-di (Methylamino)-3, 4-diazacyclopentadiene, [Me2C2N4H4] PdCl2. Inorg. Chem. 1971, 10 (11), 2416–2419; https://doi.org/10.1021/ic50105a010.Search in Google Scholar

72. Rouschias, G.; Shaw, B. The Chemistry and Structure of Chugaev’s Salt and Related Compounds Containing a Cyclic Carbene Ligand. J. Chem. Soc. Inorg. Phys. Theor. 1971, 2097–2104. https://doi.org/10.1039/j19710002097.Search in Google Scholar

73. Balch, A. Formation of Platinum (IV) Carbene Complexes by Oxidative Addition. J. Organomet. Chem. 1972, 37 (1), C19–C20; https://doi.org/10.1016/s0022-328x(00)89248-7.Search in Google Scholar

74. Butler, W. M.; Enemark, J. H.; Parks, J.; Balch, A. L. Chelative Addition of Hydrazines to Coordinated Isocyanides. Structure of Chugaev’s Red Salt. Inorg. Chem. 1973, 12 (2), 451–457; https://doi.org/10.1021/ic50120a042.Search in Google Scholar

75. Fischer, E.; Öfele, K. Mangan (I)-pentacarbonyl-äthylen-Kation. Angew. Chem. 1961, 73 (16), 581; https://doi.org/10.1002/ange.19610731614.Search in Google Scholar

76. Fischer, E.; Öfele, K. Rhenium (I)-tetra-carbonyl-di-äthylen-Kation. Angew. Chem. 1962, 74 (2), 76; https://doi.org/10.1002/ange.19620740210.Search in Google Scholar

77. Fischer, E.; Maasböl, A. On the Existence of a Tungsten Carbonyl Carbene Complex. Angew Chem. Int. Ed. Engl. 1964, 3 (8), 580–581; https://doi.org/10.1002/anie.196405801.Search in Google Scholar

78. Cardin, D.; Cetinkaya, B.; Lappert, M. Transition Metal-Carbene Complexes. Chem. Rev. 1972, 72 (5), 545–574; https://doi.org/10.1021/cr60279a006.Search in Google Scholar

79. Vilsmeier, A.; Haack, A. Über die Einwirkung von Halogenphosphor auf Alkyl-formanilide. Eine neue Methode zur Darstellung sekundärer und tertiärer p-Alkylamino-benzaldehyde. Ber. Dtsch. Chem. Ges. 1927, 60 (1), 119–122; https://doi.org/10.1002/cber.19270600118.Search in Google Scholar

80. Hartshorn, A. J.; Lappert, M. F.; Turner, K. Carbene Complexes. Part 13. The Synthesis and Characterisation of Secondary Carbene Complexes of Vanadium (I), Chromium (0), Molybdenum (0), Tungsten (0), Manganese (I), Rhenium (I), Iron (0), Ruthenium (II), Cobalt (I), Iridium (III), and Platinum (IV), and Hydridorhodium (III). J. Chem. Soc., Dalton Trans. 1978 (4), 348–356. https://doi.org/10.1039/dt9780000348.Search in Google Scholar

81. Lappert, M. F. Contributions to the Chemistry of Carbenemetal Chemistry. J. Organomet. Chem. 2005, 690 (24-25), 5467–5473; https://doi.org/10.1016/j.jorganchem.2005.07.066.Search in Google Scholar

82. Cetinkaya, B.; Lappert, M.; McLaughlin, G.; Turner, K. Carbene Complexes. 7. Chloromethyleneammonium Chlorides-Electron-Rich Carbenoids, as Precursors to Secondary Carbene Metal-Complexes-Crystal and Molecular-Structure of Trichloro (Dimethyl-Aminomethylene) Bis (Triethylphosphine) Rhodium (III). J. Chem. Soc. Dalton Trans. 1974 (15), 1591–1599.10.1039/DT9740001591Search in Google Scholar

83. Tri, N. M.; Thanh, N. D.; Ha, L. N.; Anh, D. T. T.; Toan, V. N.; Giang, N. T. K. Study on Synthesis of Some Substituted N-Propargyl Isatins by Propargylation Reaction of Corresponding Isatins Using Potassium Carbonate as Base under Ultrasound-And Microwave-Assisted Conditions. Chem. Pap. 2021, 75 (9), 4793–4801; https://doi.org/10.1007/s11696-021-01697-6.Search in Google Scholar

84. Cheng, Y.; Yang, H.; Meth-Cohn, O. The Unique Nucleophilic Reactivity of Arylaminochlorocarbenes. Chem. Commun. 2003 (1), 90–91. https://doi.org/10.1002/chin.200320044.Search in Google Scholar

85. Borel, C.; Hegedus, L. S.; Krebs, J.; Satoh, Y. Synthesis of Amino-. beta.-lactams by the Photolytic Reaction of Imines with Pentacarbonyl [(dibenzylamino) Carbene] Chromium (0). J. Am. Chem. Soc. 1987, 109 (4), 1101–1105; https://doi.org/10.1021/ja00238a018.Search in Google Scholar

86. Rendina, L. M.; Vittal, J. J.; Puddephatt, R. J. Cationic Carbene Complexes of Platinum (IV): Structure of a Secondary Carbene Complex. Organometallics 1995, 14 (2), 1030–1038; https://doi.org/10.1021/om00002a058.Search in Google Scholar

87. Claverie, J. P.; Soula, R. Catalytic Polymerizations in Aqueous Medium. Prog. Polym. Sci. 2003, 28 (4), 619–662; https://doi.org/10.1016/s0079-6700(02)00078-3.Search in Google Scholar

Received: 2024-06-07
Accepted: 2024-07-22
Published Online: 2024-08-13
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review
  3. Advanced synthetic routes of metal organic frameworks and their diverse applications
  4. Carbon materials derived by crystalline porous materials for capacitive energy storage
  5. BiVO4-based heterojunction nanophotocatalysts for water splitting and organic pollutant degradation: a comprehensive review of photocatalytic innovation
  6. Synthesis, characterization, thermal, theoretical studies, antimicrobial, antioxidant activity, superoxide dismutase-like activity and catalase mimetics of metal(II) complexes derived from sugar and Schiff base
  7. Solid-phase extraction of organophosphates from polluted waters on a matrix-imprinted sorbent
  8. Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere
  9. Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: a review
  10. Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, clinical applications, and producing techniques
  11. Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots
  12. Transformative applications of “click” chemistry in the development of MOF architectures − a mini review
  13. A review of carbon-based adsorbents for the removal of organic and inorganic components
  14. Mercury removal from water: insights from MOFs and their composites
  15. Organometallic complexes and reaction methods for synthesis: a review
  16. Comprehensive review of metal-based coordination compounds in cancer therapy: from design to biochemical reactivity
Downloaded on 27.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2024-0037/html
Scroll to top button